
MOCKETS: A NOVEL MESSAGE-ORIENTED 
COMMUNICATIONS MIDDLEWARE FOR THE WIRELESS 

INTERNET 

Mauro Tortonesi, Cesare Stefanelli 
Department of Engineering, University of Ferrara, Via Saragat 1, 44030 Ferrara, Italy 

Niranjan Suri, Marco Arguedas, Maggie Breedy 
Institute for Human & Machine Cognition, 40 S. Alcaniz, 32502 Pensacola, FL, USA 

Keywords: Novel Network Programming Model, Application-level Middleware, Endpoint Mobility, TCP Replacement. 

Abstract: Wireless networking is becoming increasingly important for ubiquitous access to the Internet and the Web. 
However, wireless networks exhibit significant reliability and performance problems, with frequent 
disconnections, congestions, and packet losses. For these reasons, the traditional TCP/IP suite, designed for 
wired networks, offers poor performance and inadequate communication semantics in this scenario. There 
are several research efforts in both protocols and communication infrastructures aimed at producing 
solutions better suited to wireless network characteristics. This paper presents Mockets, a novel 
communications middleware specifically designed for wireless networking scenarios. The Mockets 
middleware permits a communication endpoint to be moved from one node to another without interrupting 
the communication session. In addition, Mockets provides several delivery services with different 
communication semantics, semantic classification of data, cancellation/replacement of enqueued data, and 
priority/lifetime assignment to messages. Initial experimental results in a wireless network scenario show 
that the Mockets middleware achieves better performance levels than traditional TCP-based infrastructure. 

1 INTRODUCTION 

Wireless networks are quickly becoming prevalent 
and their popularity is expected to grow even more, 
as they permit to easily extend the wired Internet 
infrastructure thus facilitating the ubiquitous access 
of mobile users/terminals to the Internet and the 
Web (Stallings, 2005). In this paper, we refer to the 
above mentioned environment with the term 
wireless Internet. 

However, the radio frequency medium of 
wireless networks induces some peculiar operating 
condition characteristics, such as low reliability 
levels, network disconnections, severe fluctuations 
in network resources availability, and a dynamic 
topology. These characteristics deteriorate the 
performance of traditional communication protocols 
so much (Altman et al., 2000) (Abouzeid et al., 
2003) that several research studies have tried to 
modify the inner workings of traditional protocols to 
better suit the wireless Internet scenario (Tian et al., 

2005). Although this approach would allow existing 
applications to remain unchanged, the performance 
results are not satisfactory. In addition, traditional 
protocols and communication infrastructures do not 
provide support for the mobility of users and 
terminals (Fu et al., 2006). 

The peculiar characteristics of the wireless 
Internet scenario suggest that the programming 
model offered by traditional communication 
protocols and infrastructures is not adequate.  
Researchers have proposed different programming 
model approaches aimed at making it possible for 
distributed applications to adapt their behavior 
dynamically to current network conditions (Gross et 
al., 1999) (Kim and Noble, 2001). To this end, there 
is a need for a novel communications middleware 
that, on the one hand, can offer applications the 
needed network level information and, on the other 
hand, can handle peculiar wireless Internet 
characteristics such as user/terminal mobility 
(Snoeren and Balakrishnan, 2000). This permits the 
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realization of distributed applications that can cope 
with packet losses, network disconnections, highly 
dynamic channel conditions, and also user/terminal 
mobility (Cheng and Marsic, 2002) (Sun et al., 
2003) (Chang et al., 2001). 

In this context, the paper presents a novel 
communications middleware, called Mockets, 
specifically designed to address the peculiar 
challenges of the wireless Internet scenario. A 
mocket (mobile socket) is a communication 
endpoint that can move from one node to another 
without interrupting the communication session. 

Mockets-based applications can exploit several 
delivery services with different communication 
semantics for different types of information. The 
Mockets middleware also provides the semantic 
classification of messages to permit applications to 
perform group operations on specific types of 
messages, such as cancellation/replacement of some 
kind of enqueued messages. In addition, Mockets 
permits fine-tuning the performance of applications 
by setting the transmission priority and the 
maximum lifetime of messages. 

Finally, the Mockets middleware permits the 
design of applications that can exploit information 
about network resources availability in order to 
adapt to the unreliability of the wireless Internet and 
the intrinsic mobility of terminals and users. 

We have decided to implement Mockets as an 
application layer middleware in order to achieve 
portability and ease of integration, and to facilitate 
its deployment in all platforms supporting the 
TCP/IP protocol suite, regardless of the underlying 
hardware and operating system. 

The experimental results show that applications 
in the wireless Internet scenario achieve better 
performance with the Mockets transport than with 
TCP. In fact, in our tests Mockets outperformed 
TCP in terms of throughput and latency on both a 
real IEEE 802.11b wireless network and a simulated 
environment with random network disconnection 
intervals. 

2 APPLICATIONS IN THE 
WIRELESS INTERNET 

The wireless Internet is significantly different from 
the wired networking environment and presents 
peculiar challenges to the development of distributed 
applications. In fact, wireless communications 
exhibit lower reliability levels and severe 
fluctuations in network resource availability. This 
stems from the inherent characteristics of radio 
communication systems, which present channel 
degradation due to fading and interferences, 

resulting in highly variable bandwidth with time and 
spatial dependencies. In addition, mobility causes 
additional problems because the communication 
path can change significantly as mobile 
terminals/users roam from one network to another. 

The unreliability of wireless communications 
and the mobility of terminals/users have a significant 
impact on the development and deployment of 
distributed applications. In fact, to perform 
continuous service provisioning in the wireless 
Internet, applications must be capable of 
withstanding abrupt disconnections and changes in 
both network topology and resource availability. 
However, this requirement clashes with the 
traditional programming model for distributed 
applications that is network transparent and makes 
use of an abstraction of the network as a reliable 
stream-oriented communication channel. 
Applications simply hand over their data to the 
transport protocol and rely completely on the 
protocol implementation to perform reliable and 
sequenced information delivery. Unfortunately, this 
simple interaction model makes it impossible to 
design applications that can adapt to current network 
conditions and resource availability. This limits both 
performance and robustness of applications when 
deployed in the wireless Internet scenario (Gross et 
al., 1999) (Kim and Noble, 2001).  

As a result, researchers in several areas have 
proposed novel programming models that do not 
masquerade communication channel characteristics 
but instead expose network conditions to 
applications (Cheng and Marsic, 2002). This allows 
applications to react to changes in the underlying 
network in a timely manner by choosing the proper 
adaptation strategy according to service logic, user 
preferences, and network status. For instance, a 
video streaming application could decide to 
downscale its service level, e.g., the video resolution 
or the frame rate, in order to adapt to reduced 
bandwidth availability. 

A programming model that can exploit the 
significant information about the network conditions 
in order to permit application adaptation requires 
specific support in terms of communication 
protocols and/or middleware (Sun et al., 2003). In 
particular, the paper focuses on the middleware 
approach because a solution at the application level 
facilitates portability and ease of integration. In 
addition, the middleware solution allows the 
deployment in all platforms supporting the TCP/IP 
protocol suite, regardless of the underlying hardware 
and operating system. 

Middleware solutions for the support of 
applications in the wireless Internet should provide 
several important characteristics.  
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First of all they should provide the mechanisms 
to monitor network conditions and to detect the 
mobility of users/terminals. In fact, it is crucial for 
applications to have precise and up-to-date 
knowledge of the network conditions in order to 
perform correct decisions about service adaptation. 
The middleware should also support user/terminal 
mobility by maintaining the current service session 
in the presence of temporary network 
disconnections. The mobility of the service session, 
that requires detecting changes and 
binding/rebinding connections transparently to 
applications is still an active area of research (Fu et 
al., 2006) (Snoeren and Balakrishnan, 2000) (Hsieh 
et al., 2004). 

In addition, a middleware in the wireless Internet 
has to provide several delivery services with 
different communication semantics. This would 
allow applications to choose the best suited message 
delivery service depending on application logic, 
network conditions, and user preferences. For 
instance, applications could assign a higher 
transmission priority and a shorter lifetime to time-
sensitive information, and use reliable delivery only 
for critical data. 

The unreliability of wireless communications 
suggests the introduction of specific mechanisms at 
the middleware level to support applications with 
critical response time requirements. For instance, a 
remote control application needs to convey time-
sensitive data, such as the commands for the 
movement of a robot working in a hazardous 
environment and needs to send periodic update 
messages that change the application status. These 
updates invalidate all previous messages and must 
be delivered and processed with the utmost 
precedence, for example to immediately stop the 
robot in an emergency situation. 

Applications could benefit from a novel 
middleware that enables a more effective fit to the 
wireless Internet environment. For instance, let us 
consider a MPEG video streaming application that 
transmits only a small amount of reference video 
frames (key frames) entirely, adopting differential 
encoding for all the other frames (delta frames). A 
distributed application could then exploit both 
sequential and time-bound message delivery for 
MPEG video frames. In addition, it could select 
reliable delivery and longer lifetime for messages 
containing key frames and unreliable delivery and 
short lifetime for messages carrying delta frames. In 
the case of channel condition degradation, the 
application might choose to reduce frame rate or 
stream resolution, according to service logic and 
user preferences. In case the client becomes 
unreachable (or when sending a new key frame), the 
server invalidates all previously enqueued messages, 

thus replacing old frames with up-to-date 
information. 

3 THE MOCKETS 
MIDDLEWARE 

Mockets is a middleware that supports the mobility 
of communication endpoints, with the goal of 
facilitating user/terminal/code mobility. It provides 
applications with several types of communication 
semantics, permits message differentiation, and 
offers advanced fine-grained configurability to 
achieve best performance tuning. The Mockets 
middleware offers application level control and 
monitoring of the connection status and network 
conditions. 

Mockets adopts the traditional client/server 
programming paradigm of Sockets (Mockets stands 
for Mobile Sockets) and provides a message-
oriented communication API with advanced 
functionalities to manage endpoint mobility and 
monitor network conditions. Mockets also offers a 
second, stream-oriented API compatible with TCP 
Sockets to facilitate the task of porting legacy 
applications to the new middleware. However, 
applications using the stream-oriented API will not 
benefit from the advanced functionalities of 
Mockets. The TCP-like stream-oriented API of 
Mockets has been presented in a previous paper 
(Suri et al., 2005) and hence this paper focuses on 
the message-oriented API only. 

3.1 Support for Mobility 

One of the main goals of the Mockets middleware is 
the support for mobility. Therefore, one of the 
design guidelines for the middleware is the 
introduction of the mocket as a communication 
endpoint that can move from one host to another. A 
mocket can move when receiving either an 
application level event or a network one. 

In the first case, the application explicitly 
commands the middleware to move the mocket 
endpoint. Note that the migration is completely 
transparent to the remote application (apart from a 
temporary increase in message arrival latency). The 
second case refers to a situation where a host moves 
from a network locality to a different one. The 
network layer notifies the Mockets middleware 
about the host migration, which then performs the 
migration of all the active mockets in the moved 
host, transparently to the application. 

The importance of the application driven 
mobility is clear in mobile code systems. For 
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instance, in the case of mobile agent applications, 
one of the main research areas deals with the 
problem of the bindings of the agent itself with its 
current context of execution. The Mockets 
middleware permits a mobile agent to easily move 
all its network connections. This solution is 
currently being tested in the NOMADS platform, 
which supports strong agent mobility. 

The Mockets network driven migration is 
fundamental to permit applications to continue the 
execution even in presence of device mobility. In 
fact, the Mockets middleware detects the changes in 
the network layer address and consequently moves 
all the mockets without forcing the application to 
shut down and to reopen the network connections. 

3.2 Communication Semantics 

Mockets allows applications to establish message-
based and connection-oriented communications and 
supports a wide range of message delivery services. 
Applications can exploit one or more delivery 
services by choosing orthogonally between 
reliable/unreliable and sequenced/unsequenced 
message delivery on a per-message basis. 

The sequenced reliable delivery service provides 
semantics similar to TCP and incurs the same 
performance penalties. It is best suited to the 
delivery of important but time insensitive data such 
as critical notifications of application state change. 
The sequenced unreliable delivery service is best 
suited to convey time sensitive data such as 
multimedia information, as it provides the same 
communication semantics of the Real-Time Protocol 
(RTP). The reliable unsequenced message delivery 
service allows applications to transmit important but 
unrelated messages such as signalling information. 
Finally, unreliable unsequenced delivery service is 
useful for less important report messages. 

Notice that the constraint on sequential delivery 
of messages is usually applied only to messages 
belonging to the same (sequenced) delivery service. 
However, a connection can optionally be configured 
to perform sequencing across both reliable and 
unreliable sequenced delivery services. In this case, 
sequenced messages will be delivered to the peer 
application after all previously sent sequenced 
messages, regardless of their reliability. 

If an unreliable sequenced message with 
sequence number N is lost, when the next message 
with a sequence number greater than N arrives, the 
Mockets middleware waits for a small amount of 
time in case the first message was transmitted on a 
route that was slower. If the message with sequence 
number N is not received when the timeout expires, 

Mockets considers it lost and delivers the next 
message in the sequence. 

3.3 Semantic Differentiation of 
Application-Level Traffic 

Mockets supports the classification of messages into 
different group types. Applications can perform 
group operations on messages of a specific type, 
e.g., to enforce a maximum transmission bandwidth, 
to assign a specific lifetime, or a transmission 
priority value. For instance, an application can 
decide to either cancel all previously enqueued 
messages of a specific type, or replace them with a 
new message of the same type.  

Message cancellation and replacement is a very 
useful feature in situations where applications are 
sending periodic updates and a new update 
invalidates previous ones. For instance, when using 
a reliable flow, the Mockets middleware will buffer 
messages until they have been successfully 
acknowledged by the remote endpoint. If the 
network is congested or the peer is unreachable, 
messages can accumulate. Using the message 
replacement feature, applications will be able to 
remove stale information that is still in the queue 
and replace it with up-to-date data. This reduces 
transmission of obsolete information and therefore 
minimizes network bandwidth consumption. 

It is worth noticing that the message 
classification and replacement features implemented 
by Mockets have been especially designed to 
support applications that use multiple but 
interrelated data types such as MPEG. For instance, 
an MPEG video streaming application might use two 
different message types, one for key frames and a 
second for delta frames. Upon the generation of a 
new key frame, the application could choose to 
discard all enqueued MPEG frames by first 
cancelling all of the enqueued delta frames and then 
replacing all the enqueued key frames with the new 
one. 

3.4 Network Conditions Monitoring  

An important design guideline for the Mockets 
middleware is to monitor network conditions and to 
pass the gathered information up to the application 
level. In this way, applications can make informed 
decisions about how to tailor services according to 
both service logic and user preferences. 

Applications can either directly interrogate the 
Mockets monitoring or request to be notified when a 
specific event occurs by registering callback 
functions. For instance, one of the events that the 
Mockets monitoring facility can notify applications 
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about is peer unreachability, which is detected by a 
keep-alive mechanism that allows quick discovery 
of problems at the link and network layers. 

Let us note that the adoption of the subscribe-
notify paradigm is rather unusual in network 
programming, as historically transport protocols 
have always been designed to masquerade varying 
network conditions to applications. However, the 
need for a richer model of interaction between 
applications and transport protocols emerges also in 
other recently proposed transport protocols such as 
the Datagram Congestion Control Protocol (DCCP) 
(Kohler et al., 2003). 

3.5 Advanced Low-Level 
Communication Features 

The Mockets middleware provides advanced 
communication features to allow fine-grained 
performance tuning in the case of time-sensitive data 
exchange, e.g., multimedia and control applications. 
For this purpose, applications can choose several 
transmission parameters on a per-message basis, like 
message priority, maximum lifetime, and a timeout 
for the insertion of messages in the 
transmission/pending message queue. 

Applications can reorder the transmission of 
messages by assigning them priority values. The 
Mockets middleware schedules messages with 
higher priority before lower ones. This priority 
differentiation provides applications with a low-
latency message delivery service that can be used for 
important application status updates. 

Applications can also assign a maximum lifetime 
to outgoing messages in order to automatically 
discard outdated information. The Mockets 
middleware enforces a timeout for the transmission 
of every message with an associated lifetime. If this 
timeout expires before the message is sent, then the 
message is silently discarded. On the other hand, if 
the timeout of reliable message expires after the 
message is transmitted but before an 
acknowledgement is received, the message is 
discarded and a notification of the message lifetime 
expiration is sent to the destination endpoint.  

Finally, applications can set a time limit for the 
insertion of a message into the transmission queue. 
If the timeout expires, the message is not scheduled 
for transmission and an error is returned to inform 
the application. This feature allows applications to 
discard information with a short lifetime in case the 
transmission queue is full, minimizing latency in 
information delivery. 

4 MOCKETS ARCHITECTURE 

Mockets operates at the application layer on top of 
the traditional TCP/IP protocol suite. This design 
guideline supports portability and ease of integration 
and facilitates the deployment of Mockets in all 
available platforms and scenarios, regardless of the 
underlying hardware and operating system. 

Figure 1 shows the architecture of the Mockets 
middleware. The main components supporting 
applications are the Session Management, Message 
Management, Connection Status Monitor, and 
Traffic Differentiation modules. 

The Session Management module implements 
control operations such as session suspension and 
resumption. It performs the migration of a mocket 
communication endpoint upon application requests, 
by following the procedures described in section 5.1. 
It also interacts with the underlying operating system 
to detect changes in the network layer address of the 
host, which are triggered by device movements. In 
this case, the Session Management module 
reconfigures all the existing mocket endpoints to use 
the new address, transparently to the applications. 

The Message Management module handles the 
delivery of application messages. In particular, it is 
in charge of dividing large messages into several 
packets and reassembling them before application 
delivery. It also guarantees the ordering of messages 
when required by the chosen delivery service. 

The Connection Status Monitor receives 
information about connection status and network 
conditions from the underlying layer. It provides 
upper layers with monitoring functions by both 
permitting explicit queries from the application and 
performing notifications when a subscribed event 
occurs. 

The Traffic Differentiation module is in charge 
of scheduling application messages for transmission 
by applying the specified traffic differentiation 
policies, such as message priority, delivery services, 
etc. 

Underneath the components directly interacting 
with the application, the Transmitter and Receiver 
modules take care of message transmission and 
reception, by interfacing with the underlying 
network via UDP. The Receiver module 
continuously listens for incoming messages, 
dispatching data messages to the Message 
Management module, information on 
communication status and network conditions to the 
Connection Status Monitor, and control messages to 
the Session Management module. The Transmitter 
module performs message transmission operations, 
interacting with the Receiver module to implement 
ACK management. 
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Figure 1: Architecture of the Mockets middleware. 

4.1 The Mockets API 

In order to facilitate the porting of existing 
applications, the Mockets middleware exports an 
object-oriented API designed to be as similar as 
possible to the traditional Java Sockets API. In 
particular, Mockets offers a core set of API that is 
exactly the same as connected Java datagram 
sockets. All the advanced Mockets functionalities 
are available through a novel set of API.  

The core set of the API manages the mocket, the 
fundamental communication entity of the 
middleware that represents a connection endpoint 
and is identified by a network layer address/port 
couple. Similar to a socket, the mocket can be either 
active (the MessageMocket class) or passive (the 
MessageServerMocket class). The communication is 
established by connecting an active mocket to a 
passive one listening on a remote endpoint. The 
connect method of a MessageMocket is used for 
connection establishment. On the server side, the 
accept method processes incoming connection 
requests. accept returns an instance of 
MessageMocket which represents a new connection. 

Applications send and retrieve messages by 
calling the send and receive methods respectively on 
the MessageMocket instance. Connection teardown 
is performed by calling the close method of the 
MessageMocket class on either side of the 
connection. 

The advanced Mockets API permits applications 
to exploit all the advanced functionality of the 
Mockets middleware. In particular, the getSender 
method of the MessageMocket class selects the 
delivery service for messages. getSender returns an 
object that represents the selected flow and provides 
the send method for message transmission.   

The enableCrossSequencing method enables 
cross sequencing on the current mocket. 

The replace method permits applications to 
replace previously enqueued messages with a new 
message. Messages to be replaced are identified by a 

specific message tag. Applications can also use the 
cancel method to cancel previous messages.  

Applications can also retrieve information on the 
current status of the communication with the remote 
endpoint, via the getStatistics method. The statistics 
reported are the number of bytes and packets sent 
and received, the number of packets retransmitted, 
and the number of discarded packets. If these 
parameters fall below the desired QoS level, 
applications can adapt their behavior according to 
the network conditions and user preferences. For 
instance, in the case of heavy packet loss, 
applications may choose to downscale the data 
stream.   

Applications use the subscribe method of a 
MessageMocket instance to register for a specific 
event among those supported by the Mockets 
middleware. In particular, applications provide 
Mockets with callback functions, which are used by 
the framework to notify the applications when the 
registered events occur. 

Finally, applications can suspend the operation 
of a Mocket endpoint and retrieve its serialized state 
via the static suspend method of the MessageMocket 
class. A mocket can then be resumed by calling the 
static resume method of the MessageMocket class. 
Mockets only provides mechanisms for connection 
suspension/ resumption and serialization of a 
communication endpoint. The middleware does not 
enforce any security policy on these operations and 
leaves the task of transferring the mocket status to 
the new host to the application. 

5 IMPLEMENTATION 

With implementations in both Java, C++, and C# 
programming languages, Mockets achieves 
significant portability, and is available for most 
existing operating systems and development 
platforms. This section describes the most 
significant implementation details of the Mockets 
middleware. 

5.1 Endpoint Mobility 

The mobility of a mocket is a distinguished feature 
that requires the middleware to perform several 
operations. When the migration procedure initiates, 
the mocket connection is suspended and the remote 
endpoint enters a standby state. The local endpoint is 
then migrated to a different host where it reconnects 
transparently with the remote endpoint. The mocket 
on the remote endpoint is notified of the address 
change in the communication endpoint and resumes 
normal operations. 
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Figure 2 shows the process of a mocket 
migrating from one host to another. The initial state 
is Process 1 running on Host A with an open 
connection to Process 2 on Host C. When Process 1 
needs to move to Host B, the mocket in Process 1 
sends a SUSPEND control message to the mocket in 
Process 2. Once the SUSPEND has been 
acknowledge with a SUSPEND_ACK, the process is 
allowed to migrate along with the mocket endpoint. 
Once the process reaches Host B and restarts, the 
mocket in Process 2 sends a RESUME control 
message. The state of both mockets returns to 
ESTABLISHED after Process 2 receives the 
RESUME_ACK control message.  

 
Host A

Process 1

Host C

Host B

Mocket

Process 1

Mocket

Process 2

Mocket

SUSPEND
SUSPEND_ACK

RESUME

RESUME_ACK

 
Figure 2: Migration of a Mocket endpoint. 

Endpoint mobility is currently supported only by 
the Java implementation of the Mockets middleware, 
which complements the Agile Computing 
middleware and the NOMADS mobile agent system. 
In this environment, migration is realized by 
serializing all the object instances representing the 
current state of the mocket connection in use by the 
local endpoint and transferring them over a network 
link. 

5.2 Message Management 

The Transmitter, the Receiver, and the Message 
Management are the main components of the 
Mockets middleware in charge of 
transmitting/receiving application messages. 

The Message Management is in charge of 
fragmenting a message into several packets when 
needed. Resulting packets are enqueued into a 
pending packet queue. The packet insertion 
algorithm uses a dynamic priority scheme to favor 
the transmission of high-priority packets while 
preventing starvation of low-priority packets. If the 
remote window allows the transmission of a new 
packet, the transmitter then retrieves the first packet 

from the pending packet queue and transmits it to 
the remote endpoint via UDP packets. 

To support reliability, after the transmission the 
Transmitter puts reliable and control packets into the 
appropriate unacknowledged packet queue from 
where they will be periodically retransmitted until 
they are acknowledged. For efficiency reasons, we 
have implemented the unacknowledged packet 
queues as data structures composed by two double-
linked lists, one sorted by the retransmission timeout 
(for efficient retransmission) and one sorted by the 
sequence number (for efficient processing of 
acknowledgements). The Transmitter also handles 
acknowledgements and sends keep-alive messages 
in case of inactivity. 

The Receiver component continuously listens for 
incoming packets on the UDP socket associated with 
the mocket. It reports peer unreachability problems 
to the application, handles acknowledgements and 
control messages (e.g., cancelled packets 
information), and dispatches incoming messages 
according to their reliability and sequencing values. 

Unsequenced packets are passed to the Message 
Management module for the defragmentation (if 
needed) and for their final arrival into the received 
data queue. 

Sequenced messages are enqueued into one of 
three sequenced packet queues (one for control 
messages, one for reliable sequenced packets, and 
one for unreliable sequenced packets). After each 
insertion into the sequenced packet queue, the 
Message Management module examines the queue 
and delivers all messages whose sequencing 
requirements are satisfied. In the case of unreliable 
sequenced messages, the Packet Processor also 
applies a timeout to stop waiting for missing 
messages. 

5.3 Mockets Transport Protocol 

The Mockets transport protocol relies on the 
exchange of UDP packets between endpoints. The 
connection establishment procedure of the Mockets 
transport protocol is based on a 4-way handshake 
like SCTP. The exchange of a cryptographically-
protected cookie between peers makes the protocol 
resistant to SYN flooding attacks (Stewart and Xie, 
2001). 

To allow the multiplexing of data and metadata 
on UDP packets transmitted between two mocket 
endpoints, the Mockets transport protocol divides 
packets into chunks. Every chunk is identified by a 
unique type identifier and has a specific purpose. For 
example, data chunks carry application level data, 
while SACK chunks contain acknowledgement 
information. 
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Mockets performs selective ACKs. This 
acknowledgment strategy provides significant 
improvements in throughput when compared with 
the traditional cumulative acknowledgement scheme 
of TCP. SACK is done mainly via piggybacking, but 
in case no piggybacking can be done, a message 
containing SACK information is sent periodically or 
when duplicate packets are received (indicating that 
previously sent SACK information was lost). 

Message cancellation and replacement is 
implemented by removing the corresponding packets 
from the pending packet queue and the 
unacknowledged packet queue. A control message is 
also sent to the peer endpoint about the cancellation 
and/or replacement of messages. To avoid stacking 
of control messages related to message cancellation 
and replacement, Mockets checks if there is already 
such a control message in the pending packet queue, 
which might occur because the peer is temporarily 
unreachable. In this case the old control message is 
replaced by a new one containing information about 
the whole set of cancelled messages. 

Mockets allows applications to take full control 
of most of the internal behaviors (e.g.  changing the 
default timeouts) of the transport layer. For instance, 
applications can change MTU, default connection 
timeout, pending packet queue size, keepalive 
timeout, maximum window size, and receive 
timeout. 

6 EXPERIMENTAL RESULTS 

We have measured the performance of the Mockets 
middleware in several scenarios with different 
working conditions. This section reports two 
separate experiments that compare Mockets-based 
with TCP-based message delivery. 

The first experiment measured the raw 
throughput of the Mockets reliable sequenced 
delivery service compared to TCP sockets. The 
testbed is an 802.11b wireless environment where 
the wireless cards are configured to use an unused 
channel to ensure that there is no interference or 
other traffic on the wireless link. Table 1 shows the 
average time to transfer 2 MB of data using both 
Mockets and TCP Sockets. The results show that 
Mockets performs better than TCP in raw transfers 
of data. 

The second experiment shows the benefit of the 
message replacement capability of the Mockets 
middleware in the presence of an unreliable 
network. The experimental setup is composed of two 
laptop computers interconnected via a wired 
network through a third computer running the 
NISTNet software (Nist NET). NISTNet provides 

control over parameters such as latency and packet 
loss and can simulate an unreliable link with 
periodic loss in network connectivity. To simulate 
disconnections, NISTNet is configured to drop all 
packets for a series of exponentially distributed 
random intervals of time with an average of 1 
second. The intervals themselves are separated by an 
exponentially distributed random length of time with 
an average of 20 seconds.  The client application 
generates an update message at a frequency of 1 Hz 
and transmits it to the server application.  

Table 1: Throughput comparison over 802.11b. 

 Mean Transfer 
Time  (ms) 

Standard 
Deviation (ms) 

TCP Sockets 2151 121 
Mockets 1836 80 

 
Table 2 shows the average and worst-case latency of 
messages in the case of Mockets- and TCP- based 
communication. The results show that Mockets 
outperforms TCP Sockets. This is due to the fact that 
in TCP update messages are buffered on the client 
side and retransmitted when connectivity is restored. 
In Mockets, instead, update messages replaces 
previously enqueued messages. Old and outdated 
messages are simply discarded, thus reducing the 
consumption of network and computational 
resources on the both the client and server hosts.  

Table 2: Latency Comparison. 

 Average 
Latency (ms) 

Maximum Latency 
(ms) 

TCP Sockets 132.90 6228 
Mockets 13.44 922 

7 RELATED WORK 

Many research efforts investigate how to allow the 
realization of efficient and robust distributed 
applications in the wireless Internet. In particular, 
there are solutions at both network and application 
layers with different trade-offs between performance 
and flexibility. 

Researchers have proposed to modify the 
behavior of TCP in order to improve its performance 
in the new scenario (Tian et al., 2005). In fact, TCP 
is still the most widely adopted transport protocol in 
the wireless Internet and is also often proposed for 
time-sensitive applications such as multimedia 
streaming (Wong et al., 2005). However, the 
performance of TCP is severely affected by terminal 
mobility and lossy channels (Bakshi et al., 1997) 
(Altman et al., 2000) (Abouzeid et al., 2003). In fact, 
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TCP interprets every packet loss as a symptom of 
network congestion and therefore reduces the 
congestion window size in the sending host, with 
very slow throughput recovery. Recent proposals 
addressed this problem by employing cross-layer 
techniques to get feedback on the network 
conditions and using this information to tune the 
congestion control procedure (Singh and Iyer, 2002).  

The proposed modifications allow a limited 
performance improvement for TCP-based 
communications in the wireless Internet without 
changing existing applications. However, let us note 
that the modification of a communication protocol 
raises backward compatibility problems with 
existing protocol implementations, which limits the 
benefits of this approach.  

Researchers have also proposed the Stream 
Control Transport Protocol (SCTP) as an alternative 
to TCP on the wireless Internet (Stewart and Xie, 
2001). SCTP provides applications with several 
message delivery semantics (reliable/best-effort and 
sequential/out-of-order). SCTP also allows 
applications to define conditions (typically a time 
limit) upon which reliable messages are considered 
stale and thus discarded. In addition, SCTP can 
maintain multiple streams of messages inside a 
single connection, mitigating the head of line 
blocking problem of TCP (Atiquzzaman, 2003). 
Finally, the recent introduction of dynamic address 
reconfiguration for SCTP connection endpoints 
allows partial support of device mobility. However, 
SCTP still suffers from the same congestion-related 
performance problems of TCP and does not provide 
applications with any feedback on network 
conditions. 

Other research approaches developed novel 
communications middlewares on top of existing 
network stacks. I-TCP (Bakre and Badrinath, 1995), 
Mobile-TCP (Haas, 1995), and the Remote Sockets 
Architecture (Schlager et al., 2001) address both the 
performance and the mobility issues in TCP by 
proposing proxy-based architectures. In these 
proposals, connections are routed through proxies 
deployed at the edge of the wireless and wired 
portion of the network. This improves the 
performance of communications on the wireless 
portion of the communications, but it requires the 
deployment of dedicated proxies with a modified 
network stack. 

Other proposals focus on providing a network-
aware programming model to applications but do not 
offer support for user/terminal mobility (Sun et al., 
2003), or supporting mobile computing applications 
by adding endpoint mobility functionality to 
traditional communication protocols (Snoeren and 
Balakrishnan, 2000) (Hsieh et al., 2004).  

Mockets goes beyond the above mentioned 
proposals by providing applications with a wide 
range of communication semantics and a richer 
programming model, which are better suited to the 
wireless Internet. In addition, Mockets implements 
mechanisms to effectively support user/terminal 
mobility and allows applications to monitor current 
network conditions. Finally, Mockets does not 
require the deployment of dedicated devices with a 
modified network stack or any other entity which 
breaks the traditional end-to-end communication 
semantics. 

8 CONCLUSIONS AND FUTURE 
WORK 

The Mockets middleware is a comprehensive 
solution for the development of robust and efficient 
distributed applications suited to the wireless 
Internet scenario. In particular, Mockets-based 
applications can cope with packet losses and 
network disconnections and can handle the mobility 
of terminals and users. The first experimental results 
show that the Mockets middleware performs better 
than TCP in wireless networking environments. 

Although the results are encouraging, we are 
working to improve the performance and the 
features of the Mockets middleware. For instance, 
we are evaluating a new architecture for advanced 
I/O operations and internal buffer management and 
the adoption of cross layer techniques in order to 
provide applications with more information on 
network conditions. 

We are also planning to integrate Mockets with 
the Agile Computing Middleware to take advantage 
of proactive resource manipulation and with the 
KAoS policy management system to allow policy-
based control over utilization of network resources. 
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