
ON-THE-FLY TIME SCALING FOR COMPRESSED AUDIO
STREAMS

Suzana Maranhão, Rogério Rodrigues and Luiz Soares
166 166 TeleMidia Lab, PUC-Rio University

Brazil, Rio de Janeiro

Keywords: Time scaling; High-Quality Compressed Audio; MPEG-2 Audio; MPEG-4 Audio, MPEG-2 Systems; Inter-
media Synchronization; Hypermedia Document Presentation.

Abstract: Time scaling is a technique used to modify media-object presentation duration. This paper proposes an
audio time-scaling algorithm focused on supporting applications that need: to maintain the original data
format for storage or immediate presentation on any legacy audio player; to perform linear time scaling in
real time, allowing the adjustment factor to vary along the audio presentation; and to perform time mark-up
maintenance, that is, to compute new time values for original marked audio time instants. The proposed
algorithm is appropriate for those applications that do not need a great adjustment factor variation. The
integration with content rendering tools is presented in the paper and also an example of using these tools in
a hypermedia presentation formatter..

1 INTRODUCTION

Time scaling and elastic time adjustment are usual
names given to the technique of modifying media-
object playing duration. The adjustment can be
quantified by a (tuning or adjustment) factor,
expressed by a real number greater than zero. A
media exhibition speed up is expressed by a tuning
factor f<1 and a media exhibition slow down by a
factor f>1.

Time-scale modifications are useful in many
applications (Aron, 1992; Lee, 2004;
Omoigui, 1999). The next paragraphs give some
examples that raised the goals of the algorithm
proposed in this paper. As will become evident,
hypermedia (or interactive multimedia) systems are
our main target, reason why the proposed algorithm
is called HyperAudioScaling.

The first example comes from the temporal
synchronization consistency of hypermedia
document presentations. In such presentations, all
media-objects should be exhibited in proper times
taking into account time restrictions specified by
authors, including interactive actions. Time-scaling
processing should be applied before document
presentation (at compile time) trying to solve all
temporal inconsistencies. However, the temporal
synchronized media-objects can lose their
synchronization due to several factors in their route

to the presentation machine (from now on called
formatter). For example, network delays, user
interactions and unpredictable end of media
exhibitions (as in live streams) can cause
synchronization loss. In all theses cases, time scaling
will play an important role in the synchronization
maintenance and must be performed in presentation
time (on-the-fly). Moreover, to track the
synchronization, the adjustment factor may also vary
in real time. The fidelity of the processed media
must be high and, thus, adjustments must be
performed as smoothly as possible, in order to be
imperceptible to users.

The adjustment mechanism should not depend on
which audio presentation tool (i.e. audio player) will
be used by a hypermedia formatter. As a
consequence, time-scale modifications must be
independent of the stream decoding process that
takes place in presentation tools. Moreover, since
hypermedia applications usually manipulate
compressed media formats, and since real-time time-
scale modifications are needed, the adjustments
should be performed in the compressed data, without
needing to decode them.

Finally, hypermedia documents use anchors
(defined in this paper as time periods in the stream)
to specify synchronization points. So, the time-
scaling algorithm should also be able to track new
anchor values during the adjustment computation.

110
Maranhão S., Rodrigues R. and Soares L. (2006).
ON-THE-FLY TIME SCALING FOR COMPRESSED AUDIO STREAMS.
In Proceedings of the International Conference on Signal Processing and Multimedia Applications, pages 110-117
DOI: 10.5220/0001570901100117
Copyright c© SciTePress

Other multimedia applications also demand time-
scaling processing. For example, time scaling can be
useful to allow TV or radio stations to speed its
scheduling up or down. Time scaling can also be
used to optimize channel allocation for multiple
users in a Video (or audio)-On-Demand (VOD)
system. Media streams of the same content can be
transmitted with different speeds until the same
piece of information is reached in the flows. At this
time, the streams can be unified in one multicast
flow.

The HyperAudioScaling algorithm, proposed in
this paper, focuses on supporting audio time scaling
for those applications that need: i) to maintain the
original data format aiming at the storage or
immediate presentation on any legacy audio player;
ii) to perform time-scale modifications in real time
(presentation time) but allowing to vary the
adjustment factor during the audio presentation; iii)
high fidelity, that is, given an adjustment factor, the
time-scaling processing should be performed as
smoothly as possible in order that speed variation in
the resultant media is imperceptible to users; and iv)
time mark-up maintenance, that is, time scaling must
be able to compute new time values for original
marked time instants. In addition, the
HyperAudioScaling algorithm focuses only on those
applications that do not need a great tuning-factor
variation (0.9≤f≤1.1).

This paper is organized as follows. Section 2
discusses some related work. Section 3 introduces
the HyperAudioScaling algorithm for audio-only
streams. Section 4 briefly discusses how the
algorithm can also be applied in multiplexed audio
and video (system) streams. Section 5 presents the
time-scaling tool (library) developed based on the
proposed algorithm. In order to illustrate the use of
the time-scaling tool in a hypermedia document
presentation system, Section 6 describes its
integration with a hypermedia formatter. To
conclude, Section 7 presents the final remarks.

2 RELATED WORK

Audio time-scaling algorithms can be classified in
three categories (Bonada, 2002; Lee, 2004),
presented in increasing order of quality and
computational complexity.

Time-based algorithms assume signal
segmentation in time domain in order to perform
adjustments by segment manipulations (for example,
through discarding, duplication or interpolation of
segments). They usually reach good quality for
adjustment factor between 0.8 and 1.2.

Frequency-based algorithms perform time
scaling, modifying frequencies of the original audio
signal. They can produce high quality output over a
wide range of stretching factors.

Analysis-based algorithms make an examination
of the audio signal and then perform time-scaling
mechanisms specifics for that audio type, in order to
create an adjusted high-quality audio.

Most of the commercial tools use time or
frequency-based algorithms for adjustments on
generic audio, once the computational complexity of
algorithms based on detailed analysis is usually too
high.

Independent of the time-scaling algorithm
category, there are, at least, tree ways to perform
adjustments in compressed audio. The first
possibility is to decode, process, and recode the
stream. The advantage of this solution is that there
are many good time-scaling algorithms proposed for
uncompressed audio (Lee, 2004). However, this
option can be very time-consuming, making it
difficult to be used in real-time. Furthermore, there
is a loss of quality associated with the recompression
process.

When audio streams must be processed while
they keep playing, originating new streams without
perceptible delay, there are two other different
solutions to perform time-scale modifications.

The first one is carrying out time scaling soon
after the decompression and before the presentation.
The advantage in this case is the possibility of
manipulating non-compressed streams using the
aforementioned good algorithms already defined in
the literature. However, it may be difficult to
intercept the decoder output before sending it to
exhibition. Even when this interception is possible, it
may require a particular implementation for each
decoder.

The second solution is performing time scaling
before decompression, straight on compressed
streams. This option gives to the time-scaling
algorithm independency from the decoder. However,
time scaling must consider the syntax rules specified
by the media format. Note that, for the requirements
stated in Section 1, this is the approach to be
followed.

Sound Forge (Sony, 2006) allows professional
audio recording and editing. It supports several
audio formats, but always applies a pre-processing
procedure when opening compressed files. Time-
scaling processing can be performed in presentation
time, however, probably using the pre-processed
stream. Nevertheless, the generation of the resultant
(recompressed) file is not performed in real time.
The user can choose among 19 different ways of
applying time-scale modifications according to
his/her needs. The adjustment factor varies between

ON-THE-FLY TIME SCALING FOR COMPRESSED AUDIO STREAMS

111

0.5 and 5. The tool has an excellent audio output
stream quality, but introduces an intolerable delay
for real time processing. Sound Forge is used for
comparison with this paper proposal in Section 7.

Windows Media Player 10 (Microsoft, 2006)
supports many audiovisual formats, such as MP3
and WMA. The tool allows choosing the adjustment
factor to be used during media exhibition and to
change this factor in presentation time. Although the
adjustment factor can assume values between 0.06
and 16, the program specification suggests a range
between 0.5 and 2.0 to keep media quality high.
Although not mentioned, it is almost assured that the
time-scaling processing takes place after the
decoding, due to two reasons: it is not possible to
save the processed audio in a compressed format;
and, since the algorithm is done for a specific player,
it is better to apply time scaling just before
presentation.

The MPEG-4 audio specification defines a
presentation tool called PICOLA (Pointer Interval
Controlled OverLap Add), which can make time-
based adjustments after decompression, in mono
audio with sample rate of 8kHz or 16kHz (ISO,
2001).

FastMPEG (Covell, 2001) is a time-scaling
proposal that explores the partial decoding/encoding
strategy. It describes three time-based algorithms for
MP2 format on-the-fly adjustments. The algorithms
are performed after a partial decoding of the audio
stream and followed by a partial re-encoding. The
adjustment factor varies between 2/3 and 2.0.

All aforementioned time-scaling algorithms are
not applied straight on the compressed stream.
Instead, streams are decoded (at least partially),
processed, and, eventually, encoded again. The
solutions are complex and decoder dependent. The
algorithms allow a large range for the tuning factor f,
perhaps one of the reasons that guided their
implementation. However, this is reached by the
dependence of the presentation tool, or by the use of
non-real-time computation.

Different from all mentioned work, this paper
proposes a time-scaling algorithm for compressed
audio streams, simple enough to be executed in
presentation time. The algorithm is performed
straight on the compressed data, supporting tuning-
factor variation, and being independent of the
decoder (and thus the player) implementation. Due
to the intentional simplicity of the proposed
algorithm, its tuning-factor is limited to the range
[0.90 , 1.10].

Indeed, this paper proposes a framework for a
class of algorithms, that is, a meta algorithm. The
framework is instantiated for a set of format-
dependent algorithms, described in the paper, and

implemented as a library, called HyperAudioScaling
tool, which can be easily integrated with third-party
applications. The media formats handled by the
library are MPEG-1 audio (ISO, 1993), MPEG-2
systems (ISO, 2000) and audio (ISO, 1998) (ISO,
1997), MPEG-4 AAC audio (ISO, 2001), and AC-3
(ATSC, 1995). These standards were chosen
because they have been largely used in commercial
applications, such as those for digital and interactive
TV, and also in different audiovisual formats, like
VCD, SVCD and DVD.

3 AUDIO TIME-SCALING
ALGORITHM

Many high-quality audio formats deal with audio
streams as a sequence of frames (or segments).
Every frame has a header and a data field, and is
associated with a logical data unit (LDU). A set of
coded audio samples, gathered during a small time
interval (typically, about 30ms), concatenated with
auxiliary bits (called PAD) compose a logical data
unit. The number of PAD bits is not limited and are
generally used to carry metadata.

Although associated with a specific frame, the
LDU does not need to be carried in the data field of
this frame. Alternatively, the LDU can borrow bits
from data fields of previous frames (the bit reservoir
in MPEG nomenclature) and be transported partially
or entirely in previous frames. The maximum size of
the bit reservoir is limited. Thus, data fields can
contain one, several or part of an LDU. Figure 1
shows an audio stream with frames separated by
vertical lines. In each frame, the header bytes are
stripped. They are located in the beginning of the
frame and are followed by a data field. The figure
also depicts the LDU of each frame.

Figure 1: Frame representation of a compressed audio
stream.

The HyperAudioScaling algorithm is based on a
well-known time-based algorithm called Granular
synthesis (Gabor, 1946). However, an important
difference must be pointed out. Once time scaling
must be executed without decoding the compressed
audio (to recover the audio samples), and because an
LDU can be coded in frequency domain, the chosen
adjustment unit is the LDU (and not samples, as in
the Gabor’s proposal). Thus, HyperAudioScaling

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

112

time scaling is performed by removing or
duplicating LDUs when the stream must be speed up
or slowed down, respectively.

Nevertheless, removing an LDU is not that
simple, since the associated frame must also be
removed. As a frame may contain LDUs associated
with frames that are ahead, these LDUs cannot
simply be taken out of the stream, and must be
respread into previously scheduled frames.

Similar care must also be taken when duplicating
an LDU, since the associated frame must also be
duplicated. If a frame has its associated LDU spread
into other previous frames, the duplicated frame may
also have to distribute part of its LDU. Furthermore,
bits of other LDUs within the frame must not be
duplicated.

As in both the removing and the duplicating
processes there could not be enough room for the
LDUs that have to be distributed,
HyperAudioScaling tries to avoid using frames
where the problem may happen. So, the following
rules are adopted:
1. First try to remove only the frames that have

their associated LDUs larger than the frame data
fields.

2. Similarly, first try to duplicate only frames that
have their associated LDUs smaller than their
data fields.

The rules ensure that there will always be place
to process the selected frame. Note also that new
PAD bits may have to be added to previous frames
after removal, or to the processed frame in the case
of duplication. Figure 2 illustrates the removing
process after dropping frame 3 in Figure 1 example.
The duplicating process is illustrated in Figure 3
after the duplication of frame 2 in the same Figure 1
example. The figures consider that there are no PAD
bits in the LDUs of frames 3 and 2, before removal
and duplication, respectively.

Figure 2: Dropping frame 3 in the stream of Figure 1.

Figure 3: Duplication of frame 2 in the stream of Figure 1.

The added auxiliary bits when rules 1 and 2 are
applied can now be used to refine the proposed
algorithm. In order to use these PAD bits in future
processing, they can be transferred frame by frame,

till the next LDU to be processed, using the
following algorithm:
• Compute the number X of PAD bits which can

be transferred from one frame to the next. In
this case, the X value must be limited to the bit
reservoir maximum size.

• Transfer X bits of the next-frame LDU to the
PAD field and insert new X PAD bits into the
end of the transferred LDU.

Figure 4 shows PAD transference from frame 2
to frame 4 in the stream of Figure 3.

Figure 4: Frames of Figure 3 after PAD transference.

Using this mechanism, new rules can be defined
to process frames:
3. If a frame does not satisfy rule 1, it can still be

removed if the length of its associated LDU
added to the transferred PAD length is greater
than or equal to the frame data field length.

4. If a frame does not satisfy rule 2, it can still be
duplicated if the length of its associated LDU is
smaller than or equal to the frame data field
length plus the transferred PAD length.

Since there are frames that still cannot be
processed, the elastic time adjustments may not be
uniformly distributed. However, with the new added
rules, more frames can be processed and closer to
linear the time scaling can be. A linearity measure of
this algorithm will be presented in Section 7. Note
also that the non-linearity prevents marked time
instants in the original audio to be estimated using a
linear equation based on the adjustment factor (see
requirement (iv) in Section 1). Therefore, the time-
scaling mechanism should track particular time
instants and indicates their new values during time-
scaling processing.

HyperAudioScaling operation does not require a
frame of fixed length. The frame extractor
algorithm, instantiated for each audio format, must
be responsible for recognizing and creating frames
from the stream.

During the audio time scaling, a frame must be
properly selected and analyzed to verify if it can be
processed. The frame selector processing algorithm
is responsible for this task and can be summarized as
follows:
a. Compute the effective adjustment factor applied

until this moment. This calculus must take into
account the number of frames already processed
divided by the number of frames analyzed;

b. Compare this result with the original adjustment
factor to decide whether the frame should be
processed, then verify if the frame can be

ON-THE-FLY TIME SCALING FOR COMPRESSED AUDIO STREAMS

113

processed considering rules 1 to 4, described
previously. If it cannot be processed, take the
next frame, and return to step (a).

When changes are made in the adjustment factor,
the frame selector processing algorithm must
recalculate the effective adjustment factor from the
moment of the change on.

HyperAudioScaling preserves bytes before the
first frame and after the last frame of the stream,
because they may represent important metadata, like
ID3 standard (Nilsson, 2006) on MP3 streams.
Moreover, HyperAudioScaling also maintains
metadata inside non-processed frames.
Unfortunately, the metadata of the processed frames
cannot be always preserved. As some audio formats
(MP2, for example) have their LDUs coinciding
with their data fields, it is impossible to discard or
duplicate frames without their PAD fields. In
addition, in other format types, it is difficult to
discover where the PAD bits begin without
decoding. Fortunately, PAD bits of LDUs usually
just carry stuffing bits for length alignment and can
be discarded or duplicated without compromising
metadata information.

The HyperAudioScaling algorithm was
instantiated to MPEG-1 and MPEG-2 BC Audio
(MP1, MP2, MP3), AC-3 and MPEG-2/4 AAC.
Since there is no bit reservoir in MP1, MP2 and AC-
3 streams, the instantiations assume that the number
of borrowed bytes is always zero, that is, the frame
associated LDU is always inside the frame data
field. In MP3 streams there is a bit reservoir and the
algorithm was applied straightly. MP1, MP2 and
MP3 have equal-size frames (using constant bit and
sampling rate) and auxiliary bytes (PAD) at the end
of each LDU, while AC-3 streams have frames with
variable length. As previously discussed, this does
not affect the algorithm.

The current algorithm implementation for
MPEG-2/4 AAC streams uses the ADTS transport
protocol. Similarly to MP3, MPEG-2/4 AAC
streams provide the bit reservoir facility and have
frames with both audio and auxiliary data. However,
this format introduces some new challenges, since
its encoder may use sample values of previous
frames to predict sample values of the current frame.
Since this encoder facility is optional, it was left to
be treated in a future work.

4 TIME SCALING IN SYSTEM
FLOWS

Some media formats can multiplex video, audio and
metadata in a unique flow called system stream.

System streams are usually composed by PACKETs,
each one containing one, several or part of an
elementary-stream frame.

System time-scale modifications are performed
by adjusting each elementary stream and
recalculating some metadata within the PACKET
header. System time-scaling algorithms usually
consist of the following steps:
1. Identify PACKETs from the original stream and

demultiplex the input stream into its elementary
streams;

2. Convert PACKETs into frames of the
corresponding elementary stream.

3. Execute elementary time-scaling algorithms.
4. Recreate system PACKETs using the processed

bits and multiplex them creating the new system
stream.

The algorithm proposed in Section 3 can be used
to adjust elementary audio streams. Another
algorithm should be used to process the video
stream. However, some changes must be made in the
audio time-scaling algorithm. First, time scaling on
elementary streams needs to cope with system and
elementary stream metadata, since some of the
metadata can be affected by the time-scaling
processing, such as clock timestamps, etc. Second,
time scaling on elementary streams must provide
information for adjustment control and inter-media
synchronism verification.

Since time-scaling algorithms do not necessarily
make linear adjustments, a synchronization
mismatch among elementary streams may occur and
must be detected by the intermedia synchronism
verification function. If the mismatch crosses a
specific upper bound1, the intermedia synchronism
verification function must call the services of the
adjustment control function to change the tuning-
factors of each individual media, in order to correct
the problem.

Figure 5 resumes the proposed time scaling for
system streams.

Figure 5: Time scaling for system streams.

1 Reference (Aly, 2002) discusses the audio and video

mismatch problem and states that the loss of quality
can only be perceived when adjustments cause a
synchronization mismatch higher than 160ms.

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

114

The system time-scaling algorithm was
instantiated to MPEG-2 system program stream,
together with the audio time-scaling algorithm
described in Section 3 and the video time-scaling
algorithm proposed in (Cavendish, 2005). In this
instantiation, the metadata that must be considered
for updating are the timestamps PTS (Presentation
Time Stamp) and DTS (Decoding Time Stamp),
inserted in the elementary streams, and SCR
(System Clock Reference), in the system stream.
Also, it may be necessary to update the
PES_packet_length field in the PACKETs that had
their frames processed for elastic time adjustments.

5 AUDIO TIME-SCALING TOOL

The audio time-scaling tool was implemented using
the Java language. The time-scaling tool receives
requests from client applications (adjustment API).
The audio input can be retrieved (pull applications)
or received as a stream (push applications). The
adjusted stream can be stored in a file or returned to
the client application.

Time-scale modifications can be performed at
compile-time or during execution-time. Since these
approaches have different characteristics, one API
was developed for each one.

Table 1 describes the API to request compile-
time adjustments. The config method receives the
original audio content, a tuning-factor for each
specified audio section (set of samples), and the URI
of the output file.

The start and stop methods begin and stop the
time-scaling processing, respectively. The
addTimeScalingListener method allows client
applications to register themselves to be notified
when the time-scaling processing finishes.

After time scaling finishes, client applications
can use the getTimeScalingInstant method to
discover new time values for marked time intervals;
the getOutputTools method to get the output file
URI; and the getReport method to retrieve statistics
about time-scaling processing (such as number of
frames processed, processing time, etc).

Table 1: Compile-time adjustment API.

Method Description
config (originalMedia,
{tuningFactor,
audioSection},
outputFileURI)

Configures the time-scaling
tool.

start() Starts processing.
stop() Stops processing.
addTimeScalingListener
(observer)

Adds a new observer to the
time-scaling finish event.

getTimeScalingInstant
(timeInstant)

Gets the new time value
after adjustments for an
original time instant.

getOutputTools() Gets the output file URI.
getReport() Gets statistics about the

adjustment processing.

Table 2 describes the API for requesting time
scaling on the fly. The config method receives the
original audio, the tuning-factor, and, optionally, a
set of time intervals to track. The setFactor method
can be invoked during time-scaling processing to
modify the tuning-factor. If client applications want
to be warned when new values of marked time
intervals are found, they need to register themselves
as observers using addTimeScalingIntervalListener
method. The getOutputTools method must be called
by the client application to get the processed stream.
The other methods have the same meaning of their
compile-time counterparts.

Table 2: Execution-time adjustment API.

Method Description
config (originalMedia,
tuningFactor,
{timeInterval})

Configures the time-
scaling tool.

setFactor (tuningFactor) Modifies the tuning-factor.
start() Starts processing.
stop() Stops processing.
addTimeScalingInterval
Listener (observer)

Adds a new observer to
track new values of a
marked time interval.

getOutputTools() Gets the processed stream.
getReport() Gets statistics about

adjustment processing.

6 INTEGRATING
HYPERAUDIOSCALING WITH
A HYPERMEDIA FORMATTER

In order to illustrate the time-scaling package usage
in hypermedia document presentations, the

ON-THE-FLY TIME SCALING FOR COMPRESSED AUDIO STREAMS

115

HyperAudioScaling tool was integrated with the
HyperProp formatter (Bachelet, 2004).

When controlling document presentations, the
HyperProp may need to change media durations in
order to maintain the document temporal
consistency. The HyperProp formatter delegates to
media players the task of content rendering. To
enable incorporation of third-party content players,
HyperProp defines an API specifying the methods
that media players should implement and how media
players should notify presentation events (e.g. user
interaction, start/end of a content fragment
presentation, etc.). Media players that do not
implement the required methods, or do not know
how to signalize presentation events, should be
plugged to the formatter through adapters.

Based on this approach, the time-scaling package
implementation has been used to implement a set of
HyperProp time-scaling audio players, as shown in
Figure 6. Each audio player is composed by an
adapter, the time-scaling tool (Section 5), and a
legacy audio player. The adapter receives commands
from the HyperProp formatter, executes its tasks and
requests the services of the time-scaling tool. The
package returns the processed audio stream and
dispatches events like the conclusion of time-scaling
computation and the discovery of a new time instant.
The adapter sends the processed audio stream to the
legacy audio players. This legacy player exhibits the
processed audio and can dispatch presentation
events. These steps can take place both at compile or
execution-time.

Figure 6: Time-scaling player integrated with the
HyperProp formatter.

Two versions of audio presentation tools were
implemented using JMF (Java Media Framework)
(Sun, 1999). One version works only for compile-
time adjustments, using the file generation facility of
HyperAudioScaling. The time-scaling tool saves the
processed audio in a new file that may be sent to a
JMF player after the complete adjustment. To
support runtime time-scale modifications another
version of audio presentation tool was developed

extending the JMF data source. An instance of this
new class of data source receives data from the
stream returned by HyperAudioScaling and feeds
the JMF player for content playing. Since JMF
players run as threads of the client application
process, it is possible to monitor player events (like
user interactions, pause, resume, stop, finish, etc.).
One drawback of using JMF is that the set of
available codecs are still limited to a few audio
formats.

In order to play a wider variety of audio formats,
VLC (VideoLan, 2006) player was also integrated
with the audio time-scaling tool. Unlike JMF, VLC
runs as an external process fired from the client
application. As a consequence, it is difficult for the
adapter (Figure 6) to interact with VLC players, for
example, to monitor events like pause and resume
during the audio playing.

7 FINAL REMARKS

This paper discussed time-scaling issues considering
specific requirements found in some applications
that demand runtime elastic-time short adjustments,
in particular the hypermedia presentation systems.
From related work analysis, the authors could not
find any existing solution that fulfills all the raised
requirements.

The proposed time-scaling algorithm was
implemented as a library in order to be used by
third-party applications. Since, for the purpose of
this paper, time-scale modifications are used to
manage inter-media synchronization, it normally
runs on small stream segments and with a tuning-
factor close to 1, what usually brings imperceptible
effects to users.

Some subjective and objective simple tests have
been performed to measure the algorithm quality and
to compare it with the time-scaling algorithm of
Sound Forge 8.0. Sound Forge was chosen because
of its high quality obtained with the expenses of high
processing.

Four tuning factors were used to compare the
tools: 0.90, 0.95, 1.05 and 1.10. MP3 44.1 kHz files
were used with a compressed audio rate of 128kbps.
Ten listeners participated on the test analyzing five
audio types.

Subjective notes were assigned by comparing the
original file with a processed one. Figure 7 and
Figure 8 illustrate the notes obtained. In the pictures,
notes are given in MOS (Mean Opinion Score) units
(ITU-T, 1998). The audios processed by the
HyperAudioScaling algorithm and by the Sound
Forge best algorithm are marked, respectively, by

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

116

“h” and “s”, followed by the used tuning factor (in
%).

Although, as expected, the audio quality of the
proposed algorithm is worse than the audio quality
of Sound Forge, the subjective results showed that
they are very close.

Figure 7: MOS for each media type using 0.90 and 0.95
tuning factors and confidence level of 95%.

Figure 8: MOS for each media type using 1.05 and 1.10
tuning factors and confidence level of 95%.

On the other hand, the processing rate for MP3
files was about 8-times faster than Sound Forge
(2640 frames/sec, using factor 1.1 in a Pentium 4
2.4GHz 1GB-RAM machine). The precision of the
proposed algorithm, the reached (actual) audio
duration minus the corresponding expected (ideal)
audio duration, was always better than, or equal to,
the Sound Forge precision for the five different
types of audio files. Furthermore, the same tests
demonstrated that the audio adjustment algorithm
runs almost uniformly along the stream. The worst
standard deviation was smaller than half of the
distance between two processed frames.

Some media files, processed using
HyperAudioScaling algorithm, are available in
http://www.telemidia.puc-rio.br/~smbm/ajusteaudio.
As future work, we intend to make tests considering
different compressed-audio bit rates and also
different audio compression standards.

REFERENCES

Aly, S., Youssef, A., 2002. Synchronization-Sensitive
Frame Estimation: Video Quality Enhancement. In
Multimedia Tools and Applications.

ATSC, 1995. Digital Audio Compression Standard (AC-
3).

Bachelet, B., Mahey, P., Rodrigues, R.F., Soares, L.F.G.,
2004. Elastic Time Computation in QoS-Driven
Hypermedia Presentations. Research Report RR-04-
16, Blaise-Pascal University, Clermont-Ferrand.

Bonada, J. 2002. Audio Time-Scale Modification in the
Context of Professional Post-Production. Doctoral
Pre-Thesis Work. UPF. Barcelona. Retrieved June 3,
2006, from
http://www.iua.upf.edu/mtg/publicacions.php?lng=eng
&aul=3&did=219.

Cavendish, S.A., 2005. Ferramenta de Adaptação de
Ajuste Elástico em Fluxos MPEG2. Master
Dissertation, Departamento de Informática – PUC-
Rio, Rio de Janeiro, Brazil. (in portuguese)

Covell, M., Slaney, M., Rothstein, A., 2001. FastMPEG:
Time-Scale Modification of Bit-Compressed Audio
Information. In Proceedings of the Int. Conference on
Acoustics. IEEE-ICASSP.

Gabor, D., 1946. Theory of Communication. In Journal of
Institution of Electrical Engineers.

ISO, 1993. Coding of Moving Pictures and Associated
Audio for Digital Storage Media at up to about 1.5
Mbit/s - Part 3: Audio, 11172-3.

ISO, 1997. Information technology - Generic coding of
moving pictures and associated audio information -
Part 7: Advanced Audio Coding (AAC), 13818-7.

ISO, 1998. Information technology - Generic coding of
moving pictures associated audio information - Part 3:
Audio, 13818-3.

ISO, 2000. Information technology - Generic coding of
moving pictures and associated audio information:
Systems, 13818-1.

ISO, 2001. Information technology - Coding of audio-
visual objects - Part 3: Audio, 14496-3.

ITU-T, 1998. Subjective audiovisual quality assessment
methods for multimedia applications, P.911.

Lee, E., Nakra, T.M., Borchers, J., 2004. You’re The
Conductor: a Realistic Interactive Conducting System
for Children. In Proc. of the NIME 2004 Int.
Conference on New Interfaces for Musical Expression,
Japan.

Microsoft. Windows Media Player. Retrieved March 20,
2006, from
http://www.microsoft.com/windows/windowsmedia/.

Nilsson, M. ID3v2. Retrieved March 20, 2006, from
http://www.id3.org/.

Omoigui, N., He L., Gupta, A., Grudin, J., Sanacki, E.,
1999. Time-Compression: Systems Concerns, Usage,
and Benefits. In Proc. of the SIGCHI Conference on
Human Factors in Computing Systems, USA.

Sony, 2006. The Sound Forge Product Family. Retrieved
March 20, 2006, from http://www.soundforge.com.

Sun. Java Media Framework v2.0 API Specification.
Retrieved March 20, 2006, from http://java.sun.com/.

VideoLan Project. VLC media player. Retrieved March
20, 2006, from http://www.videolan.org/vlc/.

ON-THE-FLY TIME SCALING FOR COMPRESSED AUDIO STREAMS

117

