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Abstract: Dynamic textures are sequences of images of moving scenes that show stationarity properties in time. Eg: 
waves, flame, fountain, etc. Recent attempts at generating, potentially, infinitely long sequences model the 
dynamic texture as a Linear Dynamic System. This assumes a linear correlation in the input sequence. Most 
real world sequences however, exhibit nonlinear correlation between frames. In this paper, we propose a 
technique of generating dynamic textures using a low dimension model that preserves the non-linear 
correlation. We use nonlinear dimensionality reduction to create an embedding of the input sequence. Using 
this embedding, a nonlinear mapping is learnt from the embedded space into the image input space. Any 
input is represented by a linear combination of nonlinear bases functions centered along the manifold in the 
embedded space. A spline is used to move along the input manifold in this embedded space as a similar 
manifold is created for the output. The nonlinear mapping learnt on the input is used to map this new 
manifold into a sequence in the image space. Output sequences, thus created, contain images never present 
in the original sequence and are very realistic. 

1 INTRODUCTION 

Our aim is to design an algorithmic framework that 
allows the creation of photorealistic, yet, arbitrarily 
long sequences of images for a dynamic scene, 
based on a short input sequence of a similar scene. 
Variously referred to as Dynamic Textures (Soatto 
et al, 2001), Video Textures (Schödl et al., 2000) or 
Temporal Textures (Szummer et al., 1996), these are 
image sequences that model motion patterns of 
indeterminate spatial and temporal extent. Waves in 
water, grass in wind, smoke, flame, fire, waterfall, 
etc. are a few examples of phenomena that fall in 
this category.  
There are two basic ways to approach this problem,  
a) Physics based rendering 
b) Image based rendering 

Physics based rendering is primarily focused on 
creating a physical model derived from the standard 
principles, to recreate the dynamics of the system. 
To make the output a little more realistic, 
approximations are then introduced and the model is 
simulated to synthesize an output sequence. The 

main advantage of this technique is that it provides 
extensive manipulation capability and an avenue to 
use the model for scientific calculations. But this 
technique suffers from the disadvantage of being 
computationally expensive and being less 
photorealistic. Perry and Picard (Perry et al., 1994) 
and Stam et al. (Stam et al., 1995) depicted the 
power and use of physics based models to 
synthesize sequences of gaseous phenomena like 
fire, flame, smoke, etc. Hodgins et al. (Hodgins et al, 
1998) proposed a physical model for synthesizing 
and studying walking gaits. These provided 
sequences which could be easily manipulated but 
failed to produce visually appealing outputs. 

Image based rendering techniques are focused on 
the creation of visually appealing and realistic 
output sequences. These could either follow a 
procedural technique generating synthetic images by 
clever concatenation or repetition of image frames. 
Or, these could be based on a model of the visual 
signal of the input sequence.  Schödl et al. (Schödl 
et al., 2000) used a procedural technique to carefully 
choose sub-loops of an original video sequence and 

243
Awasthi I. and Elgammal A. (2006).
LEARNING NONLINEAR MANIFOLDS OF DYNAMIC TEXTURES.
In Proceedings of the First International Conference on Computer Vision Theory and Applications, pages 243-250
DOI: 10.5220/0001378202430250
Copyright c© SciTePress



create new sequences. They found frames 
representing ‘transition points’, in the original 
sequence. By selecting the frames that did not end 
up at ‘dead-ends’, that is, places in the sequence 
from which there are no graceful exits, they created 
very realistic output sequences. But they only 
replayed already existing frames, and had to rely on 
morphing and blending to compensate for visual 
discontinuities. Sequences which did not have 
similar frames well spaced temporally, were very 
difficult to be synthesized. Many natural processes 
like fluids were thus, hard to synthesize. Kwatra et 
al. introduced a new seam finding and patch fitting 
technique for video sequences. They represented 
video sequences by 3D spatio-temporal textures. 
Two such 3D textures could be merged by 
calculating a 2D surface which could act as the 
optimal seam. However like in (Schödl et al., 2000), 
they first found transition points by comparing the 
frames of the input sequence. Then in a window of a 
few frames around this transition they found an 
optimal seam to join the two sequences, represented 
as 3D textures. Since they rely on transitions, they 
sometimes need very long input sequences to find 
similar frames and a good seam. Both (Schödl et al., 
2000) and (13), offered little in terms of editability 
as the only parameter that could be controlled was 
the length of the output sequence. Simple control 
like slowing down or speeding up could not be 
achieved. It was only techniques based on a model 
of the visual signal in the input images, that 
provided this opportunity to control various aspects 
of the output. Szummer and Picard (Szummer et al., 
1996) suggested a STAR model for generating 
temporal textures using an Auto Regressive Process 
(ARP). Fitzgibbon (Fitzgibbon et al., 2001) 
introduced a model based technique of creating 
video textures by projecting the images into a low-
dimensional eigenspace, and modeling them using a 
moving average ARP. Here, some of the initial 
eigenvector responses (depicting non-periodic 
motions, like panning) had to be removed manually. 
Soatto et al. (Soatto et al, 2001) produced similar 
work. They modeled dynamic textures as a Linear 
Dynamic System (LDS) using either a set of 
principal components or a wavelet filter bank. They 
could model complex visual phenomena such as 
smoke and water waves with a relatively low 
dimensional representation. The use of a model not 
only allowed for greater editing power but the 
output sequences also included images that were 
never a part of the original sequence. However, the 
outputs were blurry compared to those from non-

procedural techniques and for a few sequences the 
signal would decay rapidly and the intensity gets 
saturated. Yuan et al. (Yuan et al., 2004) extended 
this work by introducing feedback control and 
modeling the system as a closed loop LDS. The 
feedback loop corrected the problem of signal 
decay. But the output generated was still blurry. 
This is because these models assume a linear 
correlation between the various input frames.  
In this paper, we propose a new modeling 
framework that captures the non-linear 
characteristics of the input. This provides clear 
output sequences comparable to those of the 
procedural techniques while providing better control 
on the output through model parameters. The 
organization of the paper is as follows:  Section 2 
describes the mathematical framework that forms 
the basis of our model. In section 3, we  provide a 
brief overview of Non-Linear Dimensionality 
Reduction (NLDR). Section 4 describes the 
technique used to model the dynamics of the 
sequence in the embedded space. In section 5, we 
describe the methodology of transforming the model 
from the low dimension embedding space to the 
observed image space. Finally, section 6 presents the 
results of using our framework on a diverse set of 
input image sequences.  

2 MODEL FRAMEWORK 

In this section we summarize the mathematical 
framework that we use for modeling the dynamic 
texture. The existing image based techniques model 
the input visual signal ((Soatto et al, 
2001),(Fitzgibbon et al., 2001),(Szummer et al., 
1996)) for creating dynamic textures, using a linear 
dynamic system of the following form: 

 1 , (0, )
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Here, n
ty R∈  is the observation vector; 

,r
tx R r n∈ << is the hidden state vector, A is the 

system matrix; C is the output matrix and ,t tv w are 
Gaussian white noises driving the system. In such a 
system, the observation is a linear function of the 
state. The limitation of this system is that this 
captures only the linear correlation between 
subsequent images. The lack of non-linear 
characteristics, lead to an output sequence that is not 
as crisp and detailed as the input. 
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We, propose a new model based on non-linear 
dimensionality reduction, which overcomes this 
shortcoming. The state representation is nonlinearly 
related to the observation and therefore, the 
parameters learnt, effectively model the non-
linearities relating to substructures and small 
movements in the input sequence. The framework 
we propose is: 

 1 , (0, )
( ) , (0, )

t t t t v

t t t t w

x Ax v v
y B x w wψ

−= +    Σ
= +    Σ

∼ `
∼ `

 

Where, n
ty R∈  is the observation vector; 

,r
tx R r n∈ << is the hidden state vector, A is the 

system matrix; B represents the coefficients of non-
linear mappings; ( )xψ  is a function incorporating 
the basis functions to be used with B to define the 
non-linear mapping and ,t tv w are Gaussian white 
noises driving the system. 
 
We use NLDR using Locally Linear Embedding 
(LLE)(Roweis et al., 2000) and isometric feature 
mapping (Isomap) (Tenenbaum et al., 2000), to 
achieve a nonlinear embedding of the sequence. 
Given such an embedding, we explicitly model the 
transitions using a spline curve. This models the 
nonlinear manifold of the texture. Using the 
embedding, a RBF nonlinear mapping is fitted to the 
observation which leads to the nonlinear observation 
model in section 5-equation (2). 

3 NON-LINEAR EMBEDDING 

The model based approaches use dimensionality 
reduction to extract compact representations of 
relevant characteristics defining the data variability. 
Two popular forms of dimensionality reduction are 
principal component analysis (PCA) and 
multidimensional scaling (MDS). Both PCA and 
MDS are eigenvector methods that model  variations 
in high dimensional data. PCA, finds a low-
dimensional embedding of the data points that best 
preserves their variance as measured in the high-
dimensional input space by computing the linear 
projections in the directions of greatest variance 
using the top eigenvectors of the data covariance 
matrix. Metric MDS, computes the low dimensional 
embedding that best preserves pair-wise distances 
between data points. If these distances correspond to 
Euclidean distances, the results of metric MDS are 
similar to those of PCA. Both methods are simple to 

implement, and their optimizations do not involve 
local minima, making these a popular choice despite 
their inherent limitations as linear methods. 
However, most scenes of simple natural phenomena 
depict non-linear dynamics and linear 
dimensionality reduction fails to capture the factors 
defining these non-linear characteristics. To 
overcome this shortcoming, we use non-linear 
dimensionality reduction to project the images into a 
low dimensionality embedding space. This is 
achieved using either the LLE or the Isomap 
algorithm. The following sub-sections discuss these 
methods in brief.  

3.1 Locally Linear Embedding 
(LLE) 

According to the LLE framework (Roweis et al., 
2000), given the assumption that each data point and 
its neighbors lie on a locally linear patch of the 
manifold (Roweis et al., 2000), each point (image 
frame) yi can be reconstructed based on a linear 
mapping ij i

j

w y∑  that weights its neighbors 

contributions using the weights  wij . In our case, the 
neighborhood of each point is determined by its K 
nearest neighbors based on the distance in the input 
space. The objective is to find such weights that 
minimize the global reconstruction error, 

2( ) | | ,     where i, j = 1 · · · N i ij i
i i

E w y w y= −∑ ∑
 
The weights are constrained such that wij is set to 0 
if point yj is not within the K nearest neighbors of 
point yi. This will guarantee that each point is 
reconstructed 
from its neighbors only. The weights obtained by 
minimizing the error in the above equation are 
invariant to rotations and re-scalings. To make them 
invariant to translation, the weights are also 
constrained to sum up to one across each row, i.e., 
the minimization is subject to 1ij

j

w =∑ . Such 

symmetric properties are essential to discover the 
intrinsic geometry of the manifold independent of 
any frame of reference. Optimal solution for such 
optimization problem can be found by solving a 
least-squares problem as was shown in (Roweis et 
al., 2000). Since the recovered weights W reflect the 
intrinsic geometric structure of the manifold, an 
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embedded manifold in a low dimensional space can 
be constructed using the same weights. This can be 
achieved by solving, for a set of points 

{ , 1.. }e
iX x R i N= ∈ =  in a low dimension 

space, wherein, e d<< , and that minimize: 
2( ) | |i ij iE x x w x= −∑ ∑  where i, j = 1· · · 

N, and, the weights are fixed. Solving such problem 
can be achieved by solving an eigenvector problem 
as was shown in (Roweis et al., 2000). 

3.2 Isomap Embedding 

Isometric feature mapping (Tenenbaum et al., 2000), 
or Isomap, algorithm preserves the pair-wise 
distances between points in the image space. It adds 
the additional constraint of preserving the intrinsic 
geometry of the data as described by the geodesic 
manifold distances between all pairs of data points. 
For neighboring points, Euclidian distance provides 
a good approximation to geodesic distance. For 
faraway points, geodesic distance is approximated 
by adding up a sequence of “short hops” between 
neighboring points. These hops are computed by 
finding shortest paths in a graph with edges 
connecting neighboring data points. The algorithm 
as defined in (Tenenbaum et al., 2000) has three 
main steps: 
The first step determines which points are neighbors 
on the manifold M, based on the distances  ( , )xd i j  
between pairs of points i, j in the high dimension, 
input space X. It either connects each point to all 
points within some fixed radius e , or to all of its K  
nearest neighbors. These neighborhood relations are 
represented as a weighted graph G  over the data 
points, with edges of weight ( , )xd i j  between 
neighboring points. In its second step, Isomap 
estimates the geodesic distances ( , )Md i j  between 
all pairs of points on the manifold M by computing 
their shortest path distances ( , )Gd i j in the 

graph G . In the third and final step, MDS is applied 
to the matrix of graph distances { ( , )}G GD d i j= , 
constructing an embedding of the data in a d-
dimensional Euclidean space Y that best preserves 
this estimated intrinsic geometry. The coordinate 
vectors iy for points inY are chosen to minimize the 
cost function:  

2GE=|| (D ) ( ) ||Y L
Dτ τ−    

 Where, YD denotes the matrix of Euclidean 

distances { ( , ) || ||}Y i jd i j y y= −  and 2|| ||
L

A the 

2L matrix norm = 2

,
ij

i j
A∑ .  The τ operator 

converts distances to inner products, which uniquely 
characterize the geometry of the data in a form that 
supports efficient optimization. The global minimum 
of Eq. 1.2 is achieved by setting the coordinates 

iy to the top d eigenvectors of the matrix ( )GDτ . 

4 LEARNING DYNAMICS 

Non-Linear dimensionality reduction provides us a 
low dimensional embedding that closely captures the 
dynamics of the input sequence. Each input frame 
resides as a node on the embedded manifold. A new 
sequence, with similar dynamics, will also have a 
similar low dimensional embedding. The first step 
towards the creation of the output sequence is the 
creation of the output manifold in the same 
embedding space. To do so, first a model of the 
embedding is created and then this model is used to 
create a new manifold. 

4.1 Modeling the Embedded 
Manifold  

The non-linear dimensionality reduction techniques 
are used to create an embedding of the input 
sequence in 3D space. The embedded manifold is 
then modeled as a 3d-spline. This is done by 
assuming consecutive frames to be equidistant in 
time and, using the 3D coordinates of each frame 
within the embedding space, to construct a piece-
wise polynomial in each dimension. Thus, at any 
time t  a point ( , , )t t tA x y z  on the embedding can 
be represented by  
 ( ) ( ( ), ( ), ( ))f t PPx t PPy t PPz t=  
Where, PPx , PPy  and PPz  are the piecewise 
polynomials fitting the x, y and z co-ordinates of the 
frames of the input sequence in the embedding 
space. 

4.2 Creating the Output Manifold 

The embedding manifold for the output is created by 
using the manifold for the input as a guide and 
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walking through the embedding space. If T is the 
time used for an input sequence with m  input 
frames, the average time-step between consecutive 
frames is 
 /avT T m=  
Starting at the first frame, and moving along the 
spline at steps equal to avT would result in an exact 
trace of the input sequence. In order, to create a 
unique sequence, some noise is added to the time 
step between two consecutive frames. Also to allow 
for a rate of change of speed, an acceleration factor 
α is also introduced. Thus, the time step for the 
embedding for the output sequence can be 
represented as 
 step avT Tα γ= +  

The use of stepT ensures the unique positioning of 

nodes representing frames of the output sequence, 
along the embedding manifold. However, the actual 
trajectory of the manifold for the output sequence 
still remains the same as that of the input sequence. 
In order to add variability to the  trajectory for the 
output sequence, gaussian noise is also added to the 
3d co-ordinates calculated by the piecewise 
polynomials PPx , PPy and PPz . The new 
spline function now becomes: 
 

( ( ) , ( ) , ( ) )new n x n y n zf f PPx T PPy T PPz Tμ μ μ= + + +  

 
Where, xμ , yμ and zμ represent Gaussian noise 

along x , y and z co-ordinates respectively. Thus, 

from a position at time curT on the output manifold, 
the next position is calculated as:   
 

 
( )

cur cur step

new new cur

T T T

Pos f T

= +

=
 (1) 

 
Using, (1) we are able to create a new manifold 
within the 3d-embedding space that is restricted to 
within a cylindrical, twisted, shell with the manifold 
of the input sequence forming the axis of this shell. 
 

 
Figure 1. 

5 OBSERVATION MODEL 

Once the manifold in the embedding space has been 
modeled, we need to map points from the low 
dimensional embedding space into the high 
dimensional visual input space. In order to learn 
such nonlinear mapping, a Radial basis function 
interpolation framework is used. In the Radial basis 
functions interpolation framework, the manifold is 
represented in the embedding space implicitly by 
selecting a set of representative points along the 
manifold. 
Let the set of representative input instances be 

d
iY = {y R     i = 1, · · · ,N}∈  and let their 

corresponding points in the embedding space be 
e

iX = {x  R ,    i = 1, · · · ,N}∈  where e is the 
dimensionality of the embedding space (e.g. e = 3 in 
our case). We can solve for multiple 
interpolants :k ef R R→ , where k is k -th 

dimension (pixel) in the input space and kf  is a 
radial basis function interpolant, i.e., we learn 
nonlinear mappings from the embedding space to 
each individual pixel in the input space. The 
functions used are generally of the form: 

 kf ( ) ( ) (| |)
N

k k
i i

i
x p x w x xφ= + −∑  

where (.)φ is a real valued basis function, iw  are 

real coefficients, | . | is the norm on eR (the 

embedding space) and kp is a linear polynomial 

with coefficients kc . The basis function we have 

Output 
Manifold 

Input 
Manifold 
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used is the thin-plate spline 2( ) log( )u u uφ = . The 
whole mapping can be written in a matrix form as 
 ( ) . ( )f x B xψ=                   (2) 
 
Where B is a ( 1)d N e× + + dimensional matrix 

with the k -th row 1[ ... ]
Tk k k

Nw w c   and the vector 

( )xψ is T T
1 N[ (|x - x |) · · · (|x - x |)   1   x ]φ φ  

The matrix B represents the coefficients for 
d different nonlinear mappings, each from a low-
dimension embedding space into real numbers. To 
insure orthogonality and to make the problem well 
posed, the following additional constraints are 
imposed 

 
1

( ) 0, 1,...,
N

i j
i

w p x j m
=

= =∑  

where jp  are the linear basis of p . Therefore the 

solution for B can be obtained by directly solving 
the linear systems 
 

 
( 1)00

T
T

e d

YA P
B

P + ×

⎛ ⎞⎛ ⎞
 = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
  

 
Where, (| |), , 1...ij j iA x x i j Nφ= −     = , P is a 

matrix with i -th row [1 ]T
ix    and Y is 

( )N d× matrix containing the input images 

1[ ... ]T
Ny y .  

6 EXPERIMENTAL RESULTS 

The algorithm was tested on various different input 
image sequences of varying length. The outputs 
were sequences with lengths, four times or greater 
than the input. Figure 2 shows the results for four 
sequences, each depicting different dynamics. The 
output sequences can be viewed online at 
http://www.cs.rutgers.edu/~elgammal/DynamicText
ure. The input sequence for each was 70 frames in 
length. As can be seen, the synthesized images 
maintain both the dynamics and structure of the 
input. Depending on the shape of the input manifold, 
different approaches are used in generating the 
output manifold.  The manifolds fell into one of 
three broad categories. 
 

6.1 Closed Loop Embedding 
Manifold 

When, the starting and the ending frames of the 
input sequence were either similar or at a small 
distance in the 3d-embedding space of the input 
manifold, the spline could be modified into a closed 
loop. This was achieved by introducing an edge 
between the first and the last points on the manifold 
(representing the first and the last frame) during the 
creation of the output manifold. The Flame, the 
Sparkling-ball and the Fountain sequences (Figure 2 
(b),(c),(d)) show how the long output sequences, 
thus created. The output manifold for these 
sequences were created by looping around the 
closed loop of the input manifold as many times as 
was needed. Figure 3 (b), (c) & (d) show the 
manifold for the three sequences respectively. 

6.2 Open Ended Embedding 
Manifold 

When the starting and ending frames were far apart 
compared to the average distance between any 2 
consecutive frames along the embedded manifold, 
closing the loop constituted a big jump and resulted 
in a jerk being introduced in the subsequently 
synthesized sequence. In such cases, the output 
manifold could be created by oscillating between the 
two extremes of the spline. However, this solution 
could be applied only to image sequences which 
already had some oscillation, like the beach and the 
turning face sequences. Figure 3 (a),(e) show the 
manifold for these, respectively. 

6.3 Jerky Embedding Manifold 

When, the input sequence comprises of relatively 
random and fast motion like in the boiling water 
sequence. The image frames are scattered within a 
small volume of the embedding space and the spline 
model constitutes a lot of sporadic jumps. In such a 
sequence, looping back to the first frame after the 
last has been reached, allows for a loop to be created 
with the associated jerk in the visual image space 
blending in with the rest of the jerks that the input 
sequence already depicts. Light and High-boiling 
water and the wavy river sequence have such a 
manifold. The manifold for the boiling water 
sequence is shown in Figure 3(f). 
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a) 

 
 

b)  
 

c)  
 

d)  
 

e)  
 

f)  
 

Figure 2: a)Beach, b)Flame, c)Sparkling Ball, d)Fountain, e)Face, f)Boiling Water. 
 

a)Beach b)Flame  
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c)Sparkle d)Fountain  

e)Face f)Boilingwater  
 

Figure 3. 
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