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Abstract: The LMMSE (Linear Minimum Mean Square Error) algorithm is one of the best linear receivers for DS-
CDMA (Direct Sequence-Code Division Multiple Access). However, for the case of MIMO/BLAST 
(Multiple Input, Multiple Output / Bell Laboratories Layered Space Time), the perceived complexity of the 
LMMSE receiver is taken as too big, and thus other types of receivers are employed, yielding worse results. 
In this paper, we investigate the complexity of the solution to the LMMSE and the Zero-Forcing (LMMSE 
without noise estimation) receiver’s equations. It will be shown that the equation can be solved with 
optimized Gauss or Cholesky algorithms. Some of those solutions are very computationally efficient and 
thus, allow for the usage of the LMMSE in fully-loaded MIMO systems.    

1 INTRODUCTION 

Digital communication using MIMO, sometimes 
called a “volume-to volume” wireless link, has 
recently emerged as one of the most significant 
technical breakthroughs in modern communications. 
Just a few years after its invention the technology is 
already part of the standards for wireless local area 
networks (WLAN), third-generation (3G) networks 
and beyond. 

MIMO schemes are used in order to push the 
capacity and throughput limits as high as possible 
without an increase in spectrum bandwidth, although 
there is an obvious increase in complexity.  For N 
transmit and M receive antennas, we have the 
capacity equation (Foschini, 1998), (Telatar, 1999) 

2log det I 'EP MC HH
N
ρ⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

b/s/Hz  (1) 

where H is the channel matrix, H’ is the 
transpose-conjugate of H and ρ is the SNR at any 
receive antenna. (Foschini, 1998) and (Telatar, 1999) 

both demonstrated that the capacity grows linearly 
with m=min(M,N), for uncorrelated channels. 

Therefore, it is possible to augment the 
capacity/throughput by any factor, depending on the 
number of transmit and receive antennas. The 
downside to this is the receiver complexity, 
sensitivity to interference and correlation between 
antennas, which is more significant as the antennas 
are closer together. For a 3G system, for instance, it 
is inadequate to consider more than 2 or 4 antennas at 
the UE (User Equipment)/ mobile receiver. 

Note that, unlike in CDMA where user’s 
signatures are quasi-orthogonal by design, the 
separability of the MIMO channel relies on the 
presence of rich multipath which is needed to make 
the channel spatially selective. Therefore, MIMO can 
be said to effectively exploit multipath. 

The receiver for such a scheme is obviously 
complex; due to the number of antennas, users and 
multipath components, the performance of a simple 
RAKE/ MF (Matched Filter) receiver (or enhanced 
schemes based on the MF) always introduces a 
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significant amount of noise, that doesn’t allow for the 
system to perform at full capacity. Thus being, the 
LMMSE receiver was considered for such cases, 
acting as an equalizer.  

The structure of the paper is as follows. In 
Section II, the LMMSE receiver for MIMO with 
multipath is introduced. Section III presents the 
proposed optimizations to the standard methods of 
Gauss and Cholesky. In section IV an approximate 
method based in the Cholesky way is discussed, and 
conclusions are drawn in Section V. 

2 LMMSE RECEIVER 

A standard model for a DS-CDMA system with K 
users (assuming 1 user per physical channel) and L 
propagation paths is considered. The modulated 
symbols are spread by a Walsh-Hadamard code with 
length equal to the Spreading Factor (SF). The signal 
on a MIMO-BLAST system with NTX transmit and 
NRX receive antennas, at one of the receiver’s 
antennas, can be expressed as: 

A standard model for a DS-CDMA system with K 
users (assuming 1 user per physical channel) and L 
propagation paths is considered. The symbols 
(QPSK/16QAM) are spread by a Walsh-Hadamard 
code with length equal to the Spreading Factor (SF).  
The received signal on a MIMO system with NTX 
transmit and NRX receive antennas on one of the 
receiver’s antennas can be expressed as: 

( )
1 , , , ,

1 1 1

( ) ( )* ( ) ( )
TXNN K

n
v RX k tx k tx k k tx rx

n tx k

r t A b s t nT c t n t=
= = =

= − +∑∑∑
 
(2)   

where N is the number of received symbols, 
,k tx kA E= , Ek is the energy per symbol, ( )

,
n

k txb  is the 
n-th transmitted data symbol of user k and transmit 
antenna tx, sk(t) is the k-th user’s signature signal 
(equal for all antennas), T denotes the symbol 
interval, n(t) is a complex zero-mean AWGN with 
variance 2σ , ( )

, , , , , ,
1

( ) ( )
L

n
k tx rx k tx rx l k l

l

c t c tδ τ
=

= −∑  is the 

impulse response of the k-th user’s radio channel, 
ck,tx,rx,l is the complex attenuation factor of the k-ths 
user’s l-th path of the link between the tx-th and rx-
th antenna, 

,k lτ  is the propagation delay (assumed 
equal for all antennas) and (*) denotes convolution. 
The received signal on can also be expressed as:  

( )
1 , , , , ,

1 1 1 1

( ) ( ) ( ) ( )
TXNN K L

n
v RX k tx k tx k tx rx k k l

n tx k l

r t A b c t s t nT n tτ=
= = = =

= − − +∑∑∑∑  (3) 

Using matrix algebra, 
vr SCAb n= + , where S, C and 

A are the spreading, channel and amplitude matrices 
respectively. The spreading matrix S has dimensions 

( ) ( )RX MAX RX RXSF N N N K L N Nτ⋅ ⋅ + ⋅ × ⋅ ⋅ ⋅  (τmax is 
the maximum delay of the channel’s impulse 
response, normalized to number of chips), and is 
composed of sub-matrices SRX in its diagonal for 
each receive antenna 

RXRX=1 RX=NS=diag(S , ,S )… . Each 
of these sub-matrices has dimensions 
( ) ( )MAXSF N K L Nτ⋅ + × ⋅ ⋅ , and are further 
composed by smaller matrices SL

n, one for each bit 
position, with size ( ) ( )MAXSF K Lτ+ × ⋅ . The SRX 
matrix structure is made of 

( ) ( ) ( ) ( )
L

RX,n nSF ( 1) K L SF (N-n) K L

RX RX,1 RX,N

S = 0 ,S ,0

S = S , ,S

T

n⋅ − × ⋅ ⋅ × ⋅
⎡ ⎤
⎣ ⎦
⎡ ⎤⎣ ⎦…

 

The SL matrices are made of K L⋅  columns; 
L
n col(k=1,l=1),n col(k=1,l=L),n col(k=K,l=L),nS = S , ,S , ,S⎡ ⎤⎣ ⎦… … . Each 

of these columns is composed of 

( ) ( )( )col(KL),n 11 delay(L) 1 ( )S = 0 , ( ) , 0
MAX

T

n SF delay Lspread K τ×× × −
⎡ ⎤
⎣ ⎦

, 

where spreadn(K) is the combined spreading & 
scrambling for the bit n of user K. 
These SL matrices are either all alike if no long 
scrambling code is used, or different if the 
scrambling sequence is longer than the SF. The SL 
matrices represent the combined spreading and 
scrambling sequences, conjugated with the channel 
delays. The shifted spreading vectors for the 
multipath components are all equal to the original 
sequence of the specific user.  

1,1,1, ,1,1,

1,1, , ,1, ,

1, ,1, , ,1,

1, , , , , ,

n K n

L n K L nL
n

SF n K SF n

SF L n K SF L n

S S
S S

S
S S

S S

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" "
# % " # %

# " #
% " " %

 
Note that, in order to correctly model the multipath 
interference between symbols, there is an overlap 
between the SL matrices, of τMAX.  
The channel matrix C is a 
( ) ( )RX TXK L N N K N N⋅ ⋅ ⋅ × ⋅ ⋅  matrix, and is 
composed of RX sub-matrices, each one for a RX 
antenna 

RX

R R
1 RX=NC= C , ,C

T

RX =⎡ ⎤⎣ ⎦… . The diagonals of 
each CR matrix are composed of N CKT matrices.    

1 ,1

,1

1 ,

,

R X

R X

K T

K T
N

K T
N

K T
N N

C

C

C

C

C

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥

= ⎢ ⎥
⎢ ⎥
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%

#
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Each CKT matrix is ( ) ( )TXK L K N⋅ × ⋅ , and 
represents the fading coefficients for each path, user 
and TX antenna, for the current symbol and RX 
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antenna. The matrix structure is made up of further 
smaller matrices along the diagonal 

( )KT T T
K=1 K=KC =diag C , , C… , with CT of dimensions 

TXL N× , representing the fading coefficients for the 
user’s multipath and tx-th antenna component. 

1,1,1 ,1 ,1

1, ,1 , ,1

1,1, ,1 ,

1 , , , ,

TX

T X

TX

T X

N

L N L
K T

K N K

L K N L K

C C

C C
C

C C

C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
# #

"
%

"
# #

"  
The A matrix is a diagonal matrix of 
dimension ( )TXK N N⋅ ⋅ , and represents the 
amplitude of each user per transmission antenna and 
symbol, 

( )TX TX TX1,1,1 N ,1,1 N ,K,1 N ,K,NA=diag A , , A , , A , , A… … … .  
Vector b represents the information symbols. It has 
length ( )TXK N N⋅ ⋅ , and has the following 

structure
TX TX TX1,1,1 N ,1,1 1,K,1 N ,K,1 N ,K,Nb= b , ,b , ,b , ,b , ,b

T
⎡ ⎤⎣ ⎦… … … … . 

Note that the bits of each TX antenna are grouped 
together in the first level, and the bits of other 
interferers in the second level. This is to guarantee 
that the resulting matrix to be inverted has all its 
non-zeros values as close to the diagonal as possible. 
Also note that there is usually a higher correlation 
between bits from different antennas using the same 
spreading code, than between bits with different 
spreading codes. 
Finally, the n vector is a ( )RX RX MAXN SF N N τ⋅ ⋅ + ⋅  
vector with noise components to be added to the 
received vector rv, which is partitioned by NRX 
antennas, 

RX RXv 1,1,1 1,SF,1 N,1,1 N,SF+ ,1 N,1,N N,SF+ ,Nr = R , , R , , R , , R , , R , , R
MAX MAX

T

τ τ⎡ ⎤⎣ ⎦… … … … …  
The MMSE algorithm yields the symbol estimates, 
yMMSE, which should be compared to vector b,  

( )H
MF

H

y SCA rv

R S S

=

= ⋅  , 

( ) 1

2

MMSE MF

H

y EM y

EM AC RCA Iσ

−=

= +  (4) 
where 2σ is the noise variance of n, yMF is the 
matched filter output and EM is the Equalization 
Matrix (cross-correlation matrix of the users’ 
signature sequences after matched filtering, at the 
receiver). 
The expected main problem associated with such 
scheme is the size of the matrices, which assume 
huge proportions. Due to the multipath causing 
Inter-Symbolic Interference (ISI), the whole 
information block has to be simulated at once, 
requiring the use of a significant amount of memory 
and some computing power for the algebraic 
operations, with emphasis on the inversion of the 
EM in the MMSE algorithm.  

Matrix Reordering 
Matrix reordering is used in order to simplify the 
solving of the MMSE equation. While in the original 
version the SCA matrix is devised in such a way as 
to make the received vector is divided per receive 
antenna in order to make the system matrices more 
perceivable, the reordering of the structure of the 
SCA matrix is done solely to simplify processing. 
Replacing: ( )reord=T SC A ; 2σ=N I ; 

ˆ
MMSE=d y  and ( )Vreord=e r  in the MMSE 

equation we obtain a simpler version: 
� 1( )H H−= +d T T N T e       

where ( )reord x  represents a line-reordering of 
vector or matrix x where the lines of each antenna 
were intercalated with the propose of making a more 
compact and almost block-circulant matrix. 
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1
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(1 , : )
(1 , : )

(1 , : )

( , : )
( , : )

( , : )

T X

T X

T X
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T X

T X

T X N

r e o r d
N
N

N

=

=

=

=

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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x

x
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x

x

#
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(6)

 

Figure 1(a) shows the reordering result for a two 
antennas matrix. For high SNRs equation (5) 
becomes the Zero-Forcing detector equation: 
� 1( )H H−=d T T T e  (7) 

Since usually MAX SFτ ≤ , the  HT T  product 
results in a square matrix with the structure 
presented in Figure 1(b) with: 2 TXa KN=  and 

TXn KN N= . It can be shown that HT T is a 
positive definite Hermitian matrix. Earlier works 
(Vollmer, 2001), (Machauer, 2001), dealt only with 
the Zero-Forcing detector equation for constant 
channel situations. Here the validity of those 
algorithms for unsteady channels situations will be 
evaluated. New algorithms for unsteady channel 
situations will be proposed and some optimizations 
will be also introduced and presented in pseudo-code 
form. Finally, all the algorithms will be adapted to 
the LMMSE detector. 
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Figure 1: Line reordering sample for NTX = 2. 

 

Figure 2: Typical correlation matrix. 

 

Figure 3: Generalized equalization matrix. 

 

Figure 4: Optimized Gauss algorithm. 

 

3 GAUSS AND CHOLESKI 
ALGORITHMS 

Equation (7) can be written as an Ax=b system with 
A being a positive definite Hermitian matrix, where 

HA = T T , �x = d  and Hb = T e . It can be solved 
for x using the Gauss elimination or the Cholesky 
algorithm.  
We are interested in solving the Ax=b system for a 
particular b vector only, so there is no need to invert 
the A matrix. The Gauss elimination can be used to 
transform the Ax=b system in a Ux=b’ where U is an 
upper triangular matrix and then x can be obtained 
by direct substitution. The Cholesky method is a 
little bit more complex: first A is factorized in 
A=UHU by the Cholesky algorithm, then UHUx=b 
can be decomposed in UHc=b and Ux=c; these two 
systems can be solved by direct substitution. The 
Cholesky algorithm can save almost half of the 
floating point operations needed in the Gauss 
elimination because it takes advantage of the 
symmetry of the A matrix, but the Gauss elimination 
is less complex and requires no square roots to be 
calculated. Previous works (Noguet, 2004) have 
successfully designed and implemented a real-time 
hardware structure of the regular Cholesky 
algorithm for the ZF joint-detection algorithm in the 
UMTS/TDD context based on a SIMD structure 
(Flynn, 1972) (systolic array). With the algorithms 
presented in this paper a significant complexity 
reduction can be expected, thereby reducing by a 
great amount the size of the hardware structure, 
alongside the cost and processing time. Table 1(a) 
shows the number of floating point operations 
required by both methods. The additions are 
separated into real and complex (R+ and C+, 
respectively). The extra operations wasted by the 
Gauss algorithm are partially recovered in the 
substitution phase, where the Cholesky method 
requires the solution of two triangular systems and 
hence twice the operations of the Gauss algorithm. 
The number of operations required in this phase is 
also included in Table 1(a). 
The Order column presents the highest power of the 
total number of operations considering each 
multiplication-addition pair as a single operation. 

Table 1: Number of floating operations needed to solve 
the Ax=b system with standard Gauss algorithm. 
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Table 2: Number of floating operations needed to solve 
the Ax=b system with optimized Gauss algorithm. 

 

Table 3: Number of floating operations needed to solve 
the Ax=b system with optimized Cholesky algorithm. 

 

Table 4: Number of floating operations needed to solve 
the Ax=b system with optimized Cholesky algorithm; 
special case when / 2b a= . 

 

Optimizations 
A generic positive definite Hermitian matrix that is 
nonzero only in equally overlapped squares centred 
along the diagonal is represented in Figure 1(c). The 
number of overlapped squares is 1n ad

b
−

= + . The 

Gauss algorithm can be optimized for this type of 
matrix by eliminating the operations involving zero 
elements. The idea is presented in Figure 1(d). First, 
the standard Gauss algorithm is applied to the r1 
square sub-matrix. There is no need to change the r4 
rectangle. Next step is the elimination of the r2 
block using the last a-b pivots of r1 (the pivots are 
the diagonal elements after the elimination phase). 
During this phase r3 is updated.   Finally the 
standard algorithm is applied to r3. This process is 
repeated until all blocks are updated. During this 
process, as each line is updated, the correspondent 
element of vector b is simultaneously updated. Note 
that the matrix diagonal is fully contained in the 
diagonal squares. 
Table 1(b) presents the number of floating point 
operations required in each of the tree phases 
described. The total number of operations can be 
calculated from: 

( )1 2 3( 1)GaussOpt Gaussr Gaussr GaussrN N d N N= + − +  (8) 

Leading to: 
1 ( )

2 2 2Gauss Opt
b a a bN n a÷ −⎛ ⎞= − − −⎜ ⎟

⎝ ⎠
 (9) 

( ) ( )3 2 2 3 2 39 18 16 1 9 2 8 9 16
48 48

C
GaussOpt GaussOptN N

a a b b a a b b
n a

b b

× += =

− + − − + +
= −

  (10) 

A similar adaptation can be developed for the 
Cholesky factorization algorithm. We will optimize 
the column-Cholesky algorithm (presented in Figure 
5) although similar results could be achieved for the 
line version of that algorithm. Figure 6(a) sketches 
such approach. In this case only the upper triangle 
has to be accessed. First, the standard column-
Cholesky algorithm is applied to the r1 triangle. In a 
second step the rectangle r2 is calculated accessing 
only the elements of r2 and r1. In the next step, the 
triangle r3 is computed using only elements of r2 
and r3.  Last two steps are repeated for all remaining 
blocks, using always only elements of the last and 
current block. As in the optimized Gauss algorithm, 
the rectangular blocks do not contain the diagonal. 
Table 1(c) presents the number of floating point 
operations of the tree phases described. The total 
number of operations can be calculated from: 

( )1 2 3( 1)CholOpt Chol r Chol r Chol rN N d N N= + − +  (11) 

Leading to: 
1 ( )

2 2 2Chol Opt
b a a bN n a÷ −⎛ ⎞= − − −⎜ ⎟

⎝ ⎠
 (12) 

( )
2 2 212 ( 2) 1
2 2 6 6 3 2 6CholOpt
a a b a a bN n b b a b b× ⎛ ⎞ ⎛ ⎞⎛ ⎞= − + + + − − − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
  (13) 

( )
2 2 21 12 ( 1)
2 2 6 2 3 3 2 6 2

C
CholOpt

a a b b a a bN n b a b b+ ⎛ ⎞ ⎛ ⎞⎛ ⎞= − + + + + − − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 (14) 

1 ( )
2 2 2

R
Chol Opt

b aN n a b a+ ⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠

            (15) 

Chol OptN n=            (16) 

 
Figure 5: Column oriented Cholesky factorization. 

Both Gauss and Cholesky methods need final 
substitution phases. These substitutions can also be 
optimized since the resulting matrices have a 
structure similar to the original A matrix but with 
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nonzero elements only above (or below) the 
diagonal, like shown in Figure 6(b). 
The solution of a system Ax=b with A having a 
structure similar to the structure presented in Figure 
6(b) requires one division for each line of the matrix 
and one pair multiplication-addition for each 
nonzero element. Since there are 

( ) ( ) ( )
22

1
2 2

a bad a d a b
⎛ ⎞−⎛ ⎞
⎜ ⎟− − − − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

            (17) 

nonzero elements, the number of floating point 
operations needed can be written: 

Subs OptN n÷ =             (18) 

( )1
2 2

C
SubsOpt SubsOpt

a a bbN N n a× + −⎛ ⎞= = − − −⎜ ⎟
⎝ ⎠           (19) 

We are interested in a special type of block-diagonal 
positive definite Hermitian matrices, with / 2b a= , 
like represented in Figure 6(b). Re-writing the above 
equations for this special case and keeping only the 
n-dependent terms ( n a>> ), results in Table 1(d) As 
can be seen, the optimized Cholesky algorithm can 
save almost 30% of the number of operations 
required for the optimized Gauss algorithm, despite 
it increased complexity and need of square root 
operations.  

 
Figure 6: (a) Optimized Cholesky algorithm, (b) Gauss 
elimination / Cholesky factorization resulting matrix 
structure. 

Partitioning 
Partitioning the block-diagonal system Ax=b would 
be very useful to reduce the number of floating point 
operations needed to solve the system (if no overlap 
is used; i.e., in good channel conditions) and also 
could permit the introduction of parallelism is 
algorithms that are intrinsically sequential, like the 
algorithms presented in previous sections. In this 
section we will discuss different partitioning 
approaches. 
Since A is block-diagonal and has generally 
decreasing values as we get farther from its 

diagonal, it is expected that it can be divided in 
smaller matrices that produce smaller systems whose 
combined solutions would approximate the solution 
of the original system. Figure 7(a) presents a sample 
solution of a system simply divided in 2 sub-systems 
as sketched in Figure 8(a).  Note that there are two 
m × m blocks completely ignored at the middle of 
the A matrix. Surprisingly the obtained maximum 
error is only 12% of the exact solution. Figure 7(b) 
shows the same data when the A matrix is divided in 
four slices. The maximum error level is 
approximately the same as in the previous case, but 
now we have three high error regions. 
Although the error obtained with the last partitioning 
method is not extremely high and appear only 
around the division lines, much better results can be 
attained if overlapping partitions are considered.  
This proceeding is sketched in Figure 8(b). Each 
slice overlaps the last in 2 × lap blocks (a lap being 
the number of blocks that are discarded from each 
overlapping side of each computed slice). Note that 
the last slice can be smaller.  
From each slice are obtained ( 2 )D lap m−  values for 
the solution vector x, except in the case of the first 
and last slices, where ( )D lap m−  and 

(( 1) )M L D lap m− − +  values are obtained 
respectively.  
As seen in Figure 7(a) and (c), the error level rises at 
the beginning and end of each slice, so the 
overlapping method should discard that values. In 
each iteration are discarded lap × m values from the 
beginning and lap × m values from the end, except 
in the first end last slice, where are only discarded 
the last lap × m and first lap × m values respectively. 

 

Figure 7: Relative error obtained solving a no-overlap 
partitioned system. (a) - M=192; m=12; D=8; v=10Km/h, 
(b) - M=192; m=12; D=4; v=10Km/h. 
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Figure 8: Partitioning (a) - without overlapping, (b) – with 
overlapping. 

An alternative to have a final slice with size smaller 
than the early ones is to extend the b vector with 
zeros until / 2M m lap−  becomes multiple 
of 2D lap− . Several simulations were run for 
different channel changing speeds. Similar results 
were obtained for all matrices tested. Sample results 
are presented in Table 2, for a 10Km/h condition.  

Table 5: Maximum relative error for the partitioning 
algorithm; v=10Km/h. 

0 1 2 3 4 5 6 7
1.E+00 1.E-04 1.E-07 1.E-11 1.E-15 1.E-15 1.E-15 1.E-15

1 0.506
2 0.459
3 0.152 0.911
4 0.221 0.494
5 0.127 0.494 0.090
6 0.082 0.494 0.123
7 0.459 0.105 0.123 0.247
8 0.221 0.494 0.021 0.063
9 0.083 0.640 0.042 0.038 0.898

10 0.099 0.194 0.123 0.063 0.637
11 0.079 0.190 0.037 0.222 0.817 0.505
12 0.033 0.082 0.020 0.038 0.646 0.623
13 0.159 0.059 0.015 0.036 0.642 0.552 0.416
14 0.459 0.494 0.018 0.047 0.572 0.432 0.504
15 0.127 0.845 0.090 0.033 0.420 0.284 0.252 0.378
16 0.009 0.005 0.006 0.479 0.232 0.432 0.504

D

Factor:

lap

 
 
All the values presented should be multiplied by the 
corresponding column factor to obtain the maximum 
error of the partition algorithm relative to the exact 
solution of the original Ax=b system. The column 
for lap=0 corresponds to the lap less situation.  
 shows that the maximum error level depends almost 
exclusively from the overlapping level, so the proper 
overlapping can be easily selected just by knowing 
the maximum error allowed in the real system. The 
number of blocks D processed by each thread can be 
selected from the total number of threads L that can 
be executed simultaneously by the hardware, using 
the relation: 

/ 2
2

M m lapL
D lap

⎡ ⎤−
= ⎢ ⎥−⎢ ⎥

,             (20) 

where x⎡ ⎤⎢ ⎥  represents the smallest integer greater 
than or equal to x. Some results of the relative error 
obtained in an overlap system are portrayed in 
Figure 9. 

 

Figure 9: Relative error obtained solving an overlap 
partitioned system (a) - D=4; lap=1; v=10Km/h, (b) - D=8; 
lap=2; v=10Km/h. 

4 PARTIAL CHOLESKI 
APPROXIMATION 

The Cholesky decomposition of block-Toeplitz 
matrices is an upper (or lower) matrix approximately 
block-Toeplitz with the same block size as the 
original matrix. This means that the U matrix can be 
approximated calculating only the first L block-rows 
and assuming that the remaining block-rows are 
identical to the last calculated block-row. Figure 7 
shows this approach. Only the dark shaded part is 
computed. The last computed block (marked as L) is 
then repeated until the full matrix is completed. This 
approximation is very effective when the channel is 
constant.  
Figure 8 shows the maximum relative error of the 
system solution for each approximation level (L) i.e. 
the number of calculated blocks, for different speeds 
in a pedestrian A condition with 1 antenna. 
As can be seen for a constant channel, calculating 
only the first one or two blocks allows 
approximations in the system solution with relative 
error below 10-4 or 10-9. This can be used to greatly 
reduce the number of operations necessary to solve 
the system. If only 2 blocks are calculated the 
number of operations can be reduced approximately 
by a factor of a n . However, when the channel 
changes, this approach can not be used regarding to 
the high error level obtained (unless the channel 
change is very slow). 
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Figure 10: Partial Cholesky approximation. 

 
Figure 11: Partial Cholesky approximation; (pedestrianA – 
minimum load). 

5 CONCLUSIONS 

In this work where presented optimized versions of 
the Gauss and Cholesky algorithms that can be used 
in the solution of the equation of a zero-forcing or 
LMMSE detector in MIMO/BLAST systems. Those 
optimizations were based simply in the removal of 
the unnecessary operations regarding the structure of 
the involved matrices. It has the advantage of being 
a velocity independent solution, unlike other 
methods such as the Block-Fourier (Vollmer, 2001), 
(Machauer, 2001). The benefit of parallel processing 
can also be exploited for these methods, with the 
introduction of partitioning. 
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