
PACKEDOBJECTS

John P. T. Moore
Zedstar Dot Org Ltd

PO BOX 119, Pinner, HA5 2UR, United Kingdom

Keywords: Packed Encoding Rules, ASN.1, Scheme, C.

Abstract: packedobjects is a highly portable, cross platform, data encoding tool. The project is based on the telecom-
munications standard Packed Encoding Rules (PER). An abstract syntax language is used to define a protocol
specification.packedobjects uses the Scheme programming language to represent the protocol specification
within a symbolic expression (s-expression). Using an s-expression provides a more dynamic approach over
the traditional method of parsing the specification and producing high level language code. The output of ap-
plying packedobjects’ encoding rules to a protocol specification is a concisely encoded bit stream suitable for
application domains such as network games development and mobile application development. The project
has been released under the terms of the BSD license.

1 INTRODUCTION

Although the use of text-based protocols on the In-
ternet is widespread, binary protocols have many di-
verse application domains. Examples include: se-
curity, mobile telephony, videoconferencing, aviation
and transportation (Dubuisson, 2000). The demand
for binary network protocols has risen due to perfor-
mance requirements of domains such as online gam-
ing and mobile application development. Distinct ap-
proaches to building a binary protocol exist. These
include ”encoding by hand”, applying some trans-
fer rules to an existing text-based protocol or using
a specification language designed to produce binary
encodings from the onset. Encoding by hand uses
specific programming language features to design a
data structure suitable for serialising for transmission
across a network (Isensee, 2004). Although it is often
possible to obtain performance gains by applying ad
hoc bit packing routines, the disadvantages are likely
to outweigh any such advantage. Disadvantages in-
clude the development and debugging time that might
be required to build robust portable solutions. A more
favourable approach might be to leverage existing
skills in markup languages and apply some transfor-
mation to the markup before it is sent across a com-
munication medium. This is the approach favoured
by the Wireless Application Protocol (WAP) (Open
Mobile Alliance, 2001). In addition, work on Fast
Web Services (Sandoz et al., 2003) marks an attempt
to improve the performance of web services by bi-
nary encoding data rather than sending textual XML

representations. In general, tests have shown that bi-
nary encoding can be significantly faster than tex-
tual encoding (ASN.1 Consortium, 2002). The ap-
proach taken by thepackedobjects project is based on
the telecommunication standard Abstract Syntax No-
tation One (ASN.1) (ITU-T, 1988b). ASN.1 has been
an international standard since 1984 and has produced
efficient encoding techniques such as Packed Encod-
ing Rules (PER) (ITU-T, 1998). Support for ASN.1
has been built into languages such as Erlang, and tools
exist ranging from freeware solutions to professional
toolkits.

Development with ASN.1 usually involves trans-
forming the protocol specification into a high level
language suitable to be compiled into an application
(Larmouth, 1999). The high level language used is
independent of ASN.1 and dependent on the tool ven-
dor support. An advantage of using a compiler is
that the specification language can be extremely pow-
erful and expressive without fears of hindering run-
time performance. The disadvantage, however, is
that ASN.1 could be considered complex and also re-
quires special handling to provide extensibility of pro-
tocols designed to produce tightly packed bit streams.
packedobjects takes a more dynamic stance by using
an s-expression from the Scheme programming lan-
guage to represent the protocol specification. This
approach not only eliminates the lexical obstacles
faced transforming ASN.1 into a high level language,
but also provides a simple method of extensibility
by forcing a separation between the protocol and the
compiled application. In addition:

310

P. T. Moore J. (2006).
PACKEDOBJECTS.
In Proceedings of the International Conference on Wireless Information Networks and Systems, pages 310-314
Copyright c© SciTePress

• Existing tools with built in support for editing
Scheme can be used, such as Emacs.

• The Scheme language can be used to provide error
handling and reporting.

• The use of quasi-quote can provide a mecha-
nism for replicating user-defined abstract types in
ASN.1.

• Other language features such as comments can eas-
ily be added to the specification.

The disadvantage of applying such a dynamic ap-
proach is the loss of runtime performance. However,
by using a practical subset of ASN.1 the amount of
processing that is required can be constrained.

2 ENCODING RULES

ASN.1 provides notation for defining abstract values
which carry information. Applying encoding rules to
an abstract syntax produces a series of bits ready for
network transmission. Various encoding rules have
been defined, including variants within encoding rules
themselves (Mitra, 1994). A clear advantage exists
when separating the way in which information is rep-
resented on a communications link from the abstract
syntax used to describe the information. Depending
on the nature of the application, different encoding
rules may be selected without requiring any change
to the protocol specification. It therefore may be pos-
sible to exploit advancements made in encoding tech-
niques over the years.

-- Baseball Card Abstract Syntax (BCAS)

BCAS DEFINITIONS ::= BEGIN

BBCard ::= SEQUENCE {

name IA5String (SIZE (1..60)),

team IA5String (SIZE (1..60)),

age INTEGER (1..100),

position IA5String (SIZE (1..60)),

handedness ENUMERATED {

left-handed(0),

right-handed(1),

ambidextrous(2)},

batting-average REAL

}

myCard BBCard ::= {

name "Casey",

team "Mudville Nine",

age 32,

position "left field",

handedness ambidextrous,

batting-average {

mantissa 250,

base 10,

exponent -3}

}

END

The above code is an example of how ASN.1 can be
used to describe a baseball score card. The specifi-
cation is given with corresponding values. Although
some notation is unique to the standard, it is fairly in-
tuitive. Indeed, it can be useful as a means of sim-
ply communicating a protocol in a verbal or writ-
ten sense between application developers. The lan-
guage provides a set of atomic and composite types.
The example provided is comprised of the atomic
types ’IA5String’, ’INTEGER’, ’ENUMERATED’
and ’REAL’ together with the composite type ’SE-
QUENCE’. The composite types are a collection of
one or more atomic and/or composite types. To trans-
form this abstract syntax into a concise bit stream we
can apply PER. A PER specification may use visi-
ble subtype constraints to optimise the encoding. In
the example, constraints are placed on the size of the
’IA5String’ and ’INTEGER’ type. Subtyping is a
powerful mechanism to restrict the set of values that
may be allowed for a given type (ITU-T, 1988a). Typ-
ically, subtyping is used to restrict the allowable range
of an integer type, provide a maximum and/or mini-
mum size for the length of a string, and place bounds
on the number of iterations that may occur in a ’SE-
QUENCE OF’ or ’SET OF’ type. The ability to cus-
tomise data types produces efficient PER encodings.
Not only are less bits sent across the communications
link but also more optimised encoder/decoder imple-
mentations can be built to handle specific protocols.

3 PACKEDOBJECTS

packedobjects is an open source project implemented
in Chicken Scheme (Winkelmann, 2006) and the C
programming language. The software has been made
available (Moore, 2006) under the BSD license. Cur-
rently the project uses Chicken as its host language,
although it is possible to embed Chicken within C
and therefore use C as the host language1. Scheme
is used to provide all the high level data handling rou-
tines while C provides all the low level bit manipu-
lation. The project is highly portable. Chicken has
been ported to numerous platforms and the C code
conforms to the ANSI standard.

One of the motives of the project was to allow
prototyping and development on embedded hardware.
The user has the choice of working within the inter-
preter or compiling the code. Using the interpreter
provides a simple method for designing and testing
protocol specifications on embedded hardware with-
out the need to cross compile.packedobjects has been
successfully tested on a handheld device running em-
bedded Linux.

1The term ”host language” is used to indicate the lan-
guage the developer would be using.

PACKEDOBJECTS

311

packedobjects provides a simple API. The core
functionality comprises of three routines to pack, un-
pack, and free data. Additional routines exist to
read and write data from a file descriptor which fa-
cilitates communication across a network. As pre-
viously stated, a protocol is specified using an s-
expression. For example, the following code illus-
trates howpackedobjects would represent the baseball
card depicted earlier in ASN.1:

(require-extension packedobjects)

(define bbcard

’(bbcard sequence

(name string (size 1 60))

(team string (size 1 60))

(age integer (range 1 100))

(position string (size 1 60))

(handedness enumerated

(left-handed

right-handed

ambidextrous))

(batting-average sequence

(mantissa integer ())

(base enumerated (2 10))

(exponent integer ()))))

(define bbcard-values

’(bbcard

(name "Casey")

(team "Mudville Nine")

(age 32)

(position "left field")

(handedness ambidextrous)

(batting-average

(mantissa 250)

(base 10)

(exponent -3))))

3.1 Grammar

A difference exists between the waypackedobjects
and ASN.1 handle ’batting-average’ in the base-
ball card specification.packedobjects does not di-
rectly support the ’REAL’ type. This highlights how
packedobjects uses a subset of the ASN.1 data types
to represent other types. In this example the ’REAL’
type is represented by a composite type containing
three atomic types. The complete grammar for a data
type inpackedobjects can be described as follows:

datatype = "(" datatype_name composite_type
| atomic_type ")" ;

composite_type = "(" "sequence"
| "sequence-of"
| "choice"
| "set" datatype { datatype } ")" ;

atomic_type = "(" string
| integer
| boolean
| enumerated ")" ;

integer = "integer" "()"

| "(" "range" range ")" ;
string = "string"

| "octet-string"
| "bit-string"
| "hex-string" "()"
| "(" "size" size ")" ;

datatype_name = symbol ;
digit = "0".."9" ;
signed_n = ["+" | "-"] digit { digit } ;
unsigned_n = digit { digit } ;
range = signed_n | "min" signed_n | "max" ;
size = unsigned_n | "min" unsigned_n | "max" ;
boolean = "boolean" ;
enumerated = "enumerated" "(" symbol { symbol } ")" ;

Where ’symbol’ is any valid symbol as defined by the
Scheme programming language.

3.2 Extended Example

(define protocol
’(random choice

(query sequence
(num integer

(range 1 512))
(min integer

(range -1000000000 1000000000))
(max integer

(range -1000000000 1000000000)))
(response sequence-of

(n integer
(range -1000000000 1000000000)))))

The above code represents a simple protocol used to
request a sequence of random numbers from a server.
The server obtains the numbers from the siteran-
dom.org using HTTP. The client may request up to
and including 512 random numbers in the range of -
1,000,000,000 to 1,000,000,000. For example the fol-
lowing query requests 4 numbers:

(define query

’(random

(query

(num 4)

(min -1000000000)

(max 1000000000)))

Supplying values to be encoded is straightforward,
however, care is needed when using the ’sequence-
of’ type. Each iteration of a ’sequence-of’ type must
be delimited as it may contain multiple items. Square
brackets are used to highlight the iteration of numbers
in the random number protocol response as follows:

(define response

’(random

(response

[(n -841852048)]

[(n 350371729)]

[(n -99891633)]

[(n -76431948)])))

This response indicates that the ’sequence-of’ con-
tains just one item (an integer) and this sequence re-
peats four times.

Figure 1 shows a comparison of the number of
bytes transfered at the application layer using HTTP

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

312

1 10 100 1000random numbers010002000300040005000
b yt est ra nsf ere
d

httppackedobjects

Figure 1: Total bytes transfered with HTTP and
packedobjects.

and obtaining the numbers via thepackedobjects pro-
tocol. 2 The results show thepackedobjects ver-
sion offers significant improvements in performance
in terms of bytes transfered.

This example together with the previous baseball
card example has illustrated the usage of all the data
types available inpackedobjects apart from the ’set’
and ’boolean’ type. Supplying values to the ’set’ type
is exactly the same as the ’sequence’ type. Finally,
using a ’boolean’ type simply requires supplying the
value 1 or 0 to indicate true or false respectively.

3.3 Extensibility

packedobjects allows the following types to be ex-
tended:

• constraints on integers and strings

• enumerations

• choices

• set items

To maintain compatibility between applications of
different versions requires obtaining the latest pro-
tocol. This protocol could reside on a server from
which the application bootstraps. Another benefit of
this approach exists in domains such as gaming where
it is important to stay one step ahead of users who are
trying to reverse engineer the network protocol. Al-
though using bit packed protocols provides some pro-
tection from casual observers, the dynamic approach
of using s-expressions facilitates easy change to a pro-
tocol without requiring any patches to be applied to
existing binaries. If the protocol is kept secure, then

2Due to the nature of random numbers the data between
tests will vary, however, this will have little impact on the
results displayed.

reverse engineering the bit stream is not straight for-
ward.

3.4 Encoding Deviations

Although the ’set’ type is not often seen in PER
specifications, it can provide a flexible addition to
packedobjects protocols. The use of ’set’ not only
allows unordered items but also allows each item to
be optional. This can provide support for the non
extensible ’sequence’ and ’sequence-of’ types. In
packedobjects the items of a ’set’ are encoded in the
order in which they appear in the specification. In
PER order is defined by ”the tag value” of the data
type. The use of optional items requires a bitmap
to be encoded to indicate which items are present.
packedobjects encodes this bitmap as a ’bit-string’.
This differs from PER which uses a constrained whole
number approach. Using a ’bit-string’ provides a sim-
ple way to support unlimited length sets and avoids
the limitations described in the the following section.
The disadvantage of using this approach and using
sets in general is that they are less efficient in terms
of the processing overhead required.

3.5 Limitations

The number of choices or enumerations is restricted
to 230 values. In practice this should be adequate,
however, additional support could be provided by tai-
loring the specification accordingly and/or using the
’set’ type. This limit also matches the limit imposed
by the Chicken Scheme language for fixnums. There-
fore, all integers are limited to fixnum ranges.

4 FUTURE WORK

A study of different protocol specifications could
highlight which features of ASN.1 are most widely
used. Often, however, protocol specifications devel-
oped in ASN.1 are not available in the public do-
main. Thepackedobjects project could benefit from
such a study to help determine the most optimum sub-
set of the language to support. A trade-off will ex-
ist between supporting a wide range of the language
and runtime performance. When CPU performance
is critical thesfsexp project could be examined (Sot-
tile, 2005). Thesfsexp project provides a library for
working with s-expressions from C/C++. In addition,
the specification language used bypackedobjects is
minimal and therefore it is possible to build optimised
custom interpreters for other high level languages.

Whether or not CPU performance is an issue de-
pends on the application domain. The cost of packing
network messages may be negligible when the size

PACKEDOBJECTS

313

of the network packets are small. In some networks,
such as mobile networks, users are charged for the
quantity of data they transfer. CPU performance again
may not be deemed the main design factor, especially
as the power of embedded hardware increases. Ul-
timately, it is the concept of throughput which de-
termines overall performance of a network protocol.
Throughput takes into account the cost in terms of
CPU performance as well as the cost in terms of ”bits
on the wire”.

5 CONCLUSION

The packedobjects project demonstrates the suitabil-
ity of mixing the Scheme programming language and
the C programming language to build a dynamic data
encoding tool capable of producing concise binary
network protocols. The increasing demand for bi-
nary protocols is being fueled by web developers,
games developers and mobile application develop-
ment. Along with this increasing demand is an in-
crease in the number of hardware platforms to sup-
port. The range of high level languages available
to do the same or similar job is also increasing.
packedobjects uses an s-expression to describe a net-
work protocol in a way that is independent of the pro-
gramming language used or the target hardware plat-
form.

The project has been designed to meet the de-
mands of ubiquitous embedded computing and is ide-
ally suited to bridge a gap between ad hoc bit packing
and more formal approaches such as those offered by
ASN.1 based solutions.

REFERENCES

ASN.1 Consortium (2002). Benchmark review : Com-
parison between binary encoder vs. textual encoder.
http://www.asn1.org/benchmark/benchmark1.htm.

Dubuisson, O. (2000).ASN.1 Communication between Het-
erogeneous Systems. Morgan Kaufmann.

Isensee, P. (2004).Bit Packing: A Network Compression
Technique, chapter 6, pages 571–578. Games Pro-
gramming Gems 4. Charles River Media.

ITU-T (1988a). Abstract syntax notation one (ASN.1):
Constraint specification. Rec. X.682.

ITU-T (1988b). Information technology – abstract syntax
notation one (ASN.1): Specification of basic notation.
Rec. X.680.

ITU-T (1998). ASN.1 encoding rules: Specification of
packed encoding rules (PER). Rec. X.691.

Larmouth, J. (1999).ASN.1 Complete. AP Professional.

Mitra, N. (1994). Efficient encoding rules for ASN.1 based
protocols. Technical report, AT&T Technical Journal.

Moore, J. (2006). packedobjects. http://www.call-with-
current-continuation.org/eggs/packedobjects.html.

Open Mobile Alliance (2001). Wireless Appli-
cation Protocol Architecture Specification.
http://www.openmobilealliance.org/tech/affiliates/
wap/wap-210-waparch-20010712-a.pdf.

Sandoz, P., Pericas-Geertsen, S., Kawaguchi,
K., Hadley, M., and Pelegri-Llopart,
E. (2003). Fast Web Services.
http://java.sun.com/developer/technicalArticles/
WebServices/fastWS/.

Sottile, M. (2005). the small, fast s-expression library.
http://sexpr.sourceforge.net/.

Winkelmann, F. (2006). Chicken. http://www.call-with-
current-continuation.org/.

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

314

