
USING MICROSOFT OFFICE INFOPATH TO GENERATE XACML
POLICIES

Manuel Sánchez, Gabriel López, Antonio F. Gómez-Skarmeta
Department of Information Engineering and Communications

University of Murcia, Spain

Óscar Cánovas
Department of Computer Engineering

University of Murcia, Spain

Keywords: Policy editor, XACML, XSLT, access control.

Abstract: Today, when organizations perform access control over their resources they are not only interested in the
user’s identity, but in other data such as user’s attributes or contextual information. These requirements can
be found, for example, in a network access control scenario where end users pay for a specific access level
and depending on it, they can get different network quality of service. The network provider has to check, not
only the user identity, but the user’s attributes to make sure that he can access to the specified resource. These
systems are based on the use of policy languages to define the authorization process. However, due to the
increasing complexity of current systems, policies are becoming more and more complex to be managed by
system administrators. Therefore, in this paper we present an user friendly approach to policy specification,
based on the use of high level templates and common desktop applications. These templates are easily built
from XML schemas, and once they have been filled, a XACML policy is automatically generated using a XML
transformation.

1 INTRODUCTION

Access control management is a main concern
for domain administrators since target resources
have to be protected against unauthorized accesses
from malicious attackers. One of the main sce-
narios is the network access control and several
mechanisms have been proposed recently for that,
such as 802.1X (IEEE Computer Society, 2001) or
PANA (Forsberg et al., 2005). Initially, these mecha-
nisms were only based on user authentication, mainly
using shared secrets or public key cryptography.
However, they are evolving to more sophisticated pro-
posals performing user authorization based on user
attributes, such as NAS-SAML (López et al., 2006).
Usually, the authorization process is guided by a set
of rules, that is, the access control policy, which has
been usually described by means of specific, and tech-
nology dependent, policy languages, such as PER-
MIS (Chadwick et al., 2003) or Akenti (Thompson
et al., 2003).

Due to the existence of different proprietary and
application specific access control policy languages,
policies can not be easily shared between different or-
ganizational domains, as described in (Cánovas et al.,

2004), which involves a serious interoperability draw-
back. Besides, it makes difficult the development of
good editing tools for access control policies. This sit-
uation has motivated the creation of a standard access
control policy language, named XACML (Anderson
et al., 2003), by the OASIS consortium. XACML,
which was proposed to become a common framework
for defining access control policies, addresses all the
requirements of an access control environment and is
currently used to represent and evaluate policies in a
wide range of authorization scenarios, such as NAS-
SAML (López et al., 2005) or systems described in
(Lorch et al., 2002) (Cardea and PRIMA). However,
this versatility implies a high level of complexity in
the policy language definition. Therefore, adminis-
trators should have a depth knowledge of XACML in
order to define an accurate medium-sized access con-
trol policy. For example, in a medium or large orga-
nization which needs to protect a high number of re-
sources, policy management may become a very com-
plex task.

Therefore, it would be desirable the existence of
software tools to facilitate the development of access
control policies from the point of view of the domain
administrator, especially when they cannot be consid-

379
Sánchez M., López G., F. Gómez-Skarmeta A. and Cánovas Ó. (2006).
USING MICROSOFT OFFICE INFOPATH TO GENERATE XACML POLICIES.
In Proceedings of the International Conference on Security and Cryptography, pages 379-386
DOI: 10.5220/0002096803790386
Copyright c© SciTePress



ered XACML or security experts. At the moment
there are several alternatives to deal with XACML
policies, such as general XML editors or even spe-
cific XACML editors, but as explained below, all of
them present any deficiency. This paper presents a
framework to generate XACML policies from user
friendly templates that can be filled in by a domain
administrator in the same way they write a document
in natural language, using the MicrosoftR©Office
InfoPathTMutility (Hoffman, 2003). Finally, the re-
sulting high level policy files are transformed into the
final low level XACML policies by means of XSL
transformations (Clark, 1999).

In this way, as Figure 1 shows, to obtain a new
XACML policy, the administrator writes the initial
document. Then, the security expert of the organiza-
tion applies the XML transformation to generate the
policy. Finally, this policy is added to the XACML
repository containing the rest of policies.

Figure 1: Policy life cycle.

The rest of this paper is structured as follows. Sec-
tion 2 introduces the XACML standard. Section 3
explains the features of the tool used to design user
friendly forms for administrators. The policy life cy-
cle is shown in Section 4. To clarify the policy gener-
ation process, Section 5 presents a specific example.
Related work is shown in Section 6. Finally, conclu-
sions and future work are presented in Section 7.

2 XACML POLICY LANGUAGE

XACML (eXtensible Access Control Markup Lan-
guage) (Anderson et al., 2003), the OASIS proposal
for a standard access control language, was defined to
represent access control policies in a standard way.
XACML is XML-based and includes two different
specifications: the first one is an access control policy
language, which defines the set of subjects that can
perform particular actions on a subset of resources;

the second one is a representation format to encode
access control requests and responses, that is, a way
to express queries about whether a particular access
should be allowed and the related answers.

As Figure 2 shows, the main element of all
XACML policies is aPolicy or PolicySetelement. A
PolicySet is a container that can hold other Policies
or PolicySets, as well as references to other policies
(PolicyIDReference). A Policy represents a single ac-
cess control policy, expressed by a set ofRules. A
Policy or PolicySet may contain multiple policies or
Rules, each of which may evaluate to different access
control decisions. XACML needs some way of rec-
onciling the decisions each makes, and this is done
through a collection ofCombining Algorithms. An
example of those is thePermit Overrides Algorithm,
which says that if at least an evaluation returns Permit,
then the final result is also Permit. A Policy or Pol-
icySet element may also specify a set ofObligation
Attributes, that is, a set of actions to be performed if
the request has been approved.

Figure 2: XACML policy structure.

XACML provides another feature calledTarget. It
is a set of simplified conditions for the Subject, Re-
source and Action that must be met for a PolicySet,
Policy or Rule to apply to a given request. If all
the conditions of a Target are met, then its associated
PolicySet, Policy, or Rule are applied to the request.
Once a Policy is found, the included rules are evalu-
ated. The main element of a rule is theCondition. If
the evaluation of the Condition results true, then the
Rule’s Effect (Permit or Deny) is returned.

The main object that XACML deals with is at-
tributes. Attributes are named values of known types.
Specifically, attributes are characteristics of the Sub-
ject, Resource, Action or Environment in which the
access request is made.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

380



3 MICROSOFT OFFICE
INFOPATH

InfoPath (Hoffman, 2003) is a desktop application
which allows organizations to efficiently gather the
needed information using dynamic forms. This ar-
chitecture includes design characteristics which make
easy the structured creation and flexible viewing of
XML documents. This tool has the following archi-
tectural features and design objectives:

• Build an hybrid tool which combines document
editing experience with the data capture ability of
forms. Users can view and modify abstract data
structures using a traditional word-processing en-
vironment.

• The use of XML documents belonging to user de-
fined schemas for the input and output. InfoPath
uses and produces XML schemas and XSL trans-
formations, and it is integrated with XML Web
services standards. When editing an XML docu-
ment, InfoPath enables adding and deleting valid
attributes and XML elements which belong to a
XML schema defined by the user. Then, when the
XML document is saved or submitted, it remains
valid following the XML schema.

• Provide structural editing. InfoPath enables gath-
ering structured and validated XML information
which can be reused. Structural editing in InfoPath
provides an easy and natural user’s interface which
allows to normal users add and delete valid XML
attributes and elements.

• Provide flexible views to present XML documents
in a coherent way to the user. InfoPath uses XSLT
to enable the content of the editing views to be or-
ganized in a different way that the XML data struc-
ture.

Three different validation levels exist in InfoPath:
schema based validation, XPath validation rules and
script based validation. The first validation level helps
users to create structured XML documents which are
ready to be reused by XML based systems. The sec-
ond level allows to check conditions, e.g. the value of
some field must be greater than a particular minimum.
And the third level may define additional validations
in the XML document or define other business logic.

Form templates can be designed in several ways,
ranging from an existing XML schema or document
to defining an XML schema from scratch.

4 USING TEMPLATES TO
GENERATE POLICIES

Complexity in policy definition languages makes dif-
ficult the specification of the policies governing the
access control system. Therefore, a methodology to
simplify this task is proposed in this document. The
main idea, shown in Figure 3, is that the administra-
tor writes a document in natural language expressing
what the system must enforce, that is, the set of ac-
cess control rules. Later, by means of XSL transfor-
mations, this document is translated into an XACML
policy. Specifically, a set of templates are available
to the system administrator, each one for every spe-
cific policy existing in the system. These templates
define documents that can be used to describe a spe-
cific feature of the access control system, such as the
roles assigned to each user or the set of roles enabled
to access to a specific resource.

Figure 3: Policy generation.

Microsoft Word might be used as text editor to de-
sign the required templates, but InfoPath has been
selected since this tool was specifically designed to
work with templates. The design of a policy template
is based on a XML schema defining the information
elements which can be specified by the administrator.
This schema should be designed by an XACML ex-
pert, since it has to contain the more relevant elements
of the XACML policy.

Once the initial document is written, a XSL trans-
formation must be applied to transform it into the fi-
nal XACML policy. This can be done either using a
XSLT compiler, such as XALAN (Apache Software
Foundation, 2006), or some XML editor implement-
ing the XSLT standard, such as XMLSpy (Altova,
2006). The XSL transform generates the XACML
policy completing the required sections using the in-
formation from the initial document. As the initial
XML schema, the design of the XSLT implies a deep
knowledge about the XACML standard, because it is
necessary to know how to generate a complete policy
fulfilling the XACML specifications.

Consequently, the"security expert"is responsible
for developing the XML schemas, the policy tem-
plates and the XSL transformations for each policy in
the organization. On the other hand, specific system
administrator, for example administrators who are in

USING MICROSOFT OFFICE INFOPATH TO GENERATE XACML POLICIES

381



charge of the role assignment to users, are able to
specify the security policy without any knowledge of
XACML. All they have to do is to complete the policy
template, expressed in natural language, and this will
be automatically transformed into the target XACML
policy by means of the XSL transformations. Finally,
policies are stored in the XACML repository to make
them available to the system.

This kind of policies doesn’t have real time require-
ments, therefore it is not necessary for administra-
tors to apply the XSLT transformation and to store
the XACML policy in the repository directly. In this
way, administrators only have to fill in the template
due to the security expert can perform all the related
technical tasks.

The conversion of the XML document into the
XACML policy depends mostly on the specific pol-
icy being generated, therefore transformation details
are given next using some examples.

4.1 Translating Policy Elements

Definition of the XML schema containing the ele-
ments managed by the administrator can be made us-
ing the string data type, for attributes, subjects, etc.
However, there are special cases needing special at-
tention. For example, obligations commonly express
the assignment of a value to an attribute, so they need
to be represented as a pair of strings.

A more complicated example is related tocondi-
tions, because they can be expressed in a variety of
ways. For example,((: current − time ≥ 9h)and(:
current − time ≤ 21h))and((: dayOfWeek ≥
Monday)and(: dayOfWeek ≤ Friday)) needs to
be represented in a recursive way, but InfoPath does
not allow recursive schemas.

Therefore an iterative approach must be taken,
where simple relational checks are joined using
boolean operators, and new checks are joined to
the previous relation as a whole. For example, the
condition stated before could be expressed as(((:
current − time ≥ 9h)and(: current − time ≤
21h))and(: dayOfWeek ≥ Monday))and(:
dayOfWeek ≤ Friday). Moreover, since the most
common condition in policies implies two relational
comparison in the form of(x > A)and(x < B), this
structure can be introduced in the schema to make
easy the design of theConditionelement. Figure 4
shows a simplified view of theCondition element
schema.

Finally, the basic XML document must be trans-
formed into the complete XACML policy by means
of a XSL transformation. Therefore, elements from
the basic XML document must be translated into
XACML elements, obeying the specific structure,
formats and namespaces. The XSL transforma-
tion generates the specific policy structure using the

xsl:elementandxsl:attributeoperators in a fixed way,
and then it uses the input XML document generated
before to fill in the specific gaps in the final XACML
policy. Once the transformation is designed, it has
only to be applied to every InfoPath-generated docu-
ment.

5 POLICY GENERATION FOR A
NETWORK ACCESS CONTROL
AUTHORIZATION SCENARIO

This section depicts how to generate one of the re-
quired policies for the NAS-SAML system, where the
main resource to be protected is the communication
network.

5.1 Nas-saml. A Network Access
Control Approach Based on
Saml and XACML

NAS-SAML (López et al., 2006) is a network access
control approach based on X.509 identity certificates
and authorization attributes. This proposal is based
on the SAML and the XACML standards, which will
be used for expressing access control policies based
on attributes, authorization statements and authoriza-
tion protocols. Authorization is mainly based on the
definition of access control policies including the sets
of users pertaining to different subject domains which
will be able to be assigned to different roles in order to
gain access to the network of a service provider, un-
der specific circumstances. The starting point is a net-
work scenario based on the 802.1X standard and the
AAA (Authentication, Authorization and Account-
ing) architecture, where processes related to authenti-
cation, authorization, and accounting are centralized.

The system operates as follows. Every end user be-
longs to a home domain, where he was given a set
of attributes stating the roles he plays. When the end
user requests a network connection in a particular do-
main by means of a 802.1X connection, the request is
obtained by the AAA server, and it makes a query to
obtain the attributes linked to the user from an author-
ity responsible for managing them, based on aRole
Assignment Policy. In case the user’s home domain
is based on a different authorization system, the AAA
server uses a credential conversion service, as defined
in (Cánovas et al., 2004), to translate the user’s autho-
rization credentials into internal format, based on a
Conversion Policy. Finally, the AAA server sends an
authorization query to a policy decision point (PDP),
which consults aResource Access Policy. The PDP
firsty recognizes if the user belongs to well known

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

382



Figure 4: Simplified Condition Element XML Schema.

source domain, by means of theRole Allocation Pol-
icy sub-policy. Then, it checks if the user is allowed
or not to use the target resource, by means of theTar-
get Access Policysub-policy. Furthermore, it also es-
tablishes the set of obligations derived from the given
decision, for example some QoS properties, security
options, etc. This general scheme works both in sin-
gle and inter-domain scenarios, and using both push
an pull based communications.

5.2 Editing the Target Access Policy

This section shows an example of how one of the poli-
cies introduced in NAS-SAML (Target Access Pol-
icy), can be defined by means of the proposed policy
editor. First, theTarget Access Policyis described,
and next the policy template is generated step by step.

5.2.1 Target XACML Policy

As described in (López et al., 2005), theTarget Ac-
cess Policycomprises a set oftarget accesselements.
Each of them grants a user playing a specified set of
roles the permission to carry out the specified actions
on the specified list of targets, but only if the are sat-
isfied conditions. Everytarget accesselement has the
following elements:

• Attributes: Set of allowed attributes or enabled
roles to execute the actions on the resource.

• Resources:Set of controlled resources.

• Actions:Set of allowed actions over the resource.

• Conditions: Users holding some of the attributes
have permission to execute some actions on the

specified resources only if the conditions are ful-
filled. Otherwise, the permission will be denied.
These conditions can establish time constraints or
other constraints related to contextual information.

• Obligations: Once the action has been granted,
some obligations defining network properties
might be applied. Obligations can specify options
related to network addressing, security or QoS
properties that must be enforced.

Figure 6 shows an example of theTarget Access
Policy. In this figure we can see aPolicySetele-
ment, whereTarget defines the role type and value,
in this caserole-id and Student. Besides, it con-
tains aPolicy to define that thewireless-networkre-
source, can beusedby the users playing that role.
This example also shows the set of obligations de-
rived from this decision. That is, if a user holding
the Studentrole, requestswireless-networkconnec-
tion, it should obtain an IPv6 address from the range
2001:720:1710:100::/64and the network must guar-
antee a quality of service established byClass1.

5.2.2 Definition of the XML Schema

To define the initial XML schema, we have to iden-
tify first the policy elements the administrator needs to
complete in order to create a new policy instance. In
this example, as described above, these elements are
the attributes, the rights which are going to be granted,
the resource/access pair, the conditions which have to
be fulfilled to apply the policy decision and the oblig-
ations which may be derived. In this way, we can de-
fine an XML schema where anAttribute and several
Resource/Actionpairs are specified. Besides,Condi-

USING MICROSOFT OFFICE INFOPATH TO GENERATE XACML POLICIES

383



Figure 5: XML schema representation.

Figure 7: Target access policy form template.

tion andObligationneed to be stated as optional ele-
ments. Figure 5 clarifies this structure.

5.2.3 Definition of the XSL Transformation

The next step in the policy template generation
process is the definition of the XSL transformation,
which has to translate the document in natural lan-
guage written by the system administrator into the
final XACML policy. The resulting XACML pol-
icy is structured using aPolicySetto specify theAt-
tribute. Then, for each resource/action pair, a new
Policy is added with theResource, Action, Condition
and Obligation elements. The XSL transformation
creates the XACML policy in a fixed way and then
fills in some specific gaps using the information con-
tained in the initial document.

Figure 8 shows a fragment of the XSL transforma-
tion used to generate the target access policy in this
example. It is interesting to see how the XACML po-
lice structure is generated in a fixed way using the
xsl:elementandxsl:attributeoperators, while the suit-
able gaps are completed using the sentencexsl:value-
of select="text()"to extract the information from the
initial XML document.

5.2.4 Design of the InfoPath Form Template

The final step in this process lies in the design of the
InfoPath template to enable the system administrator
an easy way to create new policies without XACML
knowledge. This is done with the InfoPath editor,
which allows to import the XML schema defining the
template. Figure 7 shows an example of template de-
signed using this editor.

6 RELATED WORK

This section analyzes two main tools which are
currently used to manage XACML policies, XML-
Spy(Altova, 2006) and UMU-XACML-Editor (Uni-
versity of Murcia, 2006). The first one is a powerful
and commercial generic XML editor, the second one
is a specific XACML editor developed by the Univer-
sity of Murcia.

XMLSpy is an IDE designed to work with XML
documents in general, which allows users to enter
data into XML documents as they would into a word
processor-type application. It allows the definition of
XML documents in multiple editing formats, well-
formedness checking and built-in validator, intelli-
gent editing, definition of XSLT documents, code
generation, etc. These characteristics enable users
to specify the XACML schema in the IDE and thus
generate XACML policies from scratch in a fast way.
The user builds the policy adding each element step
by step and checking that it is well formed.

UMU-XACML-Editor is a XACML policy defi-
nition open source software, developed using Java,
which fulfills the XACML 2.0 standard. This editor
is specifically designed to create and modify XACML
policies, providing facilities to manage these policies.
It is free and can be downloaded from the OASIS’s
XACML Home Page (OASIS, 2006).

Although both solutions deals with XACML in a
proper way, the main problem is that they work di-
rectly with XACML policies. In this way, the system
administrator has to known the XACML standard to
create a new policy. But also, he has to decide how
to organize the elements in the XACML structure to
express correctly the meaning of the policy. With our
proposal, this work is made only once for each kind of
policy. Besides, only one person, the security expert,
has to deal with the XACML related work.

Furthermore, each XACML editor has its own edit-
ing interface and its own characteristics, so the sys-
tem administrator has to learn how to use these pro-
grams before start editing policies. However, we pro-
vide standard templates to create the XACML poli-
cies. Therefore, the system administrator opens the
template and completes it as he was writing a natural

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

384



Figure 6: Target Access Policy example.

Figure 8: XSL transformation fragment.

language specification. He does not need any previ-
ous knowledge to start editing the policies of the or-
ganization. He only has to know which policy wants
to define and then writes the appropriate document.
Later, the security expert will deal with the automatic
translation from the natural language document to the
XACML policy.

Finally, related to modifications in policy format,
when using a generic XML editor we have to specify
the new XACML schema to generate new policies.

On the other hand, with the specific UMU-XACML
editor, the source code has to be modified to add the
new elements and relations.

USING MICROSOFT OFFICE INFOPATH TO GENERATE XACML POLICIES

385



7 CONCLUSIONS AND FUTURE
WORK

XACML has appeared to cover the need of the cur-
rent authorization systems to represent in a standard
language the access control policies used to control
critical resources. Most of those current systems are
migrating their specific policies to XACML in order
to offer a more scalable and extensible solution.

The fact that XACML is a very helpful tool for se-
cure domain administrator does not imply that it is
easy to use. In a typical access control scenario, dur-
ing a routine policy creation or update, the domain ad-
ministrator does not have to deal with complex XML
schemes and documents but only with the fulfillment
of the set of permissions assigned to users under spe-
cific circumstances. In fact, the domain administrator
could not even understand the XACML language.

It shows the need of tools able to help domain ad-
ministrators to deal with complex XML documents in
a natural language. Moreover, this paper shows that
current generic XML or specific XACML editors do
not fulfill these requirements.

We have defined a way to manage those XML doc-
uments in a transparent way for the domain adminis-
trator, making use of a word-processing style editor
such as Microsoft InfoPath. In this way, once the nec-
essary XML templates and transformations are cre-
ated by a XACML expert, the domain administrator
can define low level XACML policies using human
readable forms.

The sample scenario we have used to test the pro-
posed solution is the NAS-SAML infrastructure. This
paper shows how theTarget Access Policytemplate
and its associated XSL transformation can be gener-
ated by a security expert to make easy the adminis-
tration tasks to the network administrator. The rest
of policies used in this scenario can be defined in a
similar way.

Finally, the solution proposed in this work can be
also used to define other kind of documents based on
other XML specification, such as (Thompson et al.,
2003; Chadwick et al., 2003).

REFERENCES

Altova (2006). XMLSpyR©. http://www.altova.
com/xmlspy.

Anderson, A., Parducci, B., Adams, C., Flinn, D., Brose,
G., Lockhart, H., Beznosov, K., Kudo, M., Humenn,
P., Godik, S., Andersen, S., Crocker, S., and Moses, T.
(2003).EXtensible Access Control Markup Language
(XACML) Version 1.0. OASIS Standard.

Apache Software Foundation (2006). The apache xalan
project.http://xalan.apache.org.

Chadwick, D., Otenko, O., and Ball, E. (2003). Implement-
ing role based access controls using x.509 attribute
certificates.IEEE Internet Computing, pages 62 – 69.

Clark, J. (1999).XSL Transformation (XSLT). W3C Rec-
ommendation.

Cánovas, O., Lopez, G., and Gómez-Skarmeta, A. (2004).
A credential conversion service for saml-based sce-
narios. InProceedings First European PKI Workshop,
volume 3093 ofLecture Notes in Computer Science,
pages 297–305. Springer.

Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., and Yegin,
A. (2005). Protocol for Carrying Authentication for
Network Access (PANA). Internet Draft.

Hoffman, M. (2003). Architecture of Microsoft Office In-
foPath 2003. Microsoft Technical Report.

IEEE Computer Society (2001). P802.1x/d11: Standard for
port based network access control. IEEE Draft.

Lorch, M., Proctor, S., Lepro, R., Kafura, D., and Shah, S.
(2002). First Experiences Using XACML for Access
Control in Distributed Systems. ACM Workshop on
XML Security.

López, G., Cánovas, O., and Gómez, A. F. (2005). Use of
xacml policies for a network access control service. In
Proceedings 4th International Workshop for Applied
PKI, IWAP 05, pages 111–122. IOS Press.

López, G., Cánovas, O., Gómez, A. F., Jimenez, J. D.,
and Marín, R. (2006). A network access control ap-
proach based on the aaa architecture and authorzation
attributes. Journal of Network and Computer Appli-
cations JNCA. To be published.

OASIS (2006). OASIS eXtensible Access Control
Markup Language (XACML) TC. http:
//www.oasis-open.org/committees/
tc_home.php?wg_abbrev=xacml.

Thompson, M., Essiari, A., and Mudumbai, S. (2003).
Certificate-based authorization policy in a PKI envi-
ronment.ACM Transactions on Information and Sys-
tem Security (TISSEC), 6:566 – 588.

University of Murcia (2006). UMU XACML editor.http:
//xacml.dif.um.es.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

386


