
SERVICE-ORIENTED ARCHITECTURE TO MOBILE PHONES

Elena Sánchez-Nielsen, Sandra Martín-Ruiz, Jorge Rodríguez-Pedrianes
Dpto. E.I.O. y Computación – Escuela Técnica Superior de Ingeniería Informática

La Laguna University, 38271 La Laguna, Spain

Keywords: Service oriented architecture, Mobile phones, Dynamical services invocation.

Abstract: New business opportunities are being enlarged by mobile phones. Electronic commerce on mobile phones is
an emerging expression of internet electronic commerce to provide sophisticated services to mobile users.
The Web services technology has been proposed to support electronic commerce on wired networks.
However, no significant research has been done to allow mobile phones acting as Web services requestor at
runtime without prior knowledge of available services. In this paper, we propose a service oriented
architecture to mobile phones. We introduce service managers as proxies between services providers and
mobile devices in order to solve the limitations faced by direct access from mobile devices to Web services.
We investigate the use of dynamic invocation interface as communication mechanism between service
providers and service managers in order to compute service description and invocation at runtime. With this
approach, we allow that service providers to create, update and change services at anytime and mobile users
may locate new services without knowing the accessible services. We have implemented a first prototype
with open source tools and basic service scenarios.

1 INTRODUCTION

Mobile phones are enlarging new business
opportunities. Examples of mobile services (m-
services) include access to basic services (e.g.,
search engine tools, language translation facilities,
newspaper reports, weather forecast,…), mobile
shopping (e.g., booking flights, reserving rental cars,
restaurants,…), mobile banking (e.g., billing of
services, buying stocks and contacting banks
through mobile devices) and m-government .
 Having pre-installed services on users’ mobile
phones is an option that cannot be considered in an
open environment with multiple users with different
needs. Therefore, online delivery of services from
providers to mobile users and dynamical service
discovery infrastructure (where provider services
can announce their presence and mobile users can
locate these services) is more appropriate in dynamic
contexts than pre-installing services (Pilioura et al.
2003, p.28-36). At present, Web Services
technology (Gustavo et al. 2004) is used as approach
to support services on wired networks (e-services) as
well as integrating enterprise applications in a
heterogeneous environment. However, the available
technology to discover, access and invoke Web
services directly from mobile devices lacks some

important features. First, the using of static stub
based communication between a mobile client
application and Web services framework implies a
stub appended to the client at compile time for each
Web service to be invoked. Second, available
technology using open source software does not
allow users to access directly to UDDI registry from
mobile phones. This context requires that all
services must be specified at design time and no new
services can be incorporated later (at runtime) by
service providers. The other solution consists of
downloading a new application to client device
when new services are available. With the purpose
of providing availability service and dynamical
discovery to mobile users at anytime and anywhere,
in this paper, we focus on dynamic binding for
mobile devices. In particular, we propose a manager
entity with a service registry as an intermediate layer
between service providers and mobile users. This
entity is responsible of how to make service
information available and delivery services to
mobile users at anytime. We investigate the use of
dynamic invocation interface as communication
mechanism between service providers and service
managers in order to compute service description
and invocation at runtime. We propose XML-
encoded data exchange between service managers
and mobile phones to describe: (i) Web services

57
Sánchez-Nielsen E., Martín-Ruiz S. and Rodríguez-Pedrianes J. (2006).
SERVICE-ORIENTED ARCHITECTURE TO MOBILE PHONES.
In Proceedings of the International Conference on e-Business, pages 57-62
DOI: 10.5220/0001425000570062
Copyright c© SciTePress

descriptions, (ii) operation invocations and (iii)
searching at UDDI registry. With the framework
proposed, service providers and new services can
easily be added at anytime without updating the
application of users’ mobile phones when new
services are incorporated. With the purpose of
reducing technology fragmentation and enhancing
interoperability, the solution has been developed
using open source software, standards and
specifications.
 The remainder of this paper is organized as
follows. Section 2 describes the related work about
Web services technology. Section 3 outlines the
architecture proposed. Section 4 describes prototype
implementation and experimental results with basic
services and UDDI registry. Section 5 gives
concluding remarks.

2 RELATED WORK

The Web services paradigm (Gustavo et al. 2004),
(Vinoski 2002, p.89-91) offers and consumes
software as services. Interactions among Web
services involve three types of participants: service
provider, service requestor and service registry.
Service providers are the owners that offer services.
They define descriptions of their services and
publish them in the service registry. Service
requestors use a find operation to locate services of
interest. The registry returns the description of each
relevant service. The requestor uses this description
to invoke the corresponding Web Service. Three
standardization initiatives XML-based are used in
order to support interactions among Web services:
WSDL (Web Services Description Language n.d.),
UDDI (UDDI n.d.) and SOAP (Simple Object
Access Protocol n.d.).

Using SOAP-based interaction, services can
exchange messages by means of standardized
conventions to turn a service invocation into an
XML message, to exchange the message, and to turn
the XML message back into an actual service
invocation. Through WSDL, a designer specifies the
programming interface of a Web service. Four type
of messages SOAP are possible: RPC/encoded,
RPC/literal, document/literal and
document/encoded. Using Web Services paradigm,
the client makes a procedure call of a Web service in
the same way it invokes a local call. According to
client applications have access to WSDL file at
compile time or runtime, invocation of Web services
can be carried out by means of:

- Static Stub: a procedure call of a client application
is an invocation of a proxy procedure located in a

stub appended to the client at compile time. As a
result, a client can invoke methods of a Web service
directly via the stub. The advantage of this model is
that it is simple and easy to code. The disadvantage
is that the slightest change of Web service definition
leads to the stub being useless and a generation of a
new stub. Therefore, the stub based approach is only
appropriate in static contexts, where services are not
removed and updated by service providers.
- Dynamic proxy: in this case, the client application
calls a remote procedure through a dynamic proxy
that is created at runtime. The dynamic proxy needs
to be re-instated whenever the service endpoint
interfaces change.
- Dynamic invocation interface (DII): this model
enables dynamic invocation of Web services without
having to know interface details at compile time.
With this approach, a client application can query
for a service it has never heard of and build on the
fly a call to that service. As a result, an application is
able to invoke a service that was not known prior to
runtime: it can dynamically download the
appropriate WSDL file, parse it, and construct all the
elements required to use the service.

3 SERVICE ORIENTED
APPROACH

Traditional service oriented architecture using stub-
based model as communication mechanism between
client mobile applications and provider services is
not appropriate to support mobile services in
dynamic contexts. There are two main limitations:
(i) every service needs to be coded in the client
application assuming a detailed knowledge of each
service that will be invoked at runtime and (ii) a stub
for each service provided needs to be appended to
the client application at compile time in the mobile
device. This situation involves that all services must
be described (network address, operations to
provide, parameter…) at the design-time and no new
services can be added after compile time. This
context means that service providers cannot create,
update and change services at anytime and that
mobile users can only access to pre-defined services
at their mobile phones. In order to solve the
problems faced by traditional Web services
architecture to mobile users, we propose a
framework with an intermediate entity between
service providers and service clients. This entity is
represented by a service manager that operates as a
client of the distributed network of Web services
offered by the different service providers and as
server to mobile phones.

ICE-B 2006 - INTERNATIONAL CONFERENCE ON E-BUSINESS

58

 Figure 2 illustrates the architecture proposed. In
the following sections, we describe the components
illustrated in Figure 2, the interactions among the
different components and the XML infrastructure
proposed as service manager and format of exchange
data between service managers and mobile client
applications.

3.1 Service Providers and Clients

Service providers are the owners that offer different
services. They define descriptions of their services
using WSDL specifications (Web Services
Description Language n.d.). Service clients are
mobile phones-oriented users interested in standard
services and searching of facilities, when it is needed
without prior knowledge of available services and
bringing these facilities to their devices in a
transparent way.

3.2 Service Managers

Service managers act as a mediator layer between
service providers and mobile clients. They are
responsible for information flow among both
components. A service manager is a Web service
entity that uses dynamic binding to compute service
descriptions and dynamic invocation interface (DII)
to query for services to service providers. With the
use of DII, we allow service managers to invoke
Web services without knowing their communication
interface at compile time. As a result, we obtain
several advantages: (i) invocations of Web services
not known prior can be computed by the service
manager, (ii) service providers can create, update
and change Web services at runtime, (iii) no static
stub generated manually for the service manager at
compile time is required and (iv) a single stub
appended to a Java ME application is required. This

appended stub corresponds to the service manager.
According to the structure of marketplace, one or
multiple service managers can be supported. The use
of a single service manager involves a centralized
marketplace. If multiple service managers are used,
different operators or third parties can be
incorporated at anytime, where each one can support
different service providers.
 The integration of service managers into a
service oriented architecture leads to mobile client
applications to only interact with these components
and no with the different service providers. This
way, a single stub corresponding to the service
manager is needed to be appended to the client
application and no several stubs corresponding to the
different services available on the marketplace.
 Client applications that reside in mobile devices
only interact with a service manager.
 Interactions between mobile devices and
service providers using a service manager entity
consist of the following processes:

-Start up: When the service manager starts up, it
processes a service registry. This registry is a
structure that enables service providers to store their
list of URL address (URI) of accessible services
made available. The service manager maintains a
XML based structure as registry. The structure of
this registry is described in section 3.3.1. Dynamic
binding is used by the service manager in order to
obtain the service descriptions at runtime.
-Service delivery descriptions: the description
(operations provided, parameters…) of available
Web services is sent from service manager to mobile
client according to the XML document described in
section 3.3.2.
-Request service: once mobile clients have received
the descriptions of available services, they send
requests of services of their interest.

Service
Provider

Service
Client

Service
Manager

UDDI
REGISTRY

5. Request

Message Exchange
(SOAP)

Web
Services

Mobile Phones

Application
supporting

Web Services

Distribute

Service Registry

8. Response

Message Exchange
(XML)

6. DII Invoke

7. Response

2. Dynamic
Binding

3. Services
Availability

 Dynamic
Binding

1. Publish
Service URIXML

File

1. Publish
Service URI

Figure 1. Service oriented architecture for mobile phones

4. Services
Description

Services
Availability

XML
File

Figure 1: Service oriented architecture for mobile phones.

SERVICE-ORIENTED ARCHITECTURE TO MOBILE PHONES

59

-Service invocation: service manager receives a
request encoded as an XML message with the
necessary information (Web service name, selected
operation, parameter values introduced…) from a
mobile device when a user is interested in some
service. Dynamic invocation is used by service
manager in order to invoke Web services
functionalities to service providers.
-Results transmission: the service manager sends
the information encoded as an XML message to the
mobile user, when it receives the response of the
corresponding service provider. This information is
shown on the screen display of the mobile device.
-UDDI services: mobile clients can also demand
services supported by UDDI registry. In this context,
a client makes a request to the service manager using
keyword in order to discover a particular service at
UDDI registry. Following, the service manager uses
dynamic binding to discover services at UDDI
registry that match with the user search criterion.
The description of these services is sent from service
manager to the mobile application. The user selects
the service of its interest and finally service manager
process this request at the same way as the request
and invocation of services described previously.

3.3 UDDI Registry and XML Based
Infrastructure

UDDI service directory can also be used by mobile
users in order to locate new services. Service
discovery is computed at runtime by the service
manager, once the user has sent their request of new
services in UDDI registry. A uniform infrastructure
using XML-encoded data exchange is used with two
purposes: (i) to define the service registry structure
and (ii) establish the communication between the
mobile phone and the service manager.

3.3.1 Service Registry

The XML structure of the service registry enables
service providers to store their network addresses
URL of WSDL documents. The format of the XML
document is the following:

<?xml version=”1.0” encoding=”windows-1252”?>

<WSDLaddresses>

<version>1.2</version>

<wsdl>http://api.google.com/GoogleSearch.wsdl</

wsdl>

 …

<wsdl>http://www.webservicex.com/TranslateServi

ce.asm?WSDL</wsdl>

<WSDLaddresses>

 In this document, the tag WSDLaddresses
contains two types of elements: version and wsdl.
version is the current version of the Web Services
set provided to the service manager. This element is
used in order to update new services to mobile
phones. wsdl is the URL address where is located
the WSDL document of a Web Service offered.
There are so many wsdl elements like Web Services
offered.

3.3.2 Web Service Description

The following format of XML document is sent
from the service manager to the mobile phone, when
the description of Web Services available and/or
location of new services in UDDI are required by the
mobile user:

<webservices version=”1.0”>

<service name=”Calculator”>

wsdl=”http://81.45.231.68:8080/Server/Calculato

r.wsdl”>

<porType localPart=”Calculator”

namespaceURI=”http://calculator.com”>

<operation name=”add”>

<title> Add operation</title>

<description>To compute add operation

between two numbers</description>

<parameters>

<parameter name=”Operator1”

type=”number”>

<parameter name=”Operator2”

type=”number”>

</parameters>

<return>true</return>

</operation>

…

<operation name=”subtract”>

…

</operation>

</porType>

…

<porType>

…

</portType>

</service>

<service>

…

</service>

</webservices>

 The root of the document is the webservices
tag. It represents the start of the set of Web Services.
The attribute version corresponds to the current
version of Web Services descriptions set provided to
the mobile device. The use of this attribute allows

ICE-B 2006 - INTERNATIONAL CONFERENCE ON E-BUSINESS

60

users check their set of descriptions with the service
manager and downloading a new version, when new
services have been added. Each Web Service is
described with two attributes: name and wsdl.
Different port types can be associated to a specific
Web Service through the element portType. This
element contains three attributes: localPart,
namespaceURI and operation. A operation is
described by the following elements: title (title of
the operation), description (description of the
operation), parameters (input parameters of the
operation), and return (true is returned if the
operation returns a value, false in other case).

3.3.3 Operation Invocation

The structure of the XML document sent from
service manager to the mobile device when a Web
service operation is invoked is the following:

<results>

<result>Search time:0.5 seconds</result>

<result>

<result>Department Store: XYZ</result>

<result>

<result>

<result>Name: wood table</result>

<result>Price: 50 euros</result>

</result>

…

</result>

</result>

</results>

 The different results are enclosed between
result tags. If a complex type is returned (such as
arrays and structures), the different fields of this type
are enclosed into different result tags.

3.3.4 UDDI Search

A service manager sends to the mobile phone, the
following XML document, when a user requests a
search for new Web Services in UDDI registry:

<UDDI>

<webservice

wsdl=”http://81.45.231.68:8080/Server/Calculato

r.wsdl”>

<description>=”To compute add, subtract

operations…”/>

…

</UDDI>

 The different Web Services located are
enclosed by a webservice tag. wsdl and description

attributes represent the URL address of the WSDL
document and the Web Service description.

4 IMPLEMENTATION

In order to test the Web services framework for
mobile phones, we have implemented and tested
basic service scenarios. The following service
scenarios have been developed using a single service
manager entity: (1) searching with Google engine,
(2) text translation from one language to another, (3)
newspaper reports, (4) temperature converter, (5)
weather forecast, (6) calculator and (7) dynamic
searching with UDDI.
 The framework has been implemented using the
following open source software: Apache Tomcat
5.0.28 for application server, J2ME Wireless Toolkit
(WTK) for developing wireless applications and
designed to run on cell phones, and Eclipse 3.1
development platform with WTP (Web Tools
Platform) plug-in for building software and
developing Web applications. Axis and UDDI4J
Java libraries have been used as SOAP motor and
Java implementation of UDDI protocol. The client
application has been implemented as a MIDlet using
J2ME Wireless Toolkit. That is, a Java application
developed with MIDP profile and CLDC
configuration. We have tested the Java application
on the Sun emulator and mobile emulators of
commercial trademarks.
In order to invoke Web services from a J2ME
application, the mobile devices must support the
Java Specification Request 172 (JSR-172). At
present, however, JSR-172 has no support to UDDI
specification in a J2ME application.
 The application developed to mobile users
presents different menus with different options, e.g.,:
invocation, update, delete and searching of new Web
services. Figure 2 illustrates the main menu of the
client application with three different options:

Figure 2: Main menu of the J2ME application and specific
menu of “Invoke a service”.

- Invoke a service: the set of available services to
the mobile device is shown to the user. Two set of
different services are available: (i) standard services
registered by the service manager entity (represented
by a green star) and (ii) services searched in UDDI

SERVICE-ORIENTED ARCHITECTURE TO MOBILE PHONES

61

(a)

(b)

(c)

(represented by a red star). Right image of figure 2
depicts such functionality. After a service is
selected, the set of operations supported is shown to
the user. Figure 3 illustrates a weather forecast
service on Sun’s J2ME emulator.
- Check results: allows users to check the results
from the different invocations achieved. A list with
the different invoked services by the user is saved
with the following attributes: operation, parameters
values, invocation date and result computed. This
way, user can read results of previous services
invoked at anytime.
- Services management: allows users to select
different management tasks such as: (i) update Web
Services from service managers, (ii) searching
services in UDDI and (iii) remove services from the
mobile phone.

Figure 3: Global weather forecast service: (a) Selection of
the operation to invoke, (b) Introduction of the parameter
values, and (c) Results of the invoked operation.

4.1 Experimental Results

At present, we found that open source development
tools for building, deploying and testing production
quality work well together. Using a dynamic binding
based approach and MIDlet’s as client applications
allows end users to download a single time the
application directly to their device over-the-air or via
their PC. No update is required, when new services
are provided. However, we have found the following
drawbacks when J2ME technology is used: (1) Java
Specification Request 172 (JSR-172) required for
invocating Web services from a mobile J2ME
application does not support UDDI specification and
SOAP encoded messages, (2) there is only support
to static stubs, so new stubs must be manually
generated when new services are incorporated at
runtime and clients must download a new
application in order to incorporate the new services.
We have solved both problems by the use of service
managers. (3) The use of UDDI registry provides
high time responses and also many of the services
published at UDDI registry are not correctly
published. Thus, all the services consulted through
UDDI registry must be verified by the service
manager, before the results are sent to the mobile
user. We have solved this problem verifying the
services required to UDDI registry by the service

manager entity and (4) specific implementations
must be developed in order to support complex types
when dynamic invocation interface is used.

5 CONCLUSIONS

In this paper, we address the discovery and
invocation of Web services from mobile phones at
runtime. We introduce service managers that act as
clients over the network of services and as servers to
the mobile devices. We propose the use of dynamic
binding in order to compute at runtime Web services
descriptions and invoke services selected by mobile
users. We provide a uniform infrastructure using
XML-encoded data exchange between service
managers and mobile devices. With this approach,
we delegate the business logic to service managers,
solving the limitations faced by direct access from
mobile devices to Web services. The use of dynamic
binding allows that providers to create, update and
change services at anytime and mobile users may
locate new services without knowing the accessible
services. However, the use of dynamic binding
implies a bigger time to access to remote SOAP
services in relation to the use of static stubs or
dynamic proxies.

REFERENCES

Gustavo, A., Casati, F., Kuno H. and Machiraju, V., 2004.
Web Services: concepts, archictectures and
applications. Springer-Verlag publications, Berlin.

UDDI. Universal Description, Discovery, and Integration.
Retrieved from http://www.uddi.org/

Vinoski, S, 2002. Web Services Interactions Models, Part
1: Current Practice. In IEEE Internet Computing, Vol
6, Nº 3, pp. 89-91.

Simple Object Access Protocol. (SOAP). W3C. World
Wide Web Consortium. Retrieved from
http://www.w3.org/TR/soap/

Web Services Description Language (WSDL). W3C.
World Wide Web Consortium. Retrieved from
http://www.w3.org/TR/wsdl

Pilioura T, Tsalgatidou A. and Hadjiefthymiades S, 2003.
Scenarios of using Web Services in M-Commerce. In
ACM SIGecom Exchanges, Vol. 3, Nº 3, pp. 28-36.

ICE-B 2006 - INTERNATIONAL CONFERENCE ON E-BUSINESS

62

