
A COMPONENT-BASED SOFTWARE ARCHITECTURE FOR
REALTIME AUDIO PROCESSING SYSTEMS

Jarmo Hiipakka
Nokia Research Center, Multimedia Technologies Laboratory,

P.O. Box 407, 00045 Nokia Group, Finland

Keywords: Audio processing, Software architecture, Realtime systems.

Abstract: This paper describes a new software architecture for audio signal processing. The architecture was
specifically designed low-latency, low-delay realtime applications in mind. Additionally, the frequently
used paradigm of dividing the functionality into components all sharing the same interface, was adopted.
The paper presents a systematic approach into structuring the processing inside the components by dividing
the functionality into two groups of functions: realtime and control functions. The implementation options
are also outlined with short descriptions of two existing implementations of the architecture. An algorithm
example highlighting the benefits of the architecture concludes the paper.

1 INTRODUCTION

Recent years have significantly increased the role of
software in the field of audio processing. While
dedicated hardware solutions still dominate certain
applications, more and more processing is moving to
general purpose processors or programmable digital
signal processors (DSPs). Software systems for
audio processing have been widely, though not very
systematically, described in the literature. Naturally,
software implementations in the context of specific
algorithms have been presented, but more generic
architectures are seldom described in public.

Many of the software frameworks available for
audio processing, are based on dividing the
processing tasks into components that all share the
same interface towards the rest of the system. The
component paradigm encourages fewer
dependencies between different audio processing
algorithms. This enables separating also the
development work into more easily manageable
entities.

Audio processing software often needs to run in
real time, and with low interaction latency and audio
delay. This sets strict requirements to the
implementation. Additionally, for best performance,
the system parameters such as the audio processing
block length need to be carefully tuned, finding an

optimal compromise between computational
efficiency and latency and delay behaviour.

This paper presents an audio processing software
architecture that can be used, when the processing
platforms efficiently supports multiple simultaneous
processing contexts or threads. The system described
here is beneficial both when running and audio
processing system on a general-purpose operating
system and when, e.g., using a dedicated DSP to
accelerate the processing. The architecture separates
audio delay optimization from the interaction
latency optimization, and allows an optimal
processing load distribution by separating the
realtime and control parts of the processing inside
logically integrated components.

The rest of the paper is organized as follows:
section 2 presents the motivation and background for
component based processing architecture. Section 3
describes how the current architecture has been
adapted for realtime usage. Section 4 details a few
implementation alternatives, and section 5 describes
a use case and an algorithm example that highlights
the advantages of the architecture design. Finally,
section 6 concludes the paper.

289
Hiipakka J. (2006).
A COMPONENT-BASED SOFTWARE ARCHITECTURE FOR REALTIME AUDIO PROCESSING SYSTEMS.
In Proceedings of the International Conference on Signal Processing and Multimedia Applications, pages 289-294
DOI: 10.5220/0001573002890294
Copyright c© SciTePress

2 COMPONENT
ARCHITECTURE

There are several audio processing software
solutions, where at least part of the processing is
split into units that conform to a unified interface,
irrespective of the nature of the processing. These
building blocks for the software system framework
are called components in this paper. Component is
defined as a logically unitary audio processing
entity.

2.1 Existing Component Designs for
Audio Processing

In the desktop computing environments, many audio
application vendors have their proprietary
mechanisms of including new audio processing
algorithms into processing chains as plugins.
Examples of such applications include Steinberg’s
Cubase (www.steinberg.de), Nullsoft’s Winamp
(www.winamp.com), and Microsoft’s Media Player
(www.microsoft.com/windows/windowsmedia/).
However, some of these plugin interfaces have
become popular outside their original applications,
and some have originally been designed to be used
by multiple different applications. Currently, popular
audio plugin formats include VST by Steinberg
(2006) and LADSPA (Furse, 2006; Phillips, 2001)
by the Linux audio community, among others.

In addition to the audio plugin interfaces, there
are more complete component based multimedia
frameworks. Examples include the DirectShow
media streaming architecture by Microsoft (2006),
and the open source GStreamer (2006) framework.
Both of these systems include media encoders,
decoders, and processing components as plugins that
can be connected together for complete multimedia
applications.

Component based audio software architectures
are also fairly common in more restricted, embedded
environments. In the system described by Datta et al.
(1999) all post processing audio effects applied to a
decoded multi-channel audio stream share a
common interface. On a more generic level, the
XDAIS algorithm interface specification developed
by Texas Instruments (2002) provides a unified way
for integrating signal processing algorithms into
their specific operating system (OS) environment.

A system that falls between the desktop
environment and dedicated systems has been
described by Lohan and Defée (2001) for a media
terminal architecture. Their system is technically a

PC, but developed with a dedicated use case in
mind, and equipped with a dedicated user interface.

An interesting emerging standard in the field of
component based multimedia is the OpenMAX
standard, defined by the Khronos Group (2005).
Specifically, the OpenMAX Integration Layer (IL)
API provides applications or OS multimedia
frameworks a standard interface to commonly used
multimedia components such as encoders, decoders,
and various effect processing algorithms.

2.2 Component Characteristics

A component typically implements an audio
processing feature, such as a mixer, a sample rate
converter, or an audio effect such as reverberation.
One component encapsulates an algorithm that may
contain several basic signal processing blocks such
as delays and filters. From software design point of
view, components are implemented using a single
logical building block of the environment, for
example using a C++ class linked as a dynamically
loadable library.

Components have a number of data inputs and
outputs—often called ports—that can be used to
connect components together. In audio software
systems, any audio data representation format can be
used for the connections. Very often a linear PCM
data format is used. When all the inputs and outputs
have the same representation, it is possible to freely
route audio data from one component to another.
Figure 1 depicts a component system with several
different component types and connections between
the components.

Components can be either statically built, i.e.,
defined and integrated at system development time,

Figure 1: A component system with connections between
components’ input and output ports.

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

290

or they can be dynamically loadable plugins that can
be connected to a previously compiled and linked
(i.e., executable) software.

2.3 Filter Graphs

An audio processing engine can connect components
together to form processing networks or filter
graphs. Within the graph, components are run
sequentially in the order defined by the needs of
audio processing functionality. It should be noted
that there can also be special components that
contain several individual components in a
hierarchical manner for grouping, e.g., according to
the audio sample rate.

When a software package is used as a complete
audio mixing and effects engine in a multitasking
OS, it is desirable to be able to add new audio
applications, streams, and effects while keeping the
current ones running. Adding a new audio feature
should happen without causing any problems to the
currently playing streams. This calls for the ability to
modify the filter graph while the system is running.
If the graph is modified one component at a time, it
may easily become invalid during a transition from
one larger configuration to another. Therefore, it is
important that related changes to the configuration
are all taken into use simultaneously.

Simultaneous update is easy to achieve, when the
graph configuration is kept separate from the
components themselves. Furthermore, at least two
graphs are always stored at a time: one is active
(used in processing), the other one can be modified.
When all modifications to the graph configuration
have been made, the filter graphs are swapped
atomically so that the one that was modified will
become the active graph. This mechanism is similar
to the double buffering scheme used in computer
graphics for avoiding flickering effects caused by
modifying an image that is currently been drawn on
the screen.

Many existing component frameworks distribute
the connections between the components to the
nodes of the filter graph. This may be beneficial for
optimizing the connections, but updating the graph
becomes problematic, especially if the changes
should happen without drop-outs in the audio signal.

2.3 Framework Functionality

An important benefit in a component based
architecture is the possibility of delegating common
functionality to the framework around the
components. This can considerably reduce the effort

when implementing individual components.
Additionally, the total executable binary size of the
audio subsystem is smaller, when functionality is
implemented only once.

In the our architecture, the framework takes care
of scheduling the signal processing, providing
memory buffers for component inputs and outputs,
scheduling the control events for processing, and
providing processing functions temporary memory
buffers that can be shared between components (so
called scratch memory).

3 REALTIME SYSTEM DESIGN

Audio processing is very time-critical by nature. A
realtime audio subsystem typically produces a block
of audio samples while simultaneously playing out
the previous block. If the processing or generation of
one block takes more time than is the duration of
one block, a gap (“drop-out”) will result. Naturally,
it is possible to queue up more than one block for
playback in memory, but this will add to the audio
signal delay through the system and lead to added
interaction latency between user input and the
corresponding change in the output audio.

Interactive audio applications typically require
low interaction latency. This can be achieved with
short audio blocks. On the other hand, interaction
events can happen at any time during the lifetime of
the application and they often require additional
processing. This may result in a rather uneven
processing load distribution as a function of time,
depending on the amount of the additional
processing. Therefore, there can be a significant
difference in the average and worst-case processing
times. It then becomes a difficult task to find the
smallest possible buffer size that allows low latency
but never produces audible gaps in different usage
situations.

3.1 Splitting the Components

A unique feature in the architecture described in this
paper is splitting the methods or functions in each
component into two groups: realtime and control
methods (see Figure 2). Realtime or DSP methods
take care of the actual audio processing and run
continuously. Control methods are executed only
when needed, i.e., when there are interaction or
other parameter change events pending.

In this architecture, the control methods take
parameter change events from upper layers of the
software system. They process the parameters to a

A COMPONENT-BASED SOFTWARE ARCHITECTURE FOR REALTIME AUDIO PROCESSING SYSTEMS

291

format that, subsequently, can be easily taken into
use in the signal processing methods. For example,
calculating a linear gain value from a level value in
decibels could be done on the control side of an
audio mixer. The control methods may also be used
for parameter processing in the opposite direction:
for events that need to be transmitted from the
processing to the control side, the control methods
can convert DSP parameters into values more useful
at the higher software layers.

The realtime methods implement the actual audio
signal processing tasks. They also take the
precalculated parameter values into use. Because the
complex parameter processing tasks can be
delegated to the control methods, the signal
processing can more easily be implemented so that
the computational load from these methods is
substantially constant or at least strictly bounded.

3.2 Separate Execution Threads

The split between realtime and control methods is
necessary but not enough to achieve the best
performance. Additionally, the realtime and control
methods need to be run in different threads of
execution, the realtime thread needs to run on a
higher execution priority, and the communication
between the threads needs to be carefully
considered.

The realtime signal processing thread can be run
at a constant processing load independent of the
control thread, provided that the realtime methods

are written in a way that really takes a constant
amount of processing power per each block of audio
samples. It is also required that the realtime thread is
never blocked for anything else than data transfer
either between components or between software and
audio hardware. When these requirements are
satisfied, the signal processing thread can always run
when it has data to process, and can always produce
its output in a timely manner.

The control thread performs a varying amount of
processing depending on the user interaction and
application controls. The control code is executed in
a lower priority context than the realtime methods.
This ensures that the realtime thread can always
interrupt control processing, but not vice versa.

The communication between the control and
DSP parts of a component are organized by
providing event queues either in a component
template or base class, or in the overall processing
framework. This makes implementing components
with the desired split of functionality easy, and
makes the consideration for the best realtime
performance a standard part of algorithm
development. The event queues need to be
implemented using lock-free data structures to
ensure that the realtime thread is never blocked
because the control part is writing to the queue.

Running the control and realtime methods in
separate threads effectively separates the
optimization of the signal delay from the
optimization of the interaction latency. The audio
buffering parameters, such as block length and
buffer count, can now be selected according to the
constant computational load from the realtime
thread. Generally, the block size can be set to a
lower value than would be possible if all parameter
processing happened inside the processing thread.
The interaction latency, on the other hand, can be
different from an algorithm to another and is subject
to optimization in the context of other interaction
events in the system.

The earlier systems provide limited support for
this sort of a functionality split. For example, the
LADSPA plugin API (Furse, 2006) accesses the
control parameter values through pointers to floating
point values. Therefore, it is impossible to know, if a
control has changed its value without comparing the
current value to the previous value. Additionally, the
call to the processing function should use the
parameter values as they are when the call occurs.
Therefore, the only practical thing to do with these
plugins is to run the control calculations within the
signal processing thread.

Component Control

Component DSP

Output
Event

Queue(s)

Input
Event

Queue(s)

Audio DSP
Input
Audio
Data

Output
Audio
Data

Input
Parameter
Processing

Output
Parameter
Processing

Input Parameters Output Parameters

Figure 2: An audio processing component structure with
separate control and signal processing parts.

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

292

While not a component based audio system
itself, the Structured Audio part of the MPEG-4
standard (ISO, 1999) can also be used as an example
of how previous systems have dealt with control
events and their processing. The Structured Audio
Orchestra Language (SAOL) divides its variables
into three classes, initialization (i-rate), control (k-
rate, and audio (a-rate) variables. The control rate
variables are processed at a predefined rate that is
typically significantly lower than the audio sampling
rate of the algorithm. All processing still occurs
synchronously from one thread. The control events
that are described using the accompanying
Structured Audio Score Language (SASL) are just
used to change the values of parameters exposed by
the sound synthesis or processing algorithm.

If control events are sent to the component using
a specific function call, as is the case with the
OpenMAX IL standard (Khronos, 2005), it is easier
to implement the algorithm according to the
architecture presented in this paper. But, as the event
queues are not part of the standard, each component
provider has to develop their own implementation
for the queues.

3.3 Time-stamped Control Events

An important feature in the current architecture is
time-stamping of the events in the event queues. All
events can be time-stamped sample accurately when
they enter the parameter processing. This is a
convenient way of controlling the control event
timing accuracy and jitter under normal usage
conditions.

Control event time-stamping is highly useful in
this architecture that is based on running control and
realtime code in separate threads. If the control
events are properly time-stamped and delivered to
the parameter processing early enough, the fact that
parameters are pre-processed by the control methods
has no effect on interaction latency. Also, two events
requiring different amounts of processing can easily
have the same latency, if desired.

Generally, control event time-stamping cannot
necessarily guarantee event timing, when the control
methods are run in a separate thread of execution.
However, under normal conditions the behaviour is
easy to control and optimize, and even when a
control event deadline is missed, it does not
introduce a drop-out in the audio output signal.

4 IMPLEMENTATION

We have implemented the architecture described in
this report on two different platforms. The first
version runs on a single processor system (or a
symmetric multi-processor system) in several
threads. Control methods are run in one or more
threads and the realtime methods in their own high-
priority thread. The second runs on a heterogeneous
two-core processor system.

The first version can be run on a general purpose
OS, such as the typical PC operating systems or the
Symbian OS for smartphones. In this
implementation, all components inherit a common
C++ base class that defines the component interface,
separates control methods from signal processing
methods, and implements the event queues described
in section 3.2. The framework has been implemented
such that the events in the event queues are
automatically dispatched in the signal processing
thread. This means that sample accurate timing is
easily achieved with all components.

The second implementation has been designed
for an embedded system using a processor chip that
contains both a general purpose ARM processor core
and a separate DSP core. Both processors run their
own operating systems with a vendor-specific
communication interface between the processor
cores. The signal processing functionality is run on
the DSP processor, and the control methods of each
algorithm are executed on the ARM. In this
implementation, the control and signal processing
parts of an algorithm are, naturally, more separate
than in the first implementation. Still an important
feature prevails: each DSP side algorithm is
accompanied by an ARM side control processing
instance, and the details of the messages sent
between the control and the signal processing parts
are considered internal to the algorithm.

Both of the implementations described above
have been successfully used for applications
requiring low delay and latency with several
different audio processing components, such as
mixers, sampling rate conversions, and audio effects.
The constant load from the processing methods has
been found a significant benefit, when optimizing a
complete system for reliable low-latency operation.
Especially, the second version can now fully utilize
the potential of the separate DSP core, as the varying
processing from the control calculations is delegated
to the general purpose ARM processor core.

A COMPONENT-BASED SOFTWARE ARCHITECTURE FOR REALTIME AUDIO PROCESSING SYSTEMS

293

5 ALGORITHM EXAMPLE

Consider an algorithm, where an FIR digital filter is
used for filtering according to a frequency domain
specification given while the processing is running.
For example, a user controlled audio equalization
algorithm could be implemented so that the user
controls are first converted to a frequency domain
target response. Then, a time domain impulse
response can be calculated using the inverse discrete
Fourier transform (IDFT). This time domain
response will then be used for actually filtering the
audio signal going through the equalizer.

This algorithm is characterized by the significant
amount of processing needed for transforming the
user controls to the response that can be used in
filtering. The target response typically needs
smoothing before the IDFT is calculated. After
moving to time domain, the response needs
windowing and truncation before it is ready to be
used as an FIR filter. On the other hand, FIR
filtering is an operation that is very efficiently
implemented on modern processors, especially on
dedicated signal processors. All this combined
means that the filter design phase easily takes
roughly the same number of processor cycles as
processing a short block of audio samples.

When this algorithm is implemented according to
the current architecture, the audio signal delay
through the system can be kept very low. There is no
need to queue up more audio buffers, even if it takes
a considerable amount of time to process the
parameter changes. Instead, the efficiency of the
standard FIR filtering can be leveraged fully, when
the parameter processing happens in an execution
thread separate from and parallel to the signal
processing thread. On the other hand, the interaction
latency is still determined by the time it takes to
transform the user controls to the FIR coefficients;
this time cannot be considerably shortened.

6 CONCLUSION

A component based audio software architecture for
an efficient realtime audio system was described in
this paper. The key feature that differentiates this
architecture from previous work is the systematic
division of the component functionality into two
groups of functions or methods. The benefit that this
division brings is that the processing load of the
realtime part can be kept substantially constant
regardless of the amount of interaction.

Constant processing load is a significant
improvement for DSP resource management,
because earlier systems have had to prepare for the
worst-case estimates (or take the risk for drop-outs).
The worst cases happen relatively seldom, thus
leading to the situation in which the best potential is
wasted.

In addition to the basic architecture, this paper
shortly described two different concrete
implementations. A digital filtering component with
a sophisticated on-line filter design algorithm was
also used to highlight the benefits of the architecture.

REFERENCES

Datta, J., Karley, B., Chen, T., Longley, L., Baudendistel,
K., and Dulanski, T., 1999. “Architecting a Versatile
Multi-Channel Multi-Decoder System on a DSP,”
Presented at the AES 106th Convention, Munich,
Germany, May 8-11, 1999.

Furse, R., 2006. “Linux Audio Developer's Simple Plugin
API (LADSPA),” available at <http://www.ladspa.
org/>, referenced June-12, 2006.

GStreamer, 2006. “GStreamer: open source multimedia
framework,” available at <http://www.gstreamer.org/>
referenced June-12, 2006.

ISO, 1999. Coding of multimedia objects (MPEG-4).
International Standard ISO/IEC 14496:1999, Geneva,
ISO.

Khronos Group, 2005. “OpenMAX Integration Layer
Application Programming Interface Specification,”
Version 1.0. available at <http://www.khronos.org/
openmax/>.

Lohan, F. and Defée, I., 2001. “Modularity in Open Media
Terminal System Architecture,” In Proc. 2001 IEEE
Int. Conf. on Multimedia and Expo, Tokyo, Japan,
August 22–25, 2001. pp. 708-711.

Microsoft, 2006. “DirectShow,” available at <http://msdn.
microsoft.com/library/default.asp?url=/library/en-us/
directshow/htm/directshow.asp>, referenced June-12,
2006.

Phillips, D., 2001. “Linux Audio Plug-Ins: A Look Into
LADSPA,” available at <http://www.linuxdevcenter.
com/pub/a/linux/2001/02/02/ladspa.html>, referenced
June-12, 2006.

Steinberg Media Technologies GmbH, 2006. “Our
technologies,” available at <http://www.steinberg.de/
325_1.html>, referenced June-12, 2006.

Texas Instruments, 2002. “TMS320 DSP Algorithm
Standard API Reference,” TI Literature Number
SPRU360C, 2002, available at <http://focus.ti.com/lit/
ug/spru360c/spru360c.pdf>, referenced June-12, 2006.

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

294

