
DIGITAL OBJECT RIGHTS MANAGEMENT
Interoperable Client-side DRM Middleware

Carlos Serrão, Miguel Dias
Adetti, ISCTE/DCTI, Ed. ISCTE, Av. Das Forças Armadas, 1600-082 Lisboa, Portugal

Jaime Delgado
Universitat Pompeu Fabra, DMAG, Pg. Circumvallació 8, E-08003 Barcelona, Spain

Keywords: DRM, middleware, security, network protocols, web-services, IPR, cryptography.

Abstract: In a more and more interconnected world where the available bandwidths are increasing at a pace hard to
imagine some time ago, multimedia e-content distribution over digital networks has become one of the
biggest available services online. Powered not only by the network high availability but also by the
emergence of new compression techniques and digital content consumer device, digital content is gaining
momentum. However the same factors that power this emergence are also causing some problems, specially
related with the digital content IPR management and protection. These problems are being handled
employing DRM - Digital Rights Management technology which lack interoperability. This paper presents
and discusses a solution that provides interoperability to DRM-protected content through the employment of
a client-side DRM middleware layer. This middleware layer sits at the client-side of a broader DRM system
(called DoRM) providing the necessary mechanisms to achieve interoperability between the different digital
content rendering applications that the users possesses.

1 INTRODUCTION

Digital open networks have changed many aspects
of our current lives – technologically, economically
and socially. In particular it has mostly changed the
way (digital) information is exchanged. This digital
network has changed the way multimedia digital
content is distributed and obtained (Duhl et al,
2003). The modern multimedia distribution chain is
entirely digital: from content author, content
producer, content provider, service provider,
network provider and final consumer. However, the
distribution of digital multimedia content over
digital open networks has some serious problems.
One of the most common and important problems
refers to the content piracy or copyright
circumvention that affects directly the players that
are part of the multimedia distribution chain.

This is a strong barrier to those who use this
distribution channel – especially to authors and
content owners. To overcome some of the problems
created by unauthorized digital content distribution
and usage, some technologic measures were put in

place. Common and simple technologic procedures
include content encryption, scrambling and
watermarking which are parts of a broader definition
of content protection (C/P). More complex measures
may include the definition of business rules and
content usage rules, managed by an infrastructure
called Digital Rights Management (DRM). Efficient
IPR protection measures arise from the conjunct
usage of effective C/P technologies and DRM
platforms. DRM is a set of technological
components which may be capable of performing
different functions, such as content protection,
content management, authentication, authorization
and accounting, payment and rights management
(Duhl et al, 2003). DRM can uphold specific
conditions to specific groups of users, devices or
domains in terms of digital content usage. This is
something that goes inline with the content owners
and authors expectations, on what concerns piracy
prevention, but sometimes it creates some
obtrusiveness on the user side. One of the most
important requirements for users is that DRM
technology doesn’t alter its user experience with the

229
Serrão C., Dias M. and Delgado J. (2006).
DIGITAL OBJECT RIGHTS MANAGEMENT - Interoperable Client-side DRM Middleware.
In Proceedings of the International Conference on Security and Cryptography, pages 229-236
DOI: 10.5220/0002101602290236
Copyright c© SciTePress

multimedia digital content when compared with
non-DRM protected content (Serrão et al, 2005).
One of the main reasons for this user side
obtrusiveness is mostly due to the fact that most of
the user requirements on what concerns the digital
content experience are disregarded and only content
owners and authors are considered in the design of
the actual DRM-solutions (Serrão et al, 2005). There
is an important dichotomy between the content
owners and final user’s interests. These results, in
most of the cases, that the user experience with
DRM copyrighted and protected digital content is
not the best and the most obvious alternative for
users is to find alternative ways to enhance such
experience – obtaining illegal pirated content on P2P
networks, for instance. An important source for this
user’s obtrusiveness results from the fact that most
of the existing DRM solutions are proprietary and
vertical, following a 1-to-1 strategy on what
concerns DRM. This means that they have their own
protected-content formats, specific protection tools
and specific rights expression mechanisms. In
practice, a user that buys a music track from an
online digital content store that uses a specific DRM
protection scheme is unable (most of the times) to
render that content on its preferred music player
application, and is limited to use whatever music
player application which implements the DRM
protection scheme that is the result of a business
partnership between the digital content provider and
the DRM technology provider. Sometimes, this 1-to-
1 approach causes more problems than it solves.

The following section of the paper will start by
presenting a short description of an open, secure and
distributed DRM platform - called Digital object
Rights Management (DoRM). This paper will focus
mainly on how the platform generates and manages
digital content usage rights (Serrão, 2004). Then the
description of a client-side middleware layer that
manages the rights at the end user side, allowing
interoperability between different content rendering
applications is also presented.

2 THE DORM SOLUTION

Interoperability is a problem that can be addressed
from different sides. In what concerns digital
multimedia content interoperability it can be seen in
terms of content format interoperability, content
protection methods interoperability, rights
expression interoperability and many others. In what
concerns the object of this paper, interoperability
refers to rights management interoperability,

although some of the concepts may also be
applicable to other types of interoperability such as
content protection, for instance. The approach
followed to achieve this rights management
interoperability will consist in two different
components:
1. At the server-side, at the DoRM platform, using

a set of pre-defined rights templates that will
enable digital multimedia content stores to align
their own business model with the DRM
enforcing layer (Serrão et al, 2005). These
templates are defined by the content provider
using a specific Rights Expression Language
(REL) that defines the business rules;

2. At the client-side, the establishment of a DRM
middleware layer, between the content
rendering applications and the rights definition,
allowing any content rendering application to
ask to this middleware layer, the permission for
conducting an operation over the content.

Both approaches are being developed as part of a
DRM solution called Digital Rights object
Management. DoRM is a distributed service-
oriented DRM platform (Serrão et al, 2003, 2004),
independent from the type of content, the content
protection and the business model to be used. It can
be used with multiple communication protocols and
is based on the emerging service-oriented paradigm
(SOAP (W3C-SOAP, 2001), WSDL and UDDI)
approach (Serrão et al, 2003), called Service
Oriented Architecture (SoA). DoRM (Figure 1) can
cover most of the content lifecycle phases: from
content authoring, distribution and management of
the related rights up to the final user. The
communication between each of the single
components that compose the DoRM platform is
typically performed over an insecure network. This
introduces special needs regarding the security of
this communication. DoRM defined and uses two
different security layers (Figure 1). The first security
layer is established at the communication level,
which provides the necessary secure and
authenticated communication channel that allows
components to communicate securely with each
other. This first layer uses SSL and X.509
certificates installed on the hosting servers enabling
this first authentication and ciphering layer. The
second security layer is established at the application
level, ensuring the integrity, authentication and non-
repudiation mechanisms needed by the different
components which provide the DoRM services. This
second layer, which corresponds to the exchange of
SOAP messages internally between the different
DoRM services, and between external actors and

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

230

Protection Tools
System

Payment
System

Authentication and Accounting System

License Manager System

Content Management System

DoRM platform

COS CPS

MDS RGS

PGW

AUS CFS

ITS

LIS

Payment Authorizations
and Requests

Content

License Template
productions and content

key(s) storage

Register the content
and metadata

License production for
user/device, content,

usage conditions

MetadataSend content
order

Creates and distributes
digital credentials to all

entities

Request and download
content protection tools

End-Users

Wallet

Browse through
available content

Content

Content Protection
Tools

Licenses

Figure 1: DoRM internal architecture.

those same services, uses the possibilities offered by
the W3C XML security-related recommendations:
SOAP extensions to use XML Signature. This is part
of the new XML security-related architecture (WS-
Security).
The authentication between components is provided
using a specific developed mapping of X.509
certificates in XML. Each of the DoRM platform
services uses this two layered security model. While
the underlying layer provides the authenticity of the
web-servers (in which web-services are deployed
and hosted) and the confidentiality of the
communication channel between these servers, the
upper layer provides only authentication, integrity
and non-repudiation for the different services and
actors that interact over the platform, which may be
independent of the web-server itself. The other main
reason for using SSL is because the DoRM
communications are mostly point-to-point and
without big scalability requirements. In a technical
approach, DoRM is composed by a set of external
actors or elements and a set of internal components
(Serrão et al, 2003). The internal components are
oriented towards the service they supply, and are
described in more detail in the following section.
These internal components are self-descriptive, in
the sense that they expose an open WSDL
description of the services and functionalities they

provide, and any authenticated component can
connect to it and the services and functionalities it
provides – DRM services. These internal
components communicate with each other using
SOAP messages (Serrão et al, 2005). The discovery
and identification of services is currently being
provided by a central configuration component, but
in the future this service will be provided by an
UDDI server which will provide information about
the services provided by the platform and how to use
them.

3 THE DORM ARCHITECTURE

The DoRM rights management platform is
composed of a set of distributed components
implemented using a web-services approach, that
exchange standardized messages over open networks
(such as the Internet) (Serrão et al, 2003). The
DoRM conceptual architecture (presented in Figure
1) defines a scenario capable of handling a
multiplicity of different business models for content
distribution.
DoRM is composed by a set of external actors or
elements and a set of internal components (Serrão et
al, 2003). The internal components are oriented

DIGITAL OBJECT RIGHTS MANAGEMENT - Interoperable Client-side DRM Middleware

231

towards the service they supply, and are described in
more detail in the next section. These internal
components are self-descriptive, in the sense that
they expose an open WSDL description of the
services they provide. Any authenticated component
on the DoRM platform can connect to any of the
services it provides – DRM services – to implement
its business logic. These internal components
communicate with each other using secured SOAP
messages (Serrão et al, 2003). The discovery and
identification of services is provided by a central
configuration component (CFS), an UDDI server
that provides information about the services
subscribed at platform and information on how to
use them. The present DRM state of the art, offers a
fragmented landscape of proprietary offerings where
the knowledge of how to bridge the different islands
resides nowhere. Current DRM technology can be
best described as a set of islands that don’t have any
bridges between them. Thus, most of DRM
platforms use vertical approaches to the rights
management problem, assuming that along the entire
digital content value chain, from the digital rights
owner to the final end-user, the same DRM
technology will be used. This is an approach that
affects both digital rights owners and end-users – in
the case of digital rights owners they see their task
complicated by the fact that they have to handle with
a much higher complexity in their digital contents
provision (multiple formats, multiple devices,
multiple rights expression and management); in the
end-users case, users will have to deal with a
multiplicity of different players and devices that are
dedicated to render a specific type of DRM-
protected content.
DoRM differs from other vertical DRM technologies
assuming a horizontal approach. Unlike other DRM
solutions, DoRM is completely independent from
type of content, the delivery mechanism, the adopted
business model and even the methods used to protect
the content itself. Another crucial difference
between DoRM and other DRM initiatives resides in
the fact that all the DRM services are split and
distributed over an open network. DoRM was
developed having in mind the concept of DRM
interoperability, and new functionalities are being
added to allow the interoperability with other
proprietary DRM systems. The DoRM conceptual
architecture is composed of three different types of
components: the user (not necessarily the end-users)
roles; a set of external entities to the DRM process
itself; and the internal DRM entities which provide
the DRM functionality.

Around the DoRM platform there are a set of
external actors systems. The external actors are: the
End-User, the Device Provider, the Content
Provider, the Security Tools Providers and the IPR
societies. There are also some external systems
which may interact with the DoRM platform that
are: the Devices, the Content Delivery Systems, the
Content Selection system, the Financial System and
the Certification System. The Certification System is
a very important component on the system and it’s
responsible for receiving requests for and issuing
credentials to entities. These credentials will be used
by entities to authenticate themselves to each other,
allowing the establishment of secure and
authenticated communication channels between
them (this is part of the establishment of one of the
two DoRM security layers) (Serrão et al, 2003). All
the components in the DoRM architecture
communicate using the channel security provided by
the SSL/TLS protocol (Serrão et al, 2003). This
Certification Authority may be internal to DoRM,
and therefore entirely managed by some entity, or it
may be an external commercial entity, such as
Verisign or Thawte (Serrão et al, 2004).
The internal components of the DoRM platform
include: Content Management System, License
Manager System, Payment System, Content
Protection System and Authentication and
Accounting System.
The Content Management System is a system
component whose role is to assign unique identifiers
to content and to register metadata information for
that specific content. The service assigns unique
identifiers to content using the MPEG-21 (ISO/IEC
21000-3) directives about Digital Item Identification
(DII), using a reduced version of the MPEG-21 DII
Digital Object Identifiers (Dalziel, 2002). This
server component is also responsible for notifying
the appropriate content servers that a given content
has been requested and that needs to be feed to the
final user. This Content Management System
handles also the content preparation. It receives raw
content from a specified source or sources and
encodes it on a specified format, adds metadata and
protects it. It is not implemented using the WS
approach, although it uses some components that
provide such approach. This system component
exposes three major functionalities: Content
Preparation Server (CPS), the Media Delivery
Server (MDS) and the Registration Server (RGS).
The License Manager System is a system component
responsible for house-keeping the rules associating a
user, the content and his/her corresponding access
rights. This component will accept connections from

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

232

authenticated content rendering application clients
for downloading licenses, which will be applied to
the protected content through an appropriate
protection tool. By default the licenses are XML
formatted using Open Digital Rights Language
(ODRL), but other licenses format can also be
supported. It exposes a major functionality, the
License Server (LIS).
The Payment System is a system component
responsible for verifying and validating the payment
methods provided by the User to a Commerce
Server. It exposes a major functionality, the Payment
Gateway (PGW).
The Content Protection System is a system
component responsible for registering new
protection tools and for receiving authenticated
client content rendering application requests for the
downloading of a specific protection tool. It is also
responsible for making protection tools available to
the Content Preparation service to allow the
protection of content. The system exposes a major
functionality, the IPMP tools server (ITS).
The Authentication and Accounting System is a key-
component of the system. It is responsible for
authenticating all the internal services and
components as well as some external actors to the
DRM system. It validates the access rights of all of
them working as a single sign-on point, registering
and managing components and users on the system.
It uses cryptographic XML credentials to
authenticate both components and users in order to
authenticate the transactions exchanged between
them (XML Encryption and XML Signature) (W3C-
SOAPSEC, 2001). The system exposes two major
functionalities: the Configuration server (CFS) and
the Authentication server (AUS).

4 DIGITAL CONTENT
RENDERING APPLICATIONS
DRM INTEROPERABILITY

Interoperability is a key issue in DRM and it is
extremely hard to achieve. It is currently one of the
hottest topics in the DRM arena, and there are
several initiatives that are trying to deal with this –
one is the Digital Media Project (DMP)
(Chiariglione et al, 2005). This section of the paper
discusses only one of the many DRM-
interoperability issues. The approach that is
described and discussed on this paper is based on the
establishment of a rights management
interoperability layer at the client-side. The objective

of this interoperability layer is to free the content
rendering applications from the burden of having to
support multiple rights expression languages
processing and different authorization modules
implementation. This interoperability layer provides
such functionalities to all registered content
rendering applications. In order to achieve such
interoperability level, a DRM middleware layer is
defined and built at the client-side. The goal of such
interoperability middleware layer is to allow that
different content rendering applications can be
abstracted from the inner DRM mechanisms that
will uphold the content provider user rights at the
end-user side. This doesn’t reduce however the need
for content rendering applications to support the
necessary cryptographic mechanisms that will be
needed to access to the content. However, this
interoperability allows content rendering
applications to be implemented and distributed
independently of the DRM system used to protect
the digital content. There are also some trends in the
DRM world that uphold the abstraction of the
content rendering applications from the content
protection technologies – the Intellectual Property
Management and Protection (IPMP) tools from
MPEG (ISO/IEC 14496-1, 2003). This DRM
middleware layer is capable of managing the access
to protected content by different Content Rendering
Applications (CRA). Each time a CRA wishes to
perform an operation over the content, it contacts the
DoRM middleware layer that authorizes or not such
operation according to what is specified on the rights
expression. This layer allows the coexistence of
many DRM-protected content files and DRM-
enabled applications on a single client system,
presenting a horizontal approach to DRM. Most of
the DRM approaches existing nowadays are mostly
vertical: examples of this include Microsoft
Windows Media Rights Management (Microsoft,
2004) or even Apple iTunes (Lenzi, 2003). While a
solution like Microsoft Windows Rights
Management is end-to-end Microsoft system-
dependent (even at the client-side) relying on
Windows Media Player to obtain the licenses and
enforce them over the content (Microsoft, 2004),
DoRM follows a more horizontal approach in which
several content applications can share the access to
content, mediated by the DoRM middleware layer.
This represents in fact an important interoperability
layer at the client-side (Figure 2).
This DRM middleware architecture acts as an
intermediary between the DoRM server platform
and the different CRA that are installed on the user
system. This middleware layer is composed by a set

DIGITAL OBJECT RIGHTS MANAGEMENT - Interoperable Client-side DRM Middleware

233

Figure 2: The client-side DoRM layer.

of different functional components. These
components are:
• Secure Storage Module: this module is the

responsible for storing information at the end-
user side in a secure manner. This secure
storage uses cryptographic mechanisms to
cipher information of the file system, based on
the AES cipher algorithm and on information
provided by the user and information collected
from the system. This module stores
information about the user, the CRA and the
licenses which are associated to content;

• Application Registration Module: this module
handles the CRA registration requests. It
responsible for receiving requests from client-
side content rendering applications that will be
able to handle DRM-protected content. This
module registers the application generating
cryptographic credentials that will be used latter
for application validation;

• Application Authorization Module: this is a

module that will receive requests from CRA to
perform some action over a DRM-protected
item. This module verifies if the CRA is
authorized to perform such action over the item,
checking the license stored in the system, and

returns that clearance to the application together
with the content encryption key (or keys);

• Application Authenticator Module: the main
task of this module is to authenticate a client-
side CRA that is requesting access to a DRM-
protected content item. This authentication is
based on the credentials that the CRA supplies
(issued previously by the Application
Registration Module) and that this module
verifies;

• DoRM secure communications module: this
module handles all the secure communications
performed between the DRM middleware layer
and the CRA and between the DRM
middleware layer and the server-side DoRM
platform;

• User registration and validation module: the
purpose of this module is to handle the end-user
registration at the server-side DoRM platform,
establishing the basis for the creation of the
secure storage and is also responsible for
validating the users that try to access to the
DRM middleware layer;

• Rights Expression Interpreter module: this
module is capable of interpreting the XML
formatted license expressed using a Rights
Expression Language, and provide meaningful
information to uphold the user content rights

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

234

over the different CRA requesting access to
DRM-protected items.

On the following section a description of the
establishment of the client-side DRM middleware
layer is presented.

4.1 Establishment of a DRM
Middleware Layer

To establish such DRM middleware layer at the end-
user side several steps need to be concluded. One of
the most important steps that will need to be
achieved is the end-user registration at the DoRM
platform. This DoRM registration process occurs the
first time the DRM middleware is boot up and uses
the SSL/TLS protocol to establish a secure and
authenticated channel with the DoRM platform
servers. The process is composed by the following
steps:
1. The DRM middleware layer software computes

a key-pair (Kpub
mid, Kpriv

mid);
2. The Kpriv

mid is internally stored on a secure
repository (an encrypted file) which is ciphered
with a key (SSkeyAES) which is computed
hashing information of the pair username and
password choose by the end-user and generic
information collected from the device –
SSkeyAES{Kpriv

mid};
3. The user will introduce some more information

to the DRM middleware interface and then this
information is sent to the DoRM platform;

4. The DoRM platform registers the user and
returns back a certificate that will validate this
DRM middleware installation (CertDoRM

mid).
This certificate contains the Kpub

mid and the
Kpub

DoRM, signed by the DoRM platform;
5. This certificate is received by the DRM

middleware and is also stored in the secure
storage – SSkeyAES{CertDoRM

mid}. This
concludes the user registration process. Every
time the DRM middleware boots up, the user
has to authenticate to it – this DRM middleware
supports more than one user, meaning that each
of the users has to individually register to
DoRM, repeating this five steps.

After a successful boot up the DRM middleware can
receive multiple requests from different CRA. But
before this occurs, the CRA needs to be registered at
the DRM middleware – this is necessary to ensure
that only registered applications are allowed to use
the platform. Only registered and authenticated CRA
can request content operations to the DRM
middleware (this may include receiving content
deciphering keys provided in the rights expressions).

This means that any of the CRA that wishes to use
this system will need to know how to execute the
following two processes:
1) Enrol to and request authentication to the DRM
middleware, exchanging a set of credentials with the
DRM middleware, to enable application
authentication and the establishment of a secure
channel between the application and the wallet. The
process is performed in the following way:
• The first operation that the CRA needs to

perform is to compute a key pair (Kpub
CRA,

Kpriv
CRA);

• The Kpriv
CRA should be stored securely by the

CRA. The CRA sends Kpub
CRA to the DRM

middleware, to register it;
• The DRM middleware, registers the Kpub

CRA,
and generates a certificate to be returned for the
CRA (Certmid

CRA) – this certificate contains also
Kpub

mid and its signed by the DRM middleware;
• The certificate is received by the CRA and

stored. The registration process is concluded
with success.

After the CRA is registered on the DRM middleware
it can use it to request access clearance to perform
DRM-protected content operations. This process
starts with an authentication between the CRA and
the DRM middleware to establish a common secret
key to create channel between them. This process is
performed in the following way:
• The CRA sends its credentials to the DRM

middleware: Certmid
CRA;

• The DRM middleware validates the certificate
and computes a secret session key
(SessKeyAES). This session key is ciphered with
the CRA public key (Kpub

CRA) and returns it to
CRA;

• CRA receives the session key and can use it
(SessKeyAES).

2) Request authorization to the DRM middleware to
perform operations over the content. This process
includes the extraction of content unique identifier
(CID) and requesting the DRM middleware the
permission to use the content. This middleware is
responsible for getting the license from the server,
parsing it, analyzing the rights associated to it before
the approval or rejection of the operation over the
content (this may include passing the decryption key
to the application or the appropriate protection tool).
This authorization request is expressed in a XML
notation. This is processed in following way:
• An authenticated CRA sends an authorization

request to the DRM middleware:
SessKeyAES{AuthorizationREQ, CID};

DIGITAL OBJECT RIGHTS MANAGEMENT - Interoperable Client-side DRM Middleware

235

• This request is received by the DRM
middleware that verifies if there are on the
system licenses for the CID and the User. If not,
the DRM middleware connects to the DoRM
platform and checks if there is a license for the
User and CID specified. If this license exists, it
is downloaded by the DRM middleware and
securely stored. This license is interpreted
locally at the DRM middleware, and the
authorization that is requested by the CRA is
checked against the rights expression present in
the downloaded license. If the request
authorization is a valid action over the content,
the Content Encryption Key (CEK) is read from
the license and returned to the CRA -
SessKeyAES{CEK};

• The CRA receives the SessKeyAES{CEK} and
deciphers the CEK. This CEK is then use to
perform the operation over the content. This
authorization request is performed each time the
CRA when an operation is conducted over the
content.

This DRM middleware acts an intermediary between
the CRA and the rights management imposed by the
DoRM platform.

5 CONCLUSIONS

This paper has presented a client-side DRM
middleware providing interoperability to DRM-
protected content rendering applications. This
system uses a distributed service-oriented
architecture that exchanges digital rights
management related information over an open-
network. To create secure and authenticated
channels over this open-network, DoRM uses a two-
layered system. A first one that is placed at the
communication level supplied by the SSL/TLS
protocol offering authentication and confidentiality
of the services, and a second one, at the application
level that offers authentication and non-repudiation
of the messages exchanged between the services.
The DRM interoperability issue is currently a hot
topic. Most of the existing DRM solutions simply do
not interoperate or interoperate through very painful
mechanisms to the end-user – they are totally
vertical. This results that each of the different CRA
supports their own specific proprietary DRM
system. This paper presented also possible solution,
based on a client-side DRM middleware layer
established between the CRA and the DoRM
platform that is used to manage the content rights.
These results in a system that is capable of

supporting multiple CRA, multiple content types,
and multiple rights expression technologies and can
even support multiple DRM platforms – this
represents a total horizontal approach to the DRM
interoperability problem. A crucial issue on the
system is the security of the Content Encryption
Key(s). The details of the secure storage and the
security of the communication channel between the
CRA and the DRM middleware are also described.
This DRM interoperability layer is still at the
prototype stage. Future plans include the support for
several rights expression languages, the
development a generic authorization model and the
porting to several devices (PC, PocketPC and
Mobile Phone).

REFERENCES

Duhl J., Keroskian S., 2003, "Understanding DRM
Systems", IDC White Paper

Serrão C., 2004, “Open Secure Infrastructure to control
User Access to multimedia content”,
WEDELMUSIC2004, Barcelona

Serrão C., Neves D., Kudumakis P., Barker T., Balestri
M., 2003, "OpenSDRM - An Open and Secure Digital
Rights Management Solution", IADIS 2003, Lisboa

ISO/IEC 21000-3 Information technology -- Multimedia
framework (MPEG-21) -- Part 3: Digital Item
Identification

Microsoft, 2004, “Architecture of Windows Media Rights
Manager”, Microsoft Corporation,
http://www.microsoft.com/windows/windowsmedia/h
owto/articles/drmarchitecture.aspx

Lenzi, R. et al, 2003, “Apple iTunes Music Store”,
technical report, The Interactive-Music Network

W3C, 2001, “SOAP Security Extensions: Digital
Signature”, W3C Note

W3C, 2002, “Open Digital Rights Language (ODRL)
Version 1.1”, W3C Note

Dalziel, J., 2004, “DOI in a DRM environment”, White
Paper, Copyright Agency Limited

Rosenblatt, B., 2002, "Enterprise Content Integration with
the Digital Object Identifier: A Business Case for
Information Publishers"

Chiariglione, L., et all, 2005, “NAVSHP (FP6) DRM
Requirements Report v1.0”, Networked Audiovisual
Systems and Home Platforms strategic objective

Serrão, C., Dias, M., Delgado, J., 2005, “Using ODRL to
Express rights for different content usage scenarios”,
2nd ODRL Workshop 2005

ISO/IEC 14496-1:2003, Information technology -- Coding
of Audio-Visual Objects -- Part 1: Systems,
Amendment 3: IPMP Extensions

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

236

