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Abstract: In this paper, we present a nonlinear image representation scheme based on a statistically-derived divisive 
normalization model of the information processing in the visual cortex. The input image is first decomposed 
into a set of subbands at multiple scales and orientations using the Daubechies (9, 7) floating point filter 
bank. This is followed by a nonlinear “divisive normalization” stage, in which each linear coefficient is 
squared and then divided by a value computed from a small set of neighboring coefficients in space, 
orientation and scale. This neighborhood is chosen to allow this nonlinear operation to be efficiently 
inverted. The parameters of the normalization operation are optimized in order to maximize the statistical 
independence of the normalized responses for natural images. Divisive normalization not only can be used 
to describe the nonlinear response properties of neurons in visual cortex, but also yields image descriptors 
more independent and relevant from a perceptual point of view. The resulting multiscale nonlinear image 
representation permits an efficient coding of natural images and can be easily implemented in a lossy JPEG 
2000 codec. In fact, the nonlinear image representation implements in an automatic way a more general 
version of the point-wise extended masking approach proposed as an extension for visual optimisation in 
JPEG 2000 Part 2. Compression results show that the nonlinear image representation yields a better rate-
distortion performance than the wavelet transform alone. 

1 INTRODUCTION 

The human visual system (HVS) plays a key role in 
the final perceived quality of compressed images. 
Therefore, it is desirable to take advantage of the 
current knowledge of visual perception in a 
compression system. The JPEG 2000 standard 
includes various tools that permit to exploit some 
properties of the HVS such as spatial frequency 
sensitivity, color sensitivity, and visual masking 
effects (Zeng et al., 2002). The visual tools sets in 
JPEG 2000 are much richer than those in JPEG, 
where only spatially-invariant frequency weighting 
is used. As a result, visually optimized JPEG 2000 
images usually have much better visual quality than 
visually optimized JPEG images at the same bit 

rates. Nevertheless, the visual optimization tools in 
JPEG 2000 are still simplified versions of the latest 
models of human visual processing. 

In recent years, various authors have shown that 
the nonlinear behavior of V1 neurons in primate 
visual cortex can be modeled by including a gain 
control stage, known as “divisive normalization” 
(e.g. Heeger, 1992), after a linear filtering step. In 
this nonlinear stage, the linear inputs are squared and 
then divided by a weighted sum of squared 
neighboring responses in space, orientation, and 
scale, plus a regularizing constant. Divisive 
normalization not only can be used to describe the 
nonlinear response properties of neurons in visual 
cortex, but also yields image descriptors more 
relevant from a perceptual point of view (Foley, 
1994). More recently, Simoncelli and co-workers 
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(e.g. Schwartz and Simoncelli, 2001) presented a 
statistically-derived divisive normalization model. 
They demonstrated its utility to characterize the 
nonlinear response properties of neurons in sensory 
systems, and thus that early neural processing is well 
matched to the statistical properties of the stimuli. In 
addition, they showed empirically that the divisive 
normalization model strongly reduces pairwise 
statistical dependences between responses. 

In this paper, we describe a nonlinear image 
representation scheme (similar to Valerio et al., 
2003) based on a statistically-derived divisive 
normalization model of V1 neurons. This scheme 
could be useful in a lossy JPEG 2000 codec. Starting 
with a 9/7 Daubechies wavelet decomposition, we 
normalize each coefficient by a value computed 
from a neighborhood. This neighborhood is 
suboptimal for dependency reduction, but allows the 
transform to be easily inverted. We describe the 
empirical optimization of the transform parameters, 
and demonstrate that the redundancy in the resulting 
coefficients is substantially less than that of the 
original linear ones. Compression results show that 
the nonlinear representation can improve the 
perceptual quality of compressed images. 

2 NONLINEAR IMAGE 
REPRESENTATION SCHEME 

The scheme used here consists of a linear wavelet 
decomposition followed by a nonlinear divisive 
normalization stage. 

2.1 Linear Stage  

The linear stage is an approximately orthogonal 
four-level wavelet decomposition based on the 
Daubechies (9, 7) floating point filter bank. The 9/7 
transform is nonreversible and real-to-real, and is 
one of the two specific wavelet transforms supported 
by the baseline JPEG 2000 codec (the other one is 
the 5/3 transform, which is reversible, integer-to-
integer and nonlinear). Lacking the reversible 
property, the 9/7 transform can only be used for 
lossy coding. 

2.2 Nonlinear Stage 

The nonlinear stage consists basically of a divisive 
normalization. In this stage, the responses of the 
previous linear filtering stage, ci , are squared and 
then divided by a weighted sum of squared 

neighboring responses in space, orientation, and 
scale, }{ 2

jc , plus a positive constant, 2
id : 
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Eq. 1 is similar to models of cortical neuron 
responses but has the advantage that preserves sign 
information. The parameters, 2

id  and {eij}, of the 
divisive normalization are fixed to the following 
values (Schwartz and Simoncelli, 2001): 2

id  = 2
ia , 

eij = bij (i ≠ j) and eii = 0, where 2
ia  and bij (i ≠ j) are 

the parameters of a Gaussian model for the 
conditional probability      . This choice of 
parameters yields approximately the minimum 
mutual information (MI), or equivalently minimizes 
statistical dependence, between normalized 
responses for a set of natural images (Valerio and 
Navarro, 2003). In practice, we fix the parameters, 

2
id  and {eij}, of the divisive normalization for each 

subband by using maximum-likelihood (ML) 
estimation with a set of natural images (“Boats”, 
“Elaine”, “Goldhill”, “Lena”, “Peppers”, and 
“Sailboat” in our case). Numerical measures of 
statistical dependence in terms of MI for the 6 
512x512 B&W images with 8 bpp in the “training 
set” show that divisive normalization decreases MI, 
with most values much closer to zero. So, for 
example, the mean value of MI between two 
neighboring wavelet coefficients, ci and cj (cj is the 
right down neighbor of ci), from the lowest scale 
vertical subband is 0.10, whereas between the 
corresponding normalized coefficients, ri and rj, is 
only 0.04. 

A key feature of the nonlinear stage is the 
particular neighborhood considered in Eq. 1. We 
consider 12 coefficients {cj} (j ≠ i) adjacent to ci 
along the four dimensions (9 in a square box in the 
2D space, plus 2 neighbors in orientation and 1 in 
spatial frequency). All neighbors belong to higher 
levels of the linear pyramid. This permits to invert 
the nonlinear transform very easily level by level (to 
recover one level of the linear pyramid we obtain the 
normalizing values from levels already recovered 
and multiply them by the corresponding nonlinear 
coefficients). Obviously, in order to invert the 
nonlinear transform we need the low-pass residue of 
the linear decomposition. More details can be found 
in Valerio et al. (2003). 

}){|( 2
ji ccp

VISAPP 2006 - IMAGE ANALYSIS

520



 

3 PERCEPTUAL METRIC 

From the nonlinear image representation it is 
possible to define a perceptual image distortion 
metric similar to that proposed by Teo and Heeger 
(1994). For that, we simply add an error pooling 
stage. This computes a Minkowski sum with 
exponent 2 of the differences irΔ  (multiplied by 
constants ki that adjust the overall gain) between the 
nonlinear outputs from the reference image and 
those from the distorted image (Valerio et al., 2004): 
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This perceptual metric has two main differences 
with respect to that by Teo and Heeger (1994). First, 
the divisive normalization considers not only 
neighbouring responses in orientation but also in 
position, and scale. Second, the parameters of the 
divisive normalization are adapted to natural image 
statistics instead of being fixed exclusively to fit 
psychophysical data. 

4 CODING RESULTS 

In order to compare the coding efficiency of the 9/7 
transform alone and our nonlinear transform (the 9/7 
transform plus the divisive normalization), we have 
conducted a series of compression experiments with 
a simplified JPEG 2000 codec. Basically, the coding 
is as follows. First, the input image is preprocessed 
(the nominal dynamic range of the samples is 
adjusted by subtracting a bias of 2P-1, where P is the 
number of bits per sample, from each of the samples 
values). Then, the intracomponent transform takes 
place. This can be the 9/7 transform or our nonlinear 
transform. In both cases, we use the implementation 
of the 9/7 transform in the JasPer software (Adams 
and Kossentini, 2000). After quantization is 
performed in the encoder (we fix the quantizer step 
size at one, that is, there is no quantization), tier-1 
coding takes place. 

In the tier-1 coder, each subband is partitioned 
into code blocks (the code block size is 64x64), and 
each of the code blocks is independently coded. The 
coding is performed using a bit-plane coder. There is 
only one coding pass per bit plane and the samples 
are scanned in a fixed order as follows. The code 
block is partitioned into horizontal stripes, each 
having a nominal height of four samples. The stripes 
are scanned from top to bottom. Within a stripe, 
columns are scanned from left to right. Within a 

column, samples are scanned from top to bottom. 
The sign of each sample is coded with a single 
binary symbol right before its most significant bit. 
The bit-plane encoding process generates a sequence 
of symbols that are entropy coded. For the purposes 
of entropy coding, a simple adaptive binary 
arithmetic coder is used. All of the coding passes of 
a code block form a single codeword (per-segment 
termination).  

Tier-1 coding is followed by tier-2 coding, in 
which the coding pass information is packaged. 
Each packet consists of two parts: header and body. 
The header indicates which coding passes are 
included in the packet, while the body contains the 
actual coding pass data. The coding passes included 
in the packet are always the most significant ones 
and we use a fixed-point representation with 13 bits 
after the decimal point, so that we only need to store 
the maximum number of bit planes of each code 
block. 

In tier-2 coding, rate control is achieved through 
the selection of the subset of coding passes to 
include in the code stream. The encoder knows the 
contribution that each coding pass makes to the rate, 
and can also calculate the distortion reduction 
associated with each coding pass. Using this 
information, the encoder can then include the coding 
passes in order of decreasing distortion reduction per 
unit rate until the bit budget has been exhausted. 
This approach is very flexible and permits the use of 
different distortion metrics.  

Figs. 1 and 2 show some compression results 
with the codec described above. The input image is 
in both figures a 128x128 patch (this is for 
simplicity, since if we use this image size there is 
only one code block per subband) of the 8 bpp 
“Baboon” image, and we consider only the lowest 
scale vertical subband. The results are very different 
depending on the distortion metric used. As we can 
see in Fig. 1, if we use the classical mean squared 
error (MSE) as distortion metric (note that the MSE 
is not very well matched to perceived visual quality) 
the 9/7 transform yields better results than the 
nonlinear transform. However, the nonlinear 
transform yields better perceptual quality than the 
9/7 transform (see Fig. 2).  

In Fig. 3 we can see that the MSE, or 
equivalently the peak signal-to-noise ratio (PSNR), 
is not very well matched to perceived visual quality. 
So, despite their very different MSE (the PSNR 
corresponding to the 9/7 transform is more than 10 
dB greater than that of the nonlinear transform), the 
two decoded images showed in the figure are almost 
visually indistinguishable. 
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Figure 1: Relative MSE (1 denotes the MSE when any bit 
plane of the considered subband is coded) as a function of 
the number of bytes at the output of the encoder, for the 
9/7 transform (‘x’) and the nonlinear transform (‘o’). 
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Figure 2: Relative perceptual error (1 denotes the 
perceptual error when any bit plane of the considered 
subband is coded) as a function of the number of bytes at 
the output of the encoder, for the 9/7 transform (‘x’) and 
the nonlinear transform (‘o’). 
 

 

 
 
Figure 3: Decoded images corresponding to the 9/7 
transform (left) and the nonlinear transform (right), when 
using 7 and 10 bit planes (3395 and 3401 bytes) 
respectively to code the considered subband. 

5 SUMMARY AND 
CONCLUSIONS 

We have presented a nonlinear image representation 
scheme based on a statistically-derived model of 
information processing in the visual cortex. The key 
feature of this image representation scheme is that 
the resulting coefficients are almost statistically 
independent, much more than those of the 
orthogonal linear transforms (these cannot eliminate 
higher-order dependencies). Such representation has 
been also shown relevant to human perception. 

This nonlinear image representation could be 
very useful in a lossy JPEG 2000 codec. A similar 
approach has been proposed in JPEG 2000 Part 2 as 
an extension for visual optimisation and also similar 
schemes have already been used successfully in 
image compression applications. Compression 
results with a simplified JPEG 2000 codec show that 
the nonlinear image representation yields better 
perceptual quality than the 9/7 wavelet transform 
alone. 
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