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Abstract: This paper describes a new software architecture for audio signal processing. The architecture was 
specifically designed low-latency, low-delay realtime applications in mind. Additionally, the frequently 
used paradigm of dividing the functionality into components all sharing the same interface, was adopted. 
The paper presents a systematic approach into structuring the processing inside the components by dividing 
the functionality into two groups of functions: realtime and control functions. The implementation options 
are also outlined with short descriptions of two existing implementations of the architecture. An algorithm 
example highlighting the benefits of the architecture concludes the paper. 

1 INTRODUCTION 

Recent years have significantly increased the role of 
software in the field of audio processing. While 
dedicated hardware solutions still dominate certain 
applications, more and more processing is moving to 
general purpose processors or programmable digital 
signal processors (DSPs). Software systems for 
audio processing have been widely, though not very 
systematically, described in the literature. Naturally, 
software implementations in the context of specific 
algorithms have been presented, but more generic 
architectures are seldom described in public.  

Many of the software frameworks available for 
audio processing, are based on dividing the 
processing tasks into components that all share the 
same interface towards the rest of the system. The 
component paradigm encourages fewer 
dependencies between different audio processing 
algorithms. This enables separating also the 
development work into more easily manageable 
entities.  

Audio processing software often needs to run in 
real time, and with low interaction latency and audio 
delay. This sets strict requirements to the 
implementation. Additionally, for best performance, 
the system parameters such as the audio processing 
block length need to be carefully tuned, finding an 

optimal compromise between computational 
efficiency and latency and delay behaviour.  

This paper presents an audio processing software 
architecture that can be used, when the processing 
platforms efficiently supports multiple simultaneous 
processing contexts or threads. The system described 
here is beneficial both when running and audio 
processing system on a general-purpose operating 
system and when, e.g., using a dedicated DSP to 
accelerate the processing. The architecture separates 
audio delay optimization from the interaction 
latency optimization, and allows an optimal 
processing load distribution by separating the 
realtime and control parts of the processing inside 
logically integrated components.  

The rest of the paper is organized as follows: 
section 2 presents the motivation and background for 
component based processing architecture. Section 3 
describes how the current architecture has been 
adapted for realtime usage. Section 4 details a few 
implementation alternatives, and section 5 describes 
a use case and an algorithm example that highlights 
the advantages of the architecture design. Finally, 
section 6 concludes the paper. 

289
Hiipakka J. (2006).
A COMPONENT-BASED SOFTWARE ARCHITECTURE FOR REALTIME AUDIO PROCESSING SYSTEMS.
In Proceedings of the International Conference on Signal Processing and Multimedia Applications, pages 289-294
DOI: 10.5220/0001573002890294
Copyright c© SciTePress



 

2 COMPONENT 
ARCHITECTURE 

There are several audio processing software 
solutions, where at least part of the processing is 
split into units that conform to a unified interface, 
irrespective of the nature of the processing. These 
building blocks for the software system framework 
are called components in this paper. Component is 
defined as a logically unitary audio processing 
entity. 

2.1 Existing Component Designs for 
Audio Processing  

In the desktop computing environments, many audio 
application vendors have their proprietary 
mechanisms of including new audio processing 
algorithms into processing chains as plugins. 
Examples of such applications include Steinberg’s 
Cubase (www.steinberg.de), Nullsoft’s Winamp 
(www.winamp.com), and Microsoft’s Media Player 
(www.microsoft.com/windows/windowsmedia/). 
However, some of these plugin interfaces have 
become popular outside their original applications, 
and some have originally been designed to be used 
by multiple different applications. Currently, popular 
audio plugin formats include VST by Steinberg 
(2006) and LADSPA (Furse, 2006; Phillips, 2001) 
by the Linux audio community, among others. 

In addition to the audio plugin interfaces, there 
are more complete component based multimedia 
frameworks. Examples include the DirectShow 
media streaming architecture by Microsoft (2006), 
and the open source GStreamer (2006) framework. 
Both of these systems include media encoders, 
decoders, and processing components as plugins that 
can be connected together for complete multimedia 
applications. 

Component based audio software architectures 
are also fairly common in more restricted, embedded 
environments. In the system described by Datta et al. 
(1999) all post processing audio effects applied to a 
decoded multi-channel audio stream share a 
common interface. On a more generic level, the 
XDAIS algorithm interface specification developed 
by Texas Instruments (2002) provides a unified way 
for integrating signal processing algorithms into 
their specific operating system (OS) environment. 

A system that falls between the desktop 
environment and dedicated systems has been 
described by Lohan and Defée (2001) for a media 
terminal architecture. Their system is technically a 

PC, but developed with a dedicated use case in 
mind, and equipped with a dedicated user interface. 

An interesting emerging standard in the field of 
component based multimedia is the OpenMAX 
standard, defined by the Khronos Group (2005). 
Specifically, the OpenMAX Integration Layer (IL) 
API provides applications or OS multimedia 
frameworks a standard interface to commonly used 
multimedia components such as encoders, decoders, 
and various effect processing algorithms. 

2.2 Component Characteristics 

A component typically implements an audio 
processing feature, such as a mixer, a sample rate 
converter, or an audio effect such as reverberation. 
One component encapsulates an algorithm that may 
contain several basic signal processing blocks such 
as delays and filters. From software design point of 
view, components are implemented using a single 
logical building block of the environment, for 
example using a C++ class linked as a dynamically 
loadable library. 

Components have a number of data inputs and 
outputs—often called ports—that can be used to 
connect components together. In audio software 
systems, any audio data representation format can be 
used for the connections. Very often a linear PCM 
data format is used. When all the inputs and outputs 
have the same representation, it is possible to freely 
route audio data from one component to another. 
Figure 1 depicts a component system with several 
different component types and connections between 
the components. 

Components can be either statically built, i.e., 
defined and integrated at system development time, 

 
Figure 1: A component system with connections between 
components’ input and output ports. 
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or they can be dynamically loadable plugins that can 
be connected to a previously compiled and linked 
(i.e., executable) software. 

2.3 Filter Graphs  

An audio processing engine can connect components 
together to form processing networks or filter 
graphs. Within the graph, components are run 
sequentially in the order defined by the needs of 
audio processing functionality. It should be noted 
that there can also be special components that 
contain several individual components in a 
hierarchical manner for grouping, e.g., according to 
the audio sample rate. 

When a software package is used as a complete 
audio mixing and effects engine in a multitasking 
OS, it is desirable to be able to add new audio 
applications, streams, and effects while keeping the 
current ones running. Adding a new audio feature 
should happen without causing any problems to the 
currently playing streams. This calls for the ability to 
modify the filter graph while the system is running. 
If the graph is modified one component at a time, it 
may easily become invalid during a transition from 
one larger configuration to another. Therefore, it is 
important that related changes to the configuration 
are all taken into use simultaneously. 

Simultaneous update is easy to achieve, when the 
graph configuration is kept separate from the 
components themselves. Furthermore, at least two 
graphs are always stored at a time: one is active 
(used in processing), the other one can be modified. 
When all modifications to the graph configuration 
have been made, the filter graphs are swapped 
atomically so that the one that was modified will 
become the active graph. This mechanism is similar 
to the double buffering scheme used in computer 
graphics for avoiding flickering effects caused by 
modifying an image that is currently been drawn on 
the screen. 

Many existing component frameworks distribute 
the connections between the components to the 
nodes of the filter graph. This may be beneficial for 
optimizing the connections, but updating the graph 
becomes problematic, especially if the changes 
should happen without drop-outs in the audio signal. 

2.3 Framework Functionality 

An important benefit in a component based 
architecture is the possibility of delegating common 
functionality to the framework around the 
components. This can considerably reduce the effort 

when implementing individual components. 
Additionally, the total executable binary size of the 
audio subsystem is smaller, when functionality is 
implemented only once.  

In the our architecture, the framework takes care 
of scheduling the signal processing, providing 
memory buffers for component inputs and outputs, 
scheduling the control events for processing, and 
providing processing functions temporary memory 
buffers that can be shared between components (so 
called scratch memory). 

3 REALTIME SYSTEM DESIGN 

Audio processing is very time-critical by nature. A 
realtime audio subsystem typically produces a block 
of audio samples while simultaneously playing out 
the previous block. If the processing or generation of 
one block takes more time than is the duration of 
one block, a gap (“drop-out”) will result. Naturally, 
it is possible to queue up more than one block for 
playback in memory, but this will add to the audio 
signal delay through the system and lead to added 
interaction latency between user input and the 
corresponding change in the output audio. 

Interactive audio applications typically require 
low interaction latency. This can be achieved with 
short audio blocks. On the other hand, interaction 
events can happen at any time during the lifetime of 
the application and they often require additional 
processing. This may result in a rather uneven 
processing load distribution as a function of time, 
depending on the amount of the additional 
processing. Therefore, there can be a significant 
difference in the average and worst-case processing 
times. It then becomes a difficult task to find the 
smallest possible buffer size that allows low latency 
but never produces audible gaps in different usage 
situations. 

3.1 Splitting the Components 

A unique feature in the architecture described in this 
paper is splitting the methods or functions in each 
component into two groups: realtime and control 
methods (see Figure 2). Realtime or DSP methods 
take care of the actual audio processing and run 
continuously. Control methods are executed only 
when needed, i.e., when there are interaction or 
other parameter change events pending. 

In this architecture, the control methods take 
parameter change events from upper layers of the 
software system. They process the parameters to a 
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format that, subsequently, can be easily taken into 
use in the signal processing methods. For example, 
calculating a linear gain value from a level value in 
decibels could be done on the control side of an 
audio mixer. The control methods may also be used 
for parameter processing in the opposite direction: 
for events that need to be transmitted from the 
processing to the control side, the control methods 
can convert DSP parameters into values more useful 
at the higher software layers. 

The realtime methods implement the actual audio 
signal processing tasks. They also take the 
precalculated parameter values into use. Because the 
complex parameter processing tasks can be 
delegated to the control methods, the signal 
processing can more easily be implemented so that 
the computational load from these methods is 
substantially constant or at least strictly bounded. 

3.2 Separate Execution Threads 

The split between realtime and control methods is 
necessary but not enough to achieve the best 
performance. Additionally, the realtime and control 
methods need to be run in different threads of 
execution, the realtime thread needs to run on a 
higher execution priority, and the communication 
between the threads needs to be carefully 
considered. 

The realtime signal processing thread can be run 
at a constant processing load independent of the 
control thread, provided that the realtime methods 

are written in a way that really takes a constant 
amount of processing power per each block of audio 
samples. It is also required that the realtime thread is 
never blocked for anything else than data transfer 
either between components or between software and 
audio hardware. When these requirements are 
satisfied, the signal processing thread can always run 
when it has data to process, and can always produce 
its output in a timely manner. 

The control thread performs a varying amount of 
processing depending on the user interaction and 
application controls. The control code is executed in 
a lower priority context than the realtime methods. 
This ensures that the realtime thread can always 
interrupt control processing, but not vice versa. 

The communication between the control and 
DSP parts of a component are organized by 
providing event queues either in a component 
template or base class, or in the overall processing 
framework. This makes implementing components 
with the desired split of functionality easy, and 
makes the consideration for the best realtime 
performance a standard part of algorithm 
development. The event queues need to be 
implemented using lock-free data structures to 
ensure that the realtime thread is never blocked 
because the control part is writing to the queue. 

Running the control and realtime methods in 
separate threads effectively separates the 
optimization of the signal delay from the 
optimization of the interaction latency. The audio 
buffering parameters, such as block length and 
buffer count, can now be selected according to the 
constant computational load from the realtime 
thread. Generally, the block size can be set to a 
lower value than would be possible if all parameter 
processing happened inside the processing thread. 
The interaction latency, on the other hand, can be 
different from an algorithm to another and is subject 
to optimization in the context of other interaction 
events in the system. 

The earlier systems provide limited support for 
this sort of a functionality split. For example, the 
LADSPA plugin API (Furse, 2006) accesses the 
control parameter values through pointers to floating 
point values. Therefore, it is impossible to know, if a 
control has changed its value without comparing the 
current value to the previous value. Additionally, the 
call to the processing function should use the 
parameter values as they are when the call occurs. 
Therefore, the only practical thing to do with these 
plugins is to run the control calculations within the 
signal processing thread. 
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Figure 2: An audio processing component structure with 
separate control and signal processing parts. 
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While not a component based audio system 
itself, the Structured Audio part of the MPEG-4 
standard (ISO, 1999) can also be used as an example 
of how previous systems have dealt with control 
events and their processing. The Structured Audio 
Orchestra Language (SAOL) divides its variables 
into three classes, initialization (i-rate), control (k-
rate, and audio (a-rate) variables. The control rate 
variables are processed at a predefined rate that is 
typically significantly lower than the audio sampling 
rate of the algorithm. All processing still occurs 
synchronously from one thread. The control events 
that are described using the accompanying 
Structured Audio Score Language (SASL) are just 
used to change the values of parameters exposed by 
the sound synthesis or processing algorithm. 

If control events are sent to the component using 
a specific function call, as is the case with the 
OpenMAX IL standard (Khronos, 2005), it is easier 
to implement the algorithm according to the 
architecture presented in this paper. But, as the event 
queues are not part of the standard, each component 
provider has to develop their own implementation 
for the queues. 

3.3 Time-stamped Control Events 

An important feature in the current architecture is 
time-stamping of the events in the event queues. All 
events can be time-stamped sample accurately when 
they enter the parameter processing. This is a 
convenient way of controlling the control event 
timing accuracy and jitter under normal usage 
conditions. 

Control event time-stamping is highly useful in 
this architecture that is based on running control and 
realtime code in separate threads. If the control 
events are properly time-stamped and delivered to 
the parameter processing early enough, the fact that 
parameters are pre-processed by the control methods 
has no effect on interaction latency. Also, two events 
requiring different amounts of processing can easily 
have the same latency, if desired. 

Generally, control event time-stamping cannot 
necessarily guarantee event timing, when the control 
methods are run in a separate thread of execution. 
However, under normal conditions the behaviour is 
easy to control and optimize, and even when a 
control event deadline is missed, it does not 
introduce a drop-out in the audio output signal. 

4 IMPLEMENTATION 

We have implemented the architecture described in 
this report on two different platforms. The first 
version runs on a single processor system (or a 
symmetric multi-processor system) in several 
threads. Control methods are run in one or more 
threads and the realtime methods in their own high-
priority thread. The second runs on a heterogeneous 
two-core processor system. 

The first version can be run on a general purpose 
OS, such as the typical PC operating systems or the 
Symbian OS for smartphones. In this 
implementation, all components inherit a common 
C++ base class that defines the component interface, 
separates control methods from signal processing 
methods, and implements the event queues described 
in section 3.2. The framework has been implemented 
such that the events in the event queues are 
automatically dispatched in the signal processing 
thread. This means that sample accurate timing is 
easily achieved with all components. 

The second implementation has been designed 
for an embedded system using a processor chip that 
contains both a general purpose ARM processor core 
and a separate DSP core. Both processors run their 
own operating systems with a vendor-specific 
communication interface between the processor 
cores. The signal processing functionality is run on 
the DSP processor, and the control methods of each 
algorithm are executed on the ARM. In this 
implementation, the control and signal processing 
parts of an algorithm are, naturally, more separate 
than in the first implementation. Still an important 
feature prevails: each DSP side algorithm is 
accompanied by an ARM side control processing 
instance, and the details of the messages sent 
between the control and the signal processing parts 
are considered internal to the algorithm. 

Both of the implementations described above 
have been successfully used for applications 
requiring low delay and latency with several 
different audio processing components, such as 
mixers, sampling rate conversions, and audio effects. 
The constant load from the processing methods has 
been found a significant benefit, when optimizing a 
complete system for reliable low-latency operation. 
Especially, the second version can now fully utilize 
the potential of the separate DSP core, as the varying 
processing from the control calculations is delegated 
to the general purpose ARM processor core. 
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5 ALGORITHM EXAMPLE 

Consider an algorithm, where an FIR digital filter is 
used for filtering according to a frequency domain 
specification given while the processing is running. 
For example, a user controlled audio equalization 
algorithm could be implemented so that the user 
controls are first converted to a frequency domain 
target response. Then, a time domain impulse 
response can be calculated using the inverse discrete 
Fourier transform (IDFT). This time domain 
response will then be used for actually filtering the 
audio signal going through the equalizer. 

This algorithm is characterized by the significant 
amount of processing needed for transforming the 
user controls to the response that can be used in 
filtering. The target response typically needs 
smoothing before the IDFT is calculated. After 
moving to time domain, the response needs 
windowing and truncation before it is ready to be 
used as an FIR filter. On the other hand, FIR 
filtering is an operation that is very efficiently 
implemented on modern processors, especially on 
dedicated signal processors. All this combined 
means that the filter design phase easily takes 
roughly the same number of processor cycles as 
processing a short block of audio samples. 

When this algorithm is implemented according to 
the current architecture, the audio signal delay 
through the system can be kept very low. There is no 
need to queue up more audio buffers, even if it takes 
a considerable amount of time to process the 
parameter changes. Instead, the efficiency of the 
standard FIR filtering can be leveraged fully, when 
the parameter processing happens in an execution 
thread separate from and parallel to the signal 
processing thread. On the other hand, the interaction 
latency is still determined by the time it takes to 
transform the user controls to the FIR coefficients; 
this time cannot be considerably shortened. 

6 CONCLUSION 

A component based audio software architecture for 
an efficient realtime audio system was described in 
this paper. The key feature that differentiates this 
architecture from previous work is the systematic 
division of the component functionality into two 
groups of functions or methods. The benefit that this 
division brings is that the processing load of the 
realtime part can be kept substantially constant 
regardless of the amount of interaction. 

Constant processing load is a significant 
improvement for DSP resource management, 
because earlier systems have had to prepare for the 
worst-case estimates (or take the risk for drop-outs). 
The worst cases happen relatively seldom, thus 
leading to the situation in which the best potential is 
wasted. 

In addition to the basic architecture, this paper 
shortly described two different concrete 
implementations. A digital filtering component with 
a sophisticated on-line filter design algorithm was 
also used to highlight the benefits of the architecture. 
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