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Abstract: New video applications are becoming possible with the advent of several enabling technologies: 
multicamera capture, increased PC bus bandwidth, multicore processors, and advanced graphics cards. We 
present a commercially-available multicamera system and a software architecture that, coupled with 
industry trends, create a situation in which video capture, processing, and display are all increasingly 
scalable in the number of video streams. Leveraging this end-to-end scalability, we introduce a novel 
method of generating high-resolution, panoramic video. While traditional point-based mosaicking requires 
significant image overlap, we gain significant advantage by calibrating using shared observations of lines to 
constrain the placement of images. Two non-overlapping cameras do not share any scene points; however, 
seeing different parts of the same line does constrain their spatial alignment. Using lines allows us to reduce 
overlap in the source images, thereby maximizing final mosaic resolution. We show results of synthesizing 
a 6 megapixel video camera from 18 smaller cameras, all on a single PC and at 30 Hz. 

1 INTRODUCTION 

Several industry trends are creating new 
opportunities for video processing on commodity 
PCs. First, PC bus bandwidth is increasing from 2 
Gbit/sec to 40 Gbit/sec, with 80 Gbit/sec planned. 
Second, graphics cards have become very powerful 
general-purpose computing platforms that also 

support high-bandwidth display. Finally, processor 
manufacturers have begun delivering chip 
multiprocessors for parallel execution. In particular, 
they can no longer exclusively rely on smaller 
transistors and higher clock speeds to improve 
performance. Due to the economics of their current 
strategy, manufacturers have turned their attention to 
multiple-core processors (Gibbs, 2004). For 
example, Sun’s Niagara processor has 32 processing 
cores (Kongetira, 2005). 

Along with these opportunities for video 
computing come two significant challenges. The 
first challenge is the difficulty of obtaining good 
quality video. This is due to a market focus on both 
low quality webcams and expensive, non-scalable 
machine vision systems. To address this problem we 
have designed a capture system that uses the PCI-x 
bus to stream many video cameras directly into the 
memory of a single PC. Figure 1 shows an example 
arrangement of many cameras for video mosaicking. 

A second significant challenge is that successful 
multiprocessing requires multithreaded program-
ming. This is difficult and error prone. In fact, a 

Figure 1: A mosaic camera is one type of new video 
application enabled by current imaging and 
computing trends. 
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startling result of the multicore trend is that most 
existing applications will no longer benefit from 
future processor advances (Gibbs, 2004) unless they 
are redesigned (McDougall, 2005). While most 
applications have multiple threads, the vast majority 
are not performing compute-intensive operations in 
parallel. While video applications have large 
computing needs, they can often benefit from 
multiprocessing. To address this computing 
challenge, we have developed a cross-platform 
software framework specifically designed to perform 
video processing on a multiprocessor. 

Such scalable capture and processing systems 
enable new video applications. For our first effort, 
we have chosen to develop a high-resolution video 
camera from many smaller ones (Figure 1). A trend 
in digital photography is that still cameras can now 
have upwards of 12 megapixels of resolution, with 5 
megapixel cameras being common. Video cameras, 
however, haven’t attained these resolutions. 
Expensive HDTV cameras have the most resolution, 
at about 2 megapixels. Our goal is to significantly 
exceed current video resolutions. 

A range of applications could benefit from such a 
high-resolution video camera. For example, 
surveillance systems need enough resolution over a 
large area to identify suspects. As another example, 
an interactive desk-space may need to image an 
entire tabletop at high resolution in order to digitize 
documents placed anywhere on the desk. 

2 RELATED WORK 

Other systems of high-bandwidth video capture 
(Kanade 1995, Wilburn 2002) have been developed. 
Thus far, however, these systems work offline or use 
lossy compression to satisfy bandwidth constraints. 
Besides mosaicking, other novel applications of 
multicamera video being pursued are synthesizing a 
camera with a very high frame rate (Wilburn, 2004) 
and making one with an enormous synthetic aperture 
for selective depth of field (Levoy, 2004). 

Most mosaicking methods use point 
correspondences to constrain image alignment. In 
digital photography, panoramic mosaics (Peleg 
1997, Sawhney 1998, Shum 2000) are derived from 
the motion of a single hand-held camera. In 
photogrammetry, aircraft and satellites capture 
images which are stitched together to produce 
photographic maps. Having large areas of overlap 
(typically 20-50%), these solutions are generally not 

effective for a rigid camera arrangement because this 
overlap reduces total resolution. They also typically 
depend on a scene’s visual complexity since they 
require distinguishable features from the content 
itself. Because our cameras do not move relative to 
each other, we can calibrate the system beforehand. 

Our video processing framework is inspired by 
early dynamic dataflow computers (Arvind, 1984) 
which potentially exploit the full parallelism 
available in a program. In such a computer, each 
processing node is enabled when tokens with 
identical tags are present at each of its inputs. Thus, 
process scheduling is completely determined by the 
availability of data. Our software framework 
emulates this behaviour on a multiprocessor. While 
a dataflow computer can achieve fine-grained 
parallelism at the instruction level, our framework 
operates at a much coarser granularity such as a 
single video frame. 

Signal processing software environments (such 
as Ptolemy (Buck, 1994) and Khoros (Rasure, 1991) 
have an established history of “visual dataflow 
programming.” Others have presented a thorough 
review of such systems and their relationship to 
other dataflow styles (Lee, 1995). The one-
dimensional, fine-grained, deterministic nature of 
audio processing often allows optimal scheduling at 
compilation time. In video and vision processing, 
however, the mapping of inputs to outputs is often 
nondeterministic (e.g., face detection vs. 1-D 
convolution), and the sample size is larger (e.g., 30 
Hz video vs. 44 KHz audio). 

Some commercial frameworks are available for 
multimedia processing, including DirectShow 
(Microsoft) and the Java Media Framework (Sun). 
DirectShow is designed for plug-and-play 
compatibility between third-party developers. For 
example, a commercial video conferencing 
application can transparently use any particular 
video camera if both manufacturers adhere to a 
common DirectShow interface. Unfortunately, 
constructing new modules is painfully difficult, and 
it is a Windows-only system. By encapsulating a 
simple DirectShow application inside a software 
module, we leverage DirectShow for its real strength 
– to access third party devices. The Java Media 
Framework has cross-platform support, as well as 
integrated networking support via RTP; however, its 
video processing performance is not competitive. 

Distributed computing extends the dataflow 
approach from a single machine to a network of 
machines. The Berkeley Continuous Media Toolkit 
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(Mayer-Patel, 1997) is multi-platform and uses 
Tcl/TK. The open-source Network-Integrated 
Multimedia Middleware project (Lohse, 2002) has 
demonstrated applications with set-top boxes and 
wireless handhelds. Unlike our framework, these 
approaches do not have single-machine performance 
features, such as a dataflow scheduler. However, we 
believe a distributed computing approach can be 
very complementary to our framework. 

Finally, the power of graphics cards is being 
used in many other applications. For example, GPUs 
are being used to perform a real-time plane-sweep 
stereo computation (Yang, 2004). Furthermore, the 
GPGPU organization (GPGPU) promotes general 
purpose computing on graphics cards. 

3 MOSAIC CAMERA 

A mosaic camera is a composite of many other 
cameras. Calibration is the process of determining 
the parameters that map these cameras into a 
seamless image. We describe the calibration 
problem, formulate the solution as a global 
minimization, and describe how to calibrate in 
practice. 

3.1 Problem Statement 

The goal of our video application is to produce high 
resolution video from many cameras. We have 
narrowed our focus with two requirements. First, to 
produce resolution that scales with the number of 
cameras, we fully utilize native resolution by 
“tiling” the cameras. In other words, we require that 
camera images overlap only to ensure spatial 

continuity in the final mosaic. Super-resolution 
techniques, on the other hand, require complete 
overlap and face theoretical limits on resolution 
(Robinson, 2003). 

Second, we facilitate an initial solution by using 
a linear homographic model for mapping each 
camera into a common imaging plane to produce the 
final mosaic. This homographic model supports two 
types of scenario: those where the imagers have a 
common centre of projection (i.e., pure camera 
rotation), and those where the scene is basically 
planar (e.g., imaging a white board). For the latter 
scenario, we can increase the range of valid depths 
by increasing the distance from the cameras to the 
scene, or by reducing the separation between camera 
centres. In fact, continued reduction in camera sizes 
improves the validity of the homographic model. 

Our calibration methodology is as follows: (1) 
Place cameras in an arrangement so that they cover 
the desired field of view, while minimizing overlap. 
(2) Select one camera 0C  as the reference camera 
(typically, a central one), with its image plane 
becoming the imaging plane of the final mosaic. (3) 
Estimate a homographic mapping H0

i  for each 
camera iC  that maps its image into camera 0C  to 
produce a single, coherent mosaic image. 

3.2 Line-Based Solution 

We calibrate the cameras using line 
correspondences. Using lines has two major 
benefits. First, a line can be estimated more 
accurately than a point. It can be localized across the 
gradient to subpixel accuracy (Canny, 1986), and the 
large spatial extent allows estimation from many 
observations along the line. Second, two cameras 
can observe the same line even without any 
overlapping imagery. This profoundly increases the 
number of constraints on a solution because non-
neighbouring cameras can have common 
observations. 

We have developed a bundle adjustment 
formulation to minimize the geometric error in the 
mosaic image by simultaneously estimating both the 
homographies of each camera and the line models 
behind the observations. The nonlinear least-squares 
formulation is 
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Figure 2: Imaging geometry of the 3x6 mosaic 
camera. The 18 side-by-side imagers (top) are 
aligned using common observations of lines on a 
plane (shown in blue). The individual camera fields 
of view (outlined in red) illustrate minimal image 
overlap. 
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where the estimated parameters are the ideal point 
homographies Ĥ0

i  from the cameras iC  to the 
reference camera 0C  and the ideal lines jl̂0 , 
expressed in the coordinates of the reference camera. 
The function ()d  measures the difference between 

j
i l~ , the observation of line jl  in camera iC , and 
its corresponding estimate j

i l̂ . This measure can be 
any distance metric between two lines. We chose the 
perpendicular distance between the ideal line and the 
two endpoints of the measured line segments. This is 
a meaningful error metric in the mosaic space, and it 
is computationally simple. More specifically, we 
have selected ()d  so that the bundle adjustment 
formulation of Equation 1 becomes 

 ( ) ( )2002

,

00

0,ˆ,ˆ
ˆˆˆˆminarg

00
j

i
i

T
j

ji
j

i
i

T
j

iji

qHlpHl
lH

⋅⋅+⋅⋅∑
≠

(2) 

where j
i p  and j

i q  are the intersection points of 
the measured line with the boundary of the original 
source image. 

The domain of the error function (Equation 2) 
has LND c 3)1(9 +−=  dimensions, where cN  is 
the number of cameras and L  is the number of 
lines. Our current setup has 18 cameras and 250 
lines, or 903 parameters. We use Levenberg-
Marquardt minimization to find a solution to 
Equation 2, and we use a novel linear method to 
initialize the parameters (Authors). 

3.3 Calibration Method 

We use a digital projector as a calibration 
instrument. The projector displays a series of lines 
one-by-one. Cameras that see a line at the same 
instant j  are actually viewing different parts of the 
same line jl  and therefore have a shared 
observation. Image analysis determines line 
equations j

i l~ , and this is intersected with the image 
boundary to find the points j

i p  and j
i q . After all 

observations are collected, the solution of Equation 

2 is found, paying careful attention to parameter 
normalization. 

Image analysis easily dominates the calibration 
time. A simple approach is to sample the space of 
lines “evenly” by enumerating all pairs of points 
evenly distributed around the perimeter of the 
projector image. For the 3x6 mosaic camera, a 
1024x768 projector, and points spaced 150 pixels 
apart, calibration presents 253 calibration images 
and processes 4554 total images. Reducing the 
number of line images will significantly reduce 
calibration time. 

We have devised an alternate approach that 
adapts to the number of constraints accumulated thus 
far. Addressing horizontal (vertical) lines separately, 
we perform a breadth-first search in a binary tree in 
which each node defines an interval, and the two 
children define the top and bottom (left and right) of 
the parent’s interval. Starting at the root, which 
contains the entire image, each visited node 
represents a line drawn across (down) the middle of 
the interval. The sequence becomes: one line, two 
lines offset a quarter from opposite edges, etc. The 
search is terminated when every camera has at least 
two lines in common with another camera. This 
coarse to fine method reduces the number of 
calibration image to 60, so that the calibration 
processes 1080 total images, a 76% reduction. 

4 SCALABLE CAPTURE 

The camera system (Figure 4) streams synchronized 
video to PC memory through a tree structure with 
three layers: camera, concentrator, and frame 
grabber. 

The camera package is a 30 mm cube consisting 
of three small boards: a color VGA CMOS sensor, a 

Figure 3: A single calibration projector image, as 
seen from all 18 cameras. 

Figure 4: Our capture hardware currently supports 22 
Bayer-format VGA cameras at 30 Hz, without 
compression. 
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co-processor, and a low-voltage differential-
signalling (LVDS) chip interfacing to the rest of the 
system. It is connected to a concentrator board 
through a 10-wire UTP connector over an LVDS bus 
that carries captured video data, control signals, and 
power. An FPGA is available for truly scalable on-
camera processing (not exploited in this work). 

The concentrators and frame grabber use Altera 
Flex FPGAs, and the frame grabber is built on a 
QuickLogic 5064 64-bit DMA engine designed for a 
64-bit PCIx bus. The DMA engine delivers 24 
Bayer-format VGA video streams directly into RAM 
at 30 Hz, without causing any load on the CPU. Our 
interface card currently operates at 33MHz on this 
bus, with theoretic utilization of about 0.25GB/sec. 
We plan extensions to PCI-express which will 
provide 4.4 GB/sec, or 350 VGA streams at 30 Hz. 

Our hardware collaborator is now commercial-
izing the system. More details are available 
(Authors). 

5 SCALABLE PROCESSING 

Video processing performance becomes more 
scalable if multiprocessing can take advantage of 
inherent parallelism in an application. We have built 
a cross-platform software framework (Authors) to 
build multimedia applications. We now describe 
how to use such an architecture to achieve 
computational scalability in video applications. 

5.1 Software Dataflow 

A dataflow architecture naturally models the 
streaming nature of real-time rich media 
applications. Simply stated, a dataflow architecture 
is one based on sequential transformations of data. 
By observing the lifecycle of signals in the 
application (from production through transformation 
to consumption), one can define a pipeline of 
distinct processing stages. These stages can be 
expressed as a directed graph of processing modules. 
The application, then, is a connected graph of 
functional modules linked together by directed arcs. 
This modular graph structure reveals opportunities 
for parallel computing. Figure 5 shows two dataflow 
graphs for the mosaic camera. 

Our software framework uses the dataflow 
paradigm to isolate the algorithms (e.g., video 
processing or analysis) from the runtime system 
(e.g., multithreading, synchronization, performance 
measures). The developer concentrates on the 
algorithmic processing specific to the application at 
hand, while at the same time leveraging the 
framework to address performance issues. More 
specifically, our architecture provides a framework 
for (1) decomposing an application’s processing into 
task dependencies, and (2) automating the 
distribution and execution of those tasks on a 
multiprocessor machine to maximize performance. 

Figure 5: Leveraging chip multiprocessors with a flexible software design. The data flow structure of an application 
reveals opportunities for parallel computation. The straightforward mosaic application (left) has task parallelism 
across the image converters. Data parallelism can concurrently execute the monolithic mosaicking module, 
possibly increasing latency. Alternatively, a developer can divide the mosaic module (right) into multiple sections 
and therefore increase task parallelism. 
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5.2 Parallelism 

Our architecture has facilities to take advantage of 
both task and data parallelism. In task parallelism, 
each processing module is treated as sequential, that 
is, that each input must be processed in order of 
arrival. Sequential modules have internal memory, 
and so the output may depend both on the current 
input and previous inputs. An example sequential 
module is one that tracks coordinates of a hand, 
where the location in the previous frame initializes 
the search for the hand location in the current frame. 
At most one execution thread may be resident in a 
sequential module at any given instant. A computer 
with processors equal to the number of modules will 
reach the limit of usable task parallelism. Each 
module essentially has its own processor, and 
additional processors can not improve performance. 
In fact, the application throughput is limited by the 
latency of the slowest module. Figure 6 (middle) 
illustrates execution using task parallelism. 

More significantly, our architecture can also use 
data parallelism, which has the potential of 
increasing performance linearly with the number of 
processors. The scheduler uses data parallelism on 
modules specified as combinational, or stateless. In 
other words, these modules do not have any internal 
history of previous executions. An example 
combinational module is one that compresses 
images to JPEG. Because each conversion is 
independent of any other, the code of the converter 
can be executed simultaneously by multiple threads 
on different data. Being combinational is particularly 
key for a module that is a performance bottleneck 
(i.e., one that has the largest latency).  

Figure 5 shows two versions of the CPU-based 

mosaicking application. The straightforward 
implementation (left) exhibits significant parallelism 
among the converters. Because the mosaic module is 
combinational, multiple instances of it can be 
executed concurrently via data parallelism. 
Alternatively, the large mosaic module can be 
divided spatially so that two modules each work on 
one half of the mosaic (Figure 5, right). A separate 
lightweight module is introduced to combine the 
results. 

5.3 Performance Tuning 

Because the application graph is a pipeline 
architecture, it exhibits the usual latency/throughput 
trade-offs. At the extremes, the single processor 
machine will have lower latency and throughput, 
and a multiprocessor with data parallelism may have 
higher latency but similar or better throughput. 
Constraints on particular applications determine the 
appropriate latency/throughput trade-off. Our 
architecture provides simple mechanisms to change 
the execution behaviour to explore these 
performance trade-offs. 

Our framework assumes data and processing 
have coarse granularity. That is, media samples 
generally are at least a kilobyte in size and have a 
duration of at least a millisecond. Our framework is 
not designed for implementing integer addition, for 
example, because the fine granularity reveals the 
multiprocessing overhead (e.g., data transfer, 
threading, and synchronization). 

6 SCALABLE DISPLAY 

Of the three key technologies enabling new video 
applications, graphics cards are the most accessible. 
Driven by the demands of the gaming market, a 
modern graphics card has both a high-bandwidth 
connection to main memory and impressive 
processing capabilities. 

The high-bandwidth connection to the host 
CPU’s main memory is either AGP or PCI, both 
delivering 5-16 Gbits/sec. This easily supports up to 
hundreds of uncompressed colour VGA video 
streams. Drawing video on a graphics card entails 
sending it the latest frame, storing this as a texture, 
and drawing the texture through the normal graphics 
transformation pipeline. Amazingly, the latest 
graphics processors have 200 gigaflops of 

Figure 6: Parallel execution. On a dual processor 
system, a program can be executed sequentially 
(top), with task parallelism (middle), or with data 
parallelism (bottom), changing the latency and 
throughput of the application. 
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computing power. These GPUs have been heavily 
optimized for frame-based computing. To leverage 
the full capabilities, one must formulate a problem 
as a graphics rendering (GPGPU). 

Developers now have the option of processing on 
either the host PC or a graphics card. In our mosaic 
camera, for example, we have two ways of using the 
graphics card. First, ignoring lens distortion and 
other nonlinear effects, the homographic mapping 
may have the same parameterization as drawing 
textures onto a quadrilateral. Figure 7 shows a 
reduced software pipeline using the GPU to mosaic 
the images. Second, because our single-sensor 
cameras deliver the original Bayer colour image, the 
GPU shader can be programmed to perform the 
colour sampling. Figure 7 depicts the further 
reduced software pipeline, in which the CPU does 
nothing at all. Note that these types of optimizations 
are not always possible. 

A display could also be scalable in the number of 
pixels. In a similar fashion to the mosaic camera, a 
tiled projector display would dramatically increase 
the display resolution and allow presentation of a 
mosaic video. We have begun efforts on this 
problem. 

7 RESULTS 

We 
have built an end-to-end system and now show 
initial results. Figure 8 shows the mosaic results of 
the cameras looking at a patterned wall. The pattern 
is an arrangement of coloured lines with white 
numbers as landmarks. The input images are shown 
in Figure 8 (left), where they are tiled in the same 
3x6 arrangement as the cameras. Figure 8 (right) 
shows the final result. The solution has a maximum 
error of 1.2 pixels, or 0.04% of the mosaic width of 
3600. 

Remarkably, the six left cameras are perfectly 
aligned with the rest of the mosaic in spite of the gap 
between these two sets of images. Although the two 
sets of cameras do not share any 3-D scene points, 
they do have enough information from observing 
different parts of the same lines. 

The best performance for the mosaic camera 
came with the computing configuration of Figure 7 
(right).  We achieved 30 Hz mosaic video using an 
NVIDIA FX3400 graphics card on a dual processor 
machine. Multicore results are expected by press 
time. 

Figure 8: Results from a 3x6 mosaic camera. 18 VGA images (left) are combined into one 3600x1400 mosaic 
(right). The scene is a projected image with coloured lines and numbered landmarks. Notice that all the lines 
are straight in the result. 

Figure 7: GPUs and CPUs. With an appropriate formulation, graphics processors can assist GPUs. For limited 
situations of the mosaic camera, the graphics card can display video (left), compute the composite image (middle), 
and convert image formats (right). 
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8 CONCLUSIONS 

We are entering an exciting period in which capture, 
processing, and display are increasingly scalable in 
the number of video streams supported. In support of 
this view, we capture 24 uncompressed VGA 
streams in real-time on a single PC and leverage 
multiprocessors for video processing. Coupling 
these developments with recent commercial 
hardware advances brings forth end-to-end 
scalability that enables new applications of camera 
arrays and other multi-video sources. We selected a 
mosaic camera as our first application in this space. 

We presented several innovations in this paper. 
First, we described how to use a digital projector as 
a calibration instrument for a mosaic camera. We 
also presented an adaptive technique for reducing 
the number of calibration images using the solution 
constraints accumulated thus far. We described how 
the mosaic camera is built using our camera array, 
and how our dataflow architecture combined with 
chip multiprocessors and graphics cards present new 
abilities and options for mosaic processing. Finally, 
we showed initial results for 18 cameras with small 
error and real-time performance. 
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