
SECURE ACCESS MODULES FOR IDENTITY PROTECTION
OVER THE EAP-TLS

Smartcard Benefits for User Anonymity in Wireless Infrastructures

Pascal Urien, Mohamad Badra
Networking and Computer Sciences Departement, ENST 37-39 rue Dareau, 75014, Paris France

Keywords: Identity Protection, EAP, PET, Security, Smartcard, TLS, WLAN.

Abstract: Identity protection and privacy became increasingly important in network communications; especially in
wireless LAN. In this optic, Privacy Enhancing Technologies (PET) have been introduced to provide
anonymous exchange and to protect personal data. In this paper, we present the SAM (Secure Access
Module) architecture, which is a couple of smartcards (client and server) that process EAP-TLS, a
transparent transport of TLS (Transport Layer Security) over EAP (Extensible Authentication Protocol).
This architecture provides mutual authentication, identity protection and data un-traceability by preventing
undesired and unnecessary processing of personal data.

1 INTRODUCTION

Without encryption features, information flowing in
the network could be potentially logged, archived
and searched. To resolve such problems, many
security protocols, such as TLS (RFC 2246, 1999)
and IPSec (RFC 2401, 1998) have been developed.
Thanks to these protocols, communicating entities
perform mutual authentication and compute a shared
secret. This secret value is then used to generate
cryptographic keys that enforce privacy and integrity
services for information exchanged between these
two parties.

Mutual authentication establishes the proof of
identity and is usually realized thanks to X509
certificates or pre-shared-keys (PSK). Certificate
deployment needs Public Key Infrastructures (PKI)
and Certificate Authorities (CA) or Third Trusted
Parties (TTP) to link the identity of the certificate
owner to its public key. As for PSK, it requires
neither of them and it is always identified through an
ID value managed by the PSK owners.
Consequently, PSK management does not require
alike PKI infrastructures.

Even though security protocols are able to
provide the basic security services, missing from
their design is a way to protect information related to
the communicating identities. Consequently, an
intruder can easily learn who is reaching the

network, when, and from where, and hence
correlates client identity to connection location. For
example, in the use case of TLS, the two
communicating parties expose public-key
certificates for mutual authentication and key
establishment. However, TLS cannot prohibit an
attacker to use traffic analysis to identify parties
over time. In fact, during the TLS session
certificates flow in clear through the network.
Consequently, attacking TLS client’s privacy
becomes straightforward, because the intruder can
easily read the client personal data, and make a
correlation between its identity and its location,
which is a privacy issue, especially to the wireless
LAN (IEEE 802.11, 1999).

WLAN security relies on the IEEE 802.1x (IEEE
802.1x, 2001) infrastructure, which defines a
framework for authenticating and controlling user’s
traffic, as well as dynamically exchanging
encryption keys between the wireless terminal
(supplicant) and the authentication server. It ties
itself to a protocol called EAP, Extensible
Authentication Protocol (RFC 3748, 2004) that is a
powerful umbrella supporting multiple
authentication methods and mechanisms, such as
EAP-TLS (RFC 2716, 1999). However, security
protocols lack the need to securely store secret and
private keys. In fact, there is no safe place to store
these critical credentials on disk, encrypted or

157Urien P. and Badra M. (2006).
SECURE ACCESS MODULES FOR IDENTITY PROTECTION OVER THE EAP-TLS - Smartcard Benefits for User Anonymity in Wireless Infrastruc-
tures.
In Proceedings of the International Conference on Security and Cryptography, pages 157-164
DOI: 10.5220/0002100001570164
Copyright c© SciTePress

Figure 1: A SAM infrastructure for wireless LAN.

otherwise. The advanced approach for protecting
these private data is to use tamper-resistance devices
such as smartcards. These chips manage hardware
and software countermeasures, which makes it
difficult to extract or modify confidential
information. In this way, we implemented EAP-TLS
on smartcards.

In this paper, we introduce EAP-TLS servers,
e.g. trusted applications running in Java cards
(JavaCardForum, 2006) and processing EAP and
TLS protocols. Furthermore, we define SAM
(Secure Access Module) an architecture that
enhances security authentication, identity protection,
client credentials verification and services
authorization. Next, we analysis this approach and
we give an example of anonymous exchanges within
TLS before concluding with some remarks.

2 INTRODUCING SAM IN WLAN

The extensible authentication protocol is a powerful
umbrella that shelters multiple authentication
scenari. It is the cornerstone of the IEEE 802.1x
standard (IEEE 802.1x, 2001) which defines key
exchange mechanisms between the wireless user
(the supplicant) and the authentication server.

EAP messages are transported in 802.11 frames

(IEEE 802.11, 1999),(IEEE 802.1x, 2001) between
the supplicant and the access point, whereas
RADIUS (RFC 3559, 2003) packets are used to

convey these messages between the access point and
authentication server. Between the terminal and the
EAP smartcard, we defined a network interface that
transports EAP messages using ISO 7816 payloads
(ISO7816, 2006).

In (Urien et al., 2004), we described an open
architecture that processes EAP-TLS in smartcards
and we presented a modular and flexible approach
for controlling network accesses in WLAN
environment. We also demonstrated that this
approach is realistic with cheap smartcards, which
are not specially designed for that purpose.

In this paper, we introduce EAP server

smartcards that are dual forms of the EAP client
smartcards. The main function of the EAP servers is
to parse EAP responses, to process them and to
return the appropriate EAP requests.

At the end of an EAP authentication session, the

server notifies the success or the failure of the
process. Upon success, it forwards the AAA key
(see figure 1) to the access point; which is needed
for all security operations that occurred between the
access point and the client.

A dedicated RADIUS software processes

RADIUS packets issued by the access point, extracts
EAP messages, and forwards them to the appropriate
EAP smartcard. We called SAM a couple of
smartcards that processes EAP messages on both
client and server side. Figure 1 describes the
sequence of EAP exchanges between SAM during

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

158

the WLAN authentication phase. There are one EAP
smartcard on each side, which parses and processes
EAP messages.

In this sequence, the client intends to gain access

to services provided by WLAN, and periodically
transmits an EAP-Start (1) message to the access
point to initiate an EAP authentication scenario. The
access point produces, upon reception of this
information, an EAP identity request (2), which will
be forwarded to the client smartcard (3). This device
will then deliver an appropriate EAP identity
response, shuttled by ISO 7816 commands.

Upon reception by the client, the EAP identity

response is encapsulated in a 802.11 frame (4),
before conveying it to the access point that will in
turn shuttle this response using a RADIUS packet
(5).

SAM architecture uses many smartcards on the

server side in order to process multiple
authentication sessions. The server software checks
the availability of one of its EAP-Server before
forwarding (6) the EAP identity response to the
available smartcard.

In reply, the EAP server sends an EAP request

message, repeating the same encapsulation sequence
before delivering the message to the client
smartcard. This latter processes then the message
and generates an appropriate response that will be
sent to the selected EAP-Server.

Secret and cryptographic keys are always

computed into the smartcards that also securely store
network credentials (shared secrets, RSA private
keys, certificates, etc.). Upon receiving the EAP-
Success, the RADIUS (6) and the client (7) collect
the AAA key from the SAM via a specific smartcard
command. Thereafter, the client and the access point
establish more exchange (for example 802.11i
handshake) in order to compute cryptographic
parameters that are required for radio security
protocols, such as WEP and WPA.

3 EAP SERVER COMPONENTS

As we introduced, an EAP smartcard is a
standardized, ISO 7816 microcontroller supporting
most of authentication methods. It is described by an
internet draft (Urien et al., 2006b) and a more

detailed description may be found in (Urien et al.,
2005).

We have developed the OpenEapSmartcard

platform (OpenEapSmartcard, 2005) that provides a
trusted execution environment for EAP methods and
makes it a secure software entity. This platform is
based on the standard Java Card Forum
(JavaCardForum, 2006) framework that supports a
cryptographic package including cryptographic
resources needed by security protocols such as TLS.

Method.class

Auth.class

Credential.class

EapEngine.class

draft-eap-smartcard

Cryptographic API
RNG - MD5 – SHA1 - RSA

Security
Management

Network
Interface

Identity
Management

Personalization

ISO 7816 Interface

Javacard
Framework JC.2x

Methods
Credentials

Init
Object

E2PROM

EAP-AKA

EAP-TLS

Init(Object
Credential)

ProcessEap()

Authentication
Interface

Java Virtual Machine

1

2

3

4

Figure 2: The OpenEapSmartcard architecture.

The OpenEapSmartcard platform comprises four
java components (see figure 2):

1- The EapEngine: it manages several methods and
multiple instances of a given method. It implements
the EAP core and acts as a router that sends and
receives packets to/from methods. At the end of an
authentication session, each method computes a
master cryptographic key (the AAA Key) which is
collected by the terminal operating system.

2- The Authentication interface: this component
defines all services that are mandatory in EAP
methods in order to collaborate with the EapEngine.
The two main functions are Init() and Process-Eap().
The first initializes method and returns an
Authentication interface; the second processes
incoming EAP packets. Methods may provide
additional facilities dedicated to performances
evaluations.

3- Credential Objects: each method is associated to a
Credential Object that encapsulates all information
required to process a given authentication scenario.

4- Methods: each authentication method is processed
by a specific class. Once initialized, this object

SECURE ACCESS MODULES FOR IDENTITY PROTECTION OVER THE EAP-TLS - Smartcard Benefits for User
Anonymity in Wireless Infrastructures

159

analyses and processes each incoming EAP packet
and delivers corresponding response.

4 BENCHMARK

4.1 Basic Constraints

The WLAN standard (IEEE 802.1x, 2001) specifies
some timing constraint related to the delay between
EAP requests and responses. That must be (by
default) less than 30 seconds. Moreover, the duration
of the authentication procedure is limited to a
maximum value of 60 seconds, in order to avoid the
client network interface reset, which is generated by
the DHCP (RFC 2131, 1997) timeout.

In (Urien et al., 2004) and (Urien et al., 2006a),

we described our implementation of EAP-TLS on
EAP smartcards and detailed benchmark tests. The
best results show that EAP-TLS session costs about
five seconds on both on the client and server side.
Even if the time required to run EAP-TLS is high –
although it should be improved – it clearly appears
that today javacards are able to fully run EAP-TLS
in an interval compatible with IEEE 802.1X and
DHCP requirements.

Figure 3: Computing times distribution for EAP-TLS
smartcards.

Figure 3 shows the observed repartition of
computing times for the EAP-TLS application.
Operations are split into three categories, data
transfer (about 2.6 kilobytes are exchanged during
the TLS session with 1024 bits RSA keys),
cryptographic resources (these facilities are
supported by standard Javacard framework (Chen,
2000), and software overhead, which is the time
required by all remaining operations.

4.2 EAP Server Card Performances

Due to modest performances of smartcards, each
EAP packet is managed by a thread. A thread is
started for each response and ends when the EAP-

server delivers the next request or the last
notification.

If we call Tm the main thread that runs the

RADIUS server and Ti a thread associated to a given
EAP message, the EAP server management is
therefore done according to the following paradigm:

1- In thread Tm, the GetSession() procedure finds a
smartcard (whose number is index) that is associated
or that can be associated to the EAP session,
identified with its id-session value, see (Urien et al.,
2006a) for more details. If no smartcard is available,
then the incoming RADIUS Access-Request is
silently discarded.

<Tm: index= GetSession(id_session)>

2- If a smartcard is available, then a thread Ti
associated to that smartcard – identified by an index
value – is created.

<Tm: StartThread(index)>

3- The incoming EAP-Response is forwarded to the
appropriate smartcard (by ProcessEAP(index)),
which afterwards returns an EAP request or a
notification packet. Next, the thread Ti will build a
RADIUS message (FormatRADIUSpacket()) that is
sent to the access point (by SendRADIUSpacket()).

<Ti:ProcessEAP(index)
BuildRADIUSpacket() SendRADIUSpacket()>

As we previously mentioned, when no smartcard
is available on the server side, the incoming
RADIUS packet is silently discarded. This
mechanism is similar to the classical blocking
algorithm used in circuit-switching. Therefore, we
shall estimate the system performance in a way
similar to an M/M/C/C queuing system, from the
Erlang-B formula.

Where
- Pc is the probability of blocking (e.g. a RADIUS
packet is silently discarded),
- c is the number of smartcards (EAP servers),
- λ is the rate of authentication sessions, and
- 1/μ the mean time of an authentication session.

With our best couple of devices (client and

server), we observed that the measurement duration

1

0

(/) (/)
! !

c kc

c
k

p
c k

λ μ λ μ
−

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

160

of an authentication session is about 5+5 = 10
seconds; therefore 1/μ = 10. Let’s now assume a
network with 1000 users, authenticated every hour,
then λ = 1000/3600 and so λ/μ = 10 x 1000/3600 =
2,8. As illustrated by figure 5, the probability of
blocking (pc) is about 50% with 2 smartcards (c = 2)
and only 1% with 8 smartcards (c = 8).

Figure 5: Using Erlang-B law, for adjustments of
RADIUS server performances.

5 IDENTITY PROTECTION
WITHIN TLS

As we introduced, we have implemented our SAM
within Wi-Fi architecture, using EAP-TLS
smartcards. EAP-TLS is based on TLS, the most
deployed security protocol for securing exchanges.
TLS provides connection security with peer entity
authentication, data confidentiality and integrity, key
generation and distribution, and security parameters
negotiation.

TLS protocol consists of several sub-protocols

(RFC 2246, 1999); specially the Record and the
Handshake protocols. The Record protocol provides
basic connection security for various higher layer
protocols through encapsulation. The Handshake
protocol is used to allow peers to agree upon
security parameters for the Record layer,
authenticate themselves, instantiate negotiated
security parameters, and report error conditions to
each other. Handshake results in security attribute
negotiation. Once a transport connection is
authenticated and a secret shared key is established
with the TLS Handshake protocol, data exchanged
by application protocols can be protected with
cryptographic methods by the Record layer using the
keying material derived from the shared secret.

We illustrate (see figure 6) TLS Handshake in

three phases: the hello phase, the authentication
phase, and the finished phase. During the hello

phase, the client and the server negotiate
cryptographic options (asymmetric and symmetric
encryption algorithm, hash function, key exchange
method, etc.) and exchange two random values that
will be used by the key computation process. The
second phase consists of exchanging certificates and
of proving the identity and the validity of these
certificates. In this phase, the client generates a
secret called PreMasterSecret, which is sent
encrypted using the server public key (see figure 6).
During the finished phase, the client and the server
exchange the ChangeCipherSpec and the Finished
messages. The ChangeCipherSpec message is sent
by both the client and the server to notify the
receiving party that subsequent records will be
protected under the newly negotiated cipher spec
and keys. The Finished message is immediately sent
after the ChangeCipherSpec message to verify that
the key exchange and authentication processes were
successful. The Finished message is the first
message that is protected using the negotiated
algorithms by the Record sub-protocol.

5.1 TLS Authentication Options

Client Hello (ClientRandom)

Server Hello (ServerRandom)

Server’s Certificate

CertificateRequest, ServerHelloDone

Certificate

CertificateVerify {MessagesDigest} KPrivC

ChangeCipherSpec

SERVER

ChangeCipherSpec

Finished (Encrypted+Signed MessagesDigest)

CLIENT

Finished (Encrypted+Signed MessagesDigest)

ClientKeyExchange {PreMasterSecret}KPubS

The Client’s identity is sent
in clear text

Client
KPubC

CA
KPubCA

Server
KPubS

Figure 6: Mutual authentication with TLS, the client’s
identity is unprotected.

With TLS, the entities mutually authenticate
using certificates which are sent in clear text,(see
figure 6) leaving it unprotected. TLS supports three
authentication modes: authentication of both parties,

SECURE ACCESS MODULES FOR IDENTITY PROTECTION OVER THE EAP-TLS - Smartcard Benefits for User
Anonymity in Wireless Infrastructures

161

server authentication with an unauthenticated client,
and anonymity key exchange. For that, TLS
proposes a range of cipher suites (cryptographic
options). Some of these cipher suites provides
anonymous communications in which neither party
is authenticated. However, anonymous cipher suites
are strongly discouraged because they cannot
prevent man-in-the-middle attacks.

5.2 TLS Identity Protection

ExtendedClientHello (ClientRandom))

ExtendedServerHello (ServerRandom)

Server’s Certificate

CertificateRequest, ServerHelloDone

Certificate

CertificateVerify {MessagesDigest} KPrivC

ChangeCipherSpec

SERVER

ChangeCipherSpec

Finished (Encrypted+Signed MessagesDigest)

CLIENT

CA
KPubCA

Client
KPubC

Finished (Encrypted+Signed MessagesDigest)

ClientKeyExchange {PreMasterSecret}KPubS

The client’s identity is sent encrypted
with the encryption_key
encryption_key =
PRF(MasterSecret,”client_certificate”
ServerRandom+ClientRandom)

Server
KPubS

Figure 7: TLS Handshake with identity protection.

There are some propositions to allow identity
protection with TLS. One of them establishes an
initial anonymous Diffie-Hellman exchange before
establishing an ordinary handshake with identity
information (Rescorla, 2000), even though this
wouldn't be secure against active attackers. And it
wouldn't favorable for some environments (e.g.
mobile) because the client and the server must
encrypt the whole ordinary TLS session and then
increase enormously the processing time to establish
the secure session. Another solution is a matter of
changing the order of the messages that the client
sends to the server in order to activate the

encryption/decryption before sending the certificate.
That way the certificate is sent protected by the new
bulk encryption algorithm and key. However, this
solution requires the definition of new version for
TLS, in which IETF TLS working group does not
agree (Rescorla, 2000). In order to provide identity
protection in an extensible way and to integrate that
with the SAM architecture, we extend TLS with a
new extension using the TLS extensions standard
(RFC 3546, 2003). This latter describes ways to add
functionality to TLS (RFC 2246, 1999). The
standard provides generic extension mechanisms for
the TLS handshake client and server hellos and
specifies some extensions using these mechanisms.
It specifies extensions using the following generic
mechanism represented in the external data
representation (XDR) format (RFC 1832, 1995).

struct {
ExtensionType extension_type;
opaque extension_data <0 .. 2^16-1>;
 } Extension;

The extension_data field contains information

specific to the particular extension type (identified in
the extension_type field). The extension defined
below is sent by the client to indicate to the server
that the client certificate will be sent encrypted using
the negotiated symmetric algorithm and a secret key.
It contains the symmetric encryption algorithms
supported by the client in order of the client's
preference (favorite choice first). The defined
extension is of type "identity_protection". The
"extension_data" field of this extension shall
contain:

struct {
SymmetricAlgorithm
symmetric_algorithm_list<0..2^16-1>;
 } IdentityProtection;
enum {rc4(0),(255)} SymmetricAlgorithm;

If the server is not able to negotiate such session,

it replays with an alert notification, falls back on an
ordinary TLS handshake or stops the negotiation.

If the server is able to process this extension, it

selects a symmetric encryption algorithm from the
list sent by the client. The selected algorithm and a
16-bytes encryption key will be then used by the
client to encrypt its certificate (in mode stream).
Both the client and the server compute the
encryption key by applying the PRF-TLS function
(RFC 2246, 1999) on the random values and the
master secret.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

162

encryption_key =
PRF(master_secret,
"client_certificate",
ServerHello.random+ClientHello.random);

Upon receipt of the encrypted client certificate,

the server should decrypt it, and check that the
certificate is valid. Next, the client and the server
continue their exchange as defined in TLS.

Figure 7 illustrates TLS handshake, with our
proposed identity protection mechanism. Identity
protection is negotiated through two TLS extensions
included in client and server Hello messages. The
client’s certificate, which is usually sent in a clear
text, is encrypted according to the negotiated
cryptographic algorithm associated to the
encryption_key, defined above. More details have
been published in an IETF draft (Urien et al.,
2006c).

5.3 Identity Protection with SAM

As we cited before, it’s desirable to manage security
protocols parameters, such as private and secret
keys, by tamper-resistance computers. In this optic,
our SAM smartcard allows highly secure storage of
such credentials and verifies certificates in a trusted
environment. It is, moreover, the only entity in the
chain that retrieves certificates in clear text. In other
words, all TLS cryptographic computations and
certificate encryption/decryption are performed into
the SAM. In this way, the certificate will not flow
unencrypted nor on the network, neither on the client
or server machines.

6 CONCLUSION

Identity protection is a critical requirement for
network’s users, especially in a wireless context. In
this paper, we introduced the SAM concept that
works in WLAN or VPN architectures. Next, we
extended the TLS protocol to provide identity
protection services, and we integrated it within SAM
infrastructures. The use of smart cards allows trusted
computing, ensures client identity protection, and
guaranties safe storage of sensitive credentials.

REFERENCES

RFC 1832, 1995. XDR: External Data Representation
Standard. Internet Engineering Task Force, IETF.

RFC 2131, 1997. Dynamic Host Configuration Protocol,
DHCP. Internet Engineering Task Force, IETF.

RFC 2401, 1998. Security Architecture for the Internet
Protocol. Internet Engineering Task Force, IETF.

IEEE 802.11, 1999. Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
Specifications, Institute of Electrical and Electronics
Engineers.

RFC 2716, 1999. PPP EAP TLS Authentication Protocol.
Internet Engineering Task Force, IETF.

RFC 2246, 1999. The TLS Protocol Version 1.0. Internet
Engineering Task Force, IETF.

Chen, C., 2000, Java Card Technology for Smart Cards.
The Java Series, Addison Wesley, 2000.

Rescorla, E., 2000. SSL and TLS- Designing and Building
Secure Systems, Addison Wesley, 2000.

IEEE 802.1X, 2001. "Local and Metropolitan Area
Networks: Port-Based Network Access Control",
Institute of Electrical and Electronics Engineers.

RFC 3546, 2003. Transport Layer Security (TLS)
Extensions. Internet Engineering Task Force, IETF.

RFC 3559, 2003. Remote Authentication Dial In User
Service Support for EAP. Internet Engineering Task
Force, IETF.

RFC 3748, 2004. Extensible Authentication Protocol,
(EAP). Internet Engineering Task Force, IETF.

Urien P., Badra M., and Dandjinou M., 2004. EAP-TLS
smartcards, from dream to reality. In ASWN 2004,
Fourth workshop on Applications and Services in
Wireless Networks,. Boston, USA.

OpenEapSmartcard, 2005. WEB site,
http://www.enst.fr/~urien/openeapsmartcard.

Urien P., Dandjinou M., 2005. The OpenEapSmartcard
project. Short paper, In ACNS 2005, Applied
Cryptography and Network Security 2005, Columbia
University, New York, USA

ISO 7816, 2006. Identification cards-Integrated circuit(s)
card with contact, International Organization for
Standardization (ISO), ISO/IEC 7816.

JavaCardForum, 2006. www.javacardforum.org
Urien P., Dandjinou M., 2006a. Introducing Smartcard

Enabled RADIUS Server, In CTS 2006, the 2006
International Symposium on Collaborative
Technologies and Systems, Las Vegas, USA.

Urien P., Pujolle, G., 2006b. EAP support in smartcard.
Internet Draft, Internet Engineering Task Force, IETF.

Urien P., Badra M., 2006c. Identity Protection within
EAP-TLS, Internet Draft, Internet Engineering Task
Force, IETF.

SECURE ACCESS MODULES FOR IDENTITY PROTECTION OVER THE EAP-TLS - Smartcard Benefits for User
Anonymity in Wireless Infrastructures

163

