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Abstract: In this paper, we consider two approaches of simplifying medium- and large-sized range datasets to a 
compact data point set, based on the Radial Basis Functions (RBF) approximation. The first algorithm uses 
a Pseudo-Inverse Approach for the case of given basis functions, and the second one uses an SVD-Based 
Approach for the case of unknown basis functions. The novelty of this paper consists in a novel partition-
based SVD algorithm for a symmetric square matrix, which can effectively reduce the dimension of a 
matrix in a given partition case. Furthermore, this algorithm is combined with a standard clustering 
algorithm to form our SVD-Based Approach, which can then seek an appropriate partition automatically for 
dataset simplification. Experimental results indicate that the presented Pseudo-Inverse Approach requires a 
uniform sampled control point set, and can obtain an optimal least square solution in the given control point 
set case. While in the unknown control point case, the presented SVD-Based Approach can seek an 
appropriate control point set automatically, and the resulting surface preserves more of the essential details 
and is prone to less distortions. 

1 INTRODUCTION 

A range dataset is a picture in which each pixel 
value encodes not the intensity of a usual 2D image 
but rather the depth (or range) information. This type 
of imagery therefore provides direct, explicit 
geometric information which is useful in many 
applications. However, this range dataset is usually 
large-sized, non-uniformly sampled (i.e. the surface 
is typically irregularly sampled, and exhibits varying 
sampling densities), and contains noise or unwanted 
details. The challenging problems include the 
interpolation of the scattered surface dataset, the 
removal of the inherent noise from the range dataset 
and the simplification of this dataset for the large-
sized case. At present, the Radial Basis Functions 
(RBF) are popular for interpolating scattered data 
since they can effectively interpolate across large, 
irregular holes in incomplete surface data without 
constraining the topology of an object or any priori 
knowledge of the shape (Carr et al. 2003, 2001, 
1997, Morse et al. 2001). (Carr et al. 2003), further 
employed RBF technique to smooth the scattered 
range data. As an alternative approach, (Fleishman 
et al. 2005), recently employed the Moving Least-
Squares (MLS) technique to handle noisy range 
datasets. However, since these range dataset usually 
contains a large data point set, this will bring about a 

higher computational complexity. For example, 
computing a RBF interpolation is performed by 
solving an associated linear system of basis 
functions of size up to (N+K)×(N+K), where N is the 
number of control points and K is the number of a 
low polynomial coefficients. As this system 
becomes larger, the amount of computation required 
to solve it grows as )( 3NO . In order to decrease the 
computational complexity, (Beatson et al. 1999, 
2001, 2000) and (Suter 1994) proposed their 
individual fast evaluation approaches that have a 
complexity of O(NlogN). 

However, the range dataset usually contains 
redundant information to represent a surface. 
Considering all the points as control points to fit the 
surface must lead to a higher complexity, and this is 
indeed unnecessary. But how to simplify the range 
dataset is still an open problem. This paper deals 
with the problem of range dataset simplification, and 
aims at the simplification of the RBF approximation. 
To the best of our knowledge, this problem has only 
been addressed by (Carr, et al. 2001), who proposed 
a greedy algorithm for reducing the data point set. 
Their basis idea is to use the fitting accuracy as the 
criterion to choose the control points. In our works, 
we prefer to pay attention to the space distribution of 
the point set, since its inherent geometric properties 
indicate which points are critical to represent a 
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surface. The main contribution of this paper is to 
present a novel partition-based SVD approach, 
which can be employed to reduce the dimension of a 
large-sized symmetric square matrix. Furthermore, 
we employed this novel tool to the range dataset 
simplification, and the resulting surface preserves 
more essential structures and less distortion. 

The remainder of this paper is organized as 
follows. In Section 2, the RBF approach is first 
introduced briefly. Then, we introduce two approach 
of simplifying the RBF approximation in Section 3, 
one is the Pseudo-Inverse Approach and other is the 
SVD-Based Approach. Experiments and analysis are 
shown in Section 4. Finally, Section 5 gives our 
conclusions and future works. 

2 RADIAL BASIS FUNCTIONS 

An implicit surface is defined by an implicit 
function, which is a continuous scalar-valued 
function over the domain, i.e. RRf n →: . Therein, 
the function values of points at the implicit surface 
take on zero, while the function value takes on 
positive value interior to the implicit surface and is 
negative outside the surface (or conversely). The 
magnitude is defined as the distance from a point to 
the implicit surface. This implicit function is also 
called a signed distance function. Our goal is to 
recover the implicit function f from a set of dataset 
(or control point set). Indeed, this is an ill-posed 
problem, since it has an infinite number of solutions. 
The standard procedure is to obtain a solution of this 
ill-posed problem from a variational principle, that 
is, to minimize the following functional, 
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where, n
i R∈x  is control point coordinate vector, 

if ′  is the function value of ix , φ[f] is a smoothness 
functional (in general, the thin-plate energy 
functional (Carr et al. 2001) is adopted), and α is the 
regularization parameter. 
An effective expression of the solution of Eq.(1) is 
in terms of radial basis functions centered at the 
control points. Radial basis functions are radially 
symmetric about the control points, which is written 
as follows, 
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where, )( ixxG −  is a basis function 

RRRG nn →×: , K
kk }{ϕ  is a basis in the K-

dimensional null space. In order to determine the 
coefficients ic and id , one can solve the following 
linear system. 
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where, T
Nff ),...,( 1 ′′=′f , )( jiij GG xx −= , 

T
Ncc ),...,( 1=c , T

Kdd ),...,( 1=d . The basis function 
is of the form )||(||)( 2⋅=⋅ GG , which includes 
biharmonic spline, triharmonic spline and 
multiquadric (refer to (Carr et al. 2001) for details). 

The ∑
K

k
kkd )(xϕ  in Eq.(2) is usually a degree one 

polynomial since the thin-plate energy consist of 
second order derivatives. 
In the scattered data interpolation case, it is 
straightforward to employ all the data points to 
construct the coefficient matrix of Eq.(3) and 
directly solve the coefficient vectors c and d. Herein, 
all the data points are regarded as control points. For 
the small-sized range datasets, this direct approach is 
very useful for the direct solution of the 
interpolation problem. But in the moderate- and 
large-sized cases, the coefficient matrix of Eq.(3) 
would exceed the computational capability of the 
usual machine. Thus, the control point set has to be a 
subset of the whole range dataset. Indeed, the range 
dataset is usually redundant with respect to the 
representation of a surface. It is unnecessary to 
regard all the data points as control points. 

3 SIMPLIFICATION OF RANGE 
DATA 

Consider the medium- and large-sized range datasets 
case. In this section, we devise two approaches in 
order for the solution of the implicit function f to 
account for the control point set and non-control 
point set. 

3.1 Pseudo-Inverse Approach 

In this case, the control point set is known in 
advance. This means that the basis functions have 
been determined and the basis of the functional 
space of the implicit function f are fixed. Herein, we 
only need to select an appropriate set of coefficients 

ic and id  for Eq.(2). This can be achieved through 
minimizing the following functional, 
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where, N is number of control points, M is number 
of non-control points. 
Considering Eq.(2), Eq.(3) and Eq.(4) together, one 
can convert the above minimization problem as 
follows, 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′

′

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

M

N

MM

T
N

NN

G

G

f

f

d
c

00
ϕ

ϕ
ϕ

                                       (5) 

where, Nf ′  and Mf ′  are respectively the vectors of 
function values of control points ix  and non-control 
points jx , NG  and Nϕ  are constructed by the 
control points, which are described in the same 
manner as in Eq.(3), MG  and Mϕ  are constructed by 
the non-control points, which can simply be 
determined using Eq.(2) with the same control 
points that are used for NG . NG  is a symmetric 
matrix of size N×N while MG  is a asymmetric 
matrix of size M×M. Through the pseudo-inverse of 
the coefficient matrix in Eq.(5), we can obtain a 
solution of c and d in a least square sense. 
The advantages of this approach are several. First, 
the algorithm is easily implemented since only the 
linear system of Eq.(5) needs to be solved. Second, 
the error converges since we can get a least square 
solution from Eq.(5). However, its deficiencies are 
also obvious. From a theoretical viewpoint, the 
control point set is redundant. As we knew, the basis 
functions )( iG xx −  were non-compactly supported. 
This means that the control point set is redundant 
with respect to the representation of a surface. 
Furthermore, because the control points are fixed, 
the resulting implicit function of Eq.(2) is bounded 
in the functional space spanned by the basis function 

)( iG xx − . It is impossible to deform the implicit 
function f to go beyond this original functional 
space. This means that the control points should be 
uniform samples over the whole domain but not the 
local samples. Therefore, it is necessary to 
investigate the choice of the control points. From the 
perspective of an application, in large-sized range 
data case, due to a large number of data points, the 
coefficient matrix of Eq.(5) would quickly exceed 
the computational capability of the usual machine. 
In the following section, we will try to devise a 
novel approach to overcome these two problems. 
 
 

3.2 SVD-Based Approach 

In this case, the control point set is unknown. Our 
basic idea is to apply the Singular Value 
Decomposition (SVD) to the coordinate set of range 
data points to simplify the data points so as to obtain 
some principal control points. Obviously, the first 
problem we encountered will be the conflict between 
the large-sized point coordinate set and the usual 
limited computational capability. It is 
straightforward to partition the large-sized set into a 
series of subsets, and then deal with them 
individually. In the following, we first explain our 
novel partition-based SVD approach, then apply it to 
the large-sized data point set for point simplification. 
In the RBF approximation, the coefficient matrix of 
Eq.(3) is real symmetric and positive semi-definite. 
Our goal is to exploit these properties in order to 
reduce the dimension of this square matrix. Without 
loss of generality, we first give the following two 
basic propositions (see (Yu et al. 2005) for a formal 
proof). 

Proposition 1 

Let a real symmetric matrix nnR ×∈A  be SVD 
decomposed as TVUA Λ= , where 

0...),,...,( 11 ≥≥≥=Λ nndiag λλλλ . If r≤rank(A) 

and let TVUA ′Λ′′=′ , where 
rrrn RR ×× ∈Λ′∈′′ ,,VU , then, 12 +=′− rλAA . 

Proposition 2 

Partitioning columns of A into r block submatrices 
),...,( 1 rAAA = , where riR ipn

i ,...,1, =∈ ×A , 

∑
=

=
r

i
ipn

1

, we have, )()( i
T
ii rankrank AAA = . 

 
Proposition 1 implies that A′  is an optimal 
approximation of A among all rank r matrices in a 2-
norm sense. Furthermore, if rank(A)=r and r<n, this 
implies that A can be partitioned into r block 
submatrices and each block submatrix is expected to 
be of rank 1. 
Due to the real symmetry property of A, each block 
partitioned along column (or row) must correspond 
to a block partitioned along row (or column). For 
convenience, each strip block can be compressed to 
a real symmetric matrix. Proposition 2 implies that 
this compressed symmetric matrix i

T
i AA  has the 

same rank as iA . Therefore, we are able to expect 
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the square matrix i
T
i AA  to be of rank 1. This 

procedure is illustrated in Fig.1. 
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Figure 1:Real symmetric matrix A is converted to a quasi-
diagonal form B. 

It can be noted that the compressed matrices i
T
i AA  

construct a block diagonal matrix B. In other words, 
the partition of A is transformed to a block diagonal 
matrix B. This transform effectively simplifies the 
computation burden, since the future numerical 
analysis of A can be fulfilled through the individual 
analysis of each symmetric block i

T
ii AAB = . 

Applying SVD decomposition to iB , one can get 
T
iiii

T
ii VVAAB 2Λ== , where the SVD of iA  is 

T
iiii VUA Λ= . When we let 

1)()( == i
T
ii rankrank AAB , the approximation of 

iB  can therefore be written as, 
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iλ  is the maximum singular value of 2

iΛ , 
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1
iv  is the column singular vector of iV  

corresponding to 
2)(

1
iλ . Consequently, B can be 

reconstructed by the approximations rBB ′′ ,...,1  as 
follows, 
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For each block iB , we know that iB  is indeed the 
Gram matrix of iA , which is symmetric and 
positive definite. The diagonal difference between 

iB  and its approximation iB′  indicates which 
column (or row) vectors of iA  are principal basis 
vectors of iA . This is due to the fact that each 
diagonal entry of iB  is the inner product of each 
column (or row) vector of iA . If the ith column (or 
row) vector is a principal vector of iA , its inner 
product can be approximated by the ith diagonal 
entry of the approximation iB′ . One can 

conveniently preserve a column (or row) of iA  by 
evaluating 

ii
i
jji

i
jj
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jj
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jj pjbbbb ,...,1,,, )(
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)(
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these selected columns (or rows) construct an r-
dimensional matrix rr×A~ , which is a dimension 
reduced version of A. 
Up to now, we established a partition-based SVD 
approach for the large-sized real symmetric matrix 
case. It can be summarized as follows. 
Partition-Based SVD Approach: 

1) Convert the partitioned ( )rAAA ,...,1=  to 
a block diagonal matrix B; 

2) Compute the approximation iB′  of each 
symmetric subblock iB  in B through SVD, 
in which ( ) 1=′irank B ; 

3) Compute the diagonal difference between 
iB  and iB′ ; 

4) Select the principal vector of iA  by 
evaluating 

i
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construct the reduced matrix A~  of size r×r. 
However, it can be noted that the approximation 
error of B can be evaluated through 2-norm of 

2
BB ′− . Moreover, the upper bound of error can be 

estimated as 
2)(

22
max i

i
λ≤′−BB  (for details, refer 

to [10]). Indeed, a good partition approach can be 
deduced by minimizing the error of 

2)(
2max i

i
λ . It can 

also be noted that 
2)(

2max i

i
λ  is a variable for various 

partition approaches. It can be further proven that for 
the singular values of each column of A, nσσ ,...,1  
and 0...1 ≥≥≥ nσσ , there exists a partition (i.e. the 
dimension of A is reduced to r) such that, 

2)...(max 22
1

22)(
2 nrr
i

i
σσσλ +++≤ +  (for details, refer 

to (Yu et al. 2005)). This implies that 
),...,,( 1 nrr σσσ +  correspond to the non-principal 

columns (or rows) of A respectively, and in order to 
further reduce the error of 2)(

2max i

i
λ , we have to 

seek a column (or row) combination of A (i.e. all the 
non-principal columns or rows are left in rA ) so as 

to obtain the minimum of ( )22
1

2 ... nrr σσσ +++ + . Of 
course, if the non-principal columns or rows are 
distributed in each partition iA , this minimization 
problem will be described as follows, 
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However, seeking the optimal partition of A is 
indeed an NP-complete problem. We will present 
below our partition scheme in the case of range data 
simplification. 
Consider a coordinate set of range data points. One 
can note that the distribution of the point cloud 
formed by data points is not uniform. The geometric 
distribution of data points is redundant with respect 
to the topological structure of a point cloud. In order 
to obtain a compact data point set, we can directly 
apply the SVD technique to the basis functions of 
Eq.(3). Indeed, the sub-matrix G in Eq.(3) consists 
of the basis functions )( jiG xx − , which is a real 
symmetric and positive semi-definite matrix. If there 
existed a partition for G, applying the above 
presented partition-based SVD approach to G, one 
could easily simplify G to get a dimension reduced 
version of G. But, how to partition G is still an open 
problem that is covered in this section. 
Considering G, one can note that the basis function 

)( jiG xx −  is a function of the Euclidean distance 

ji xx − , and )()( ijji GG xxxx −=− . The ith row 
(or column) of G is a vector of 
( ))(),...,( 1 iNi GG xxxx −−  about the ith point ix . 
Herein, the geometric meaning of the singular values 
of the columns (or rows) of G is that the singular 
value iσ  of column (or row) i of G is a 
measurement of the divergence of the data point set 
to the ith data point ix , i.e. the bigger the singular 
value iσ  is, the farther the data point set departs 
from the ith data point ix . In terms of proposition 2, 
the r columns (or rows) of G with the first r 
maximum singular values of columns should be put 
into r different partitions of G. It is clear that the 
resulting partition of G through the selection of 
points with the larger divergence as the centers of 
the different partitions can minimize the residual 
error between G and its approximation G′ . 
However in our case, G is not approximated by the 
same dimension of G′  but its dimension is reduced 
(i.e. the number of control points needs to be 
reduced). Obviously, the reduction of the control 
points will lead to the loss of some details. If only 
the points with the largest divergence are 
considered, many details will have to be abandoned. 
This can be demonstrated in Fig.2. If a point of set A 
has a larger divergence than the points of set B as 
illustrated in Fig.2, then, each point of its 
neighbourhood in A have similar divergence that are 
more than divergences of the points of B. Thus, the 

control points will be selected from set A rather than 
set B. It is clear that in this manner, the distribution 
of the selected control points will not be uniform 
over the original data point set. Therefore, it is 
necessary to further require that each control point 
should hold a large divergence with respect to all the 
control points BA∪ , so that the control points can 
be distributed over the original data point set as 
uniformly as possible. The divergence of each point 

ix  is computed as follows, 
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where, S is the data point set while 0S  is the control 
point set. The control point cx  is selected using 

( )iiic divdiv 21maxarg +=x , where arg(·) extracts 

the point ix  which yields the maximum of 
( )ii divdiv 21 + . 

 
Figure 2: The divergence of different point sets. The 
points in A have a similar divergence that is larger than the 
divergence of the points in B. 

However, the implementation of Eq.(7) is time-
consuming. In practice, we prefer to use a standard 
clustering algorithm (Duda et al. 2001) instead. For 
clarity, some concepts need to be first defined as 
follows. 

 Centre of a partition iP  is regarded as clustering 
centre, which is defined as, 
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 Measure between two points, 
( ) Strd ji

T
jijiij ∈−−= xxxxxx ,,))(( ; 

Based on the above definitions, our Partition 
Algorithm can be stated as follows: 

1) {Clustering} 
{Initializing}: Input data point set S, centre 

set 0S  and an initial partition SPi
r
i ==1∪ ; 

A

B
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{Merging, Splitting and Deleting}: These 
standard clustering operations are carried out based 
on the above definitions of the measure ijd  and the 
selected centre 0Si ∈y ; 

Iteration until there is no change in each 
iP ; 

2) {Partitioning G} 
Loop: from i=1 to r 

Partition G in terms of iP ; 
EndLoop; 

 
The proposed partition algorithm is a divergence-
based iterative approach. The initial centre set 0S  is 
usually the point set with the first r maximum 
singular values of columns of G. The measure 
between two points is indeed another representation 
of the Euclidean distance. It can make the centers of 
partitions as divergent as possible. But the clustering 
algorithm is only an approximation of Eq.(7). Thus, 
our partition algorithm can only approximate the 
global optimal partition. 
In short, the presented partition-based SVD 
approach and partition algorithm constitute our 
SVD-based approach for dataset simplification. It is 
clear that data redundancy and computational 
complexity of the large-sized range dataset can be 
effectively amended in this SVD-based approach. 
The highlight property of this approach is that the 
control points are not fixed in advance. This means 
that the basis functions can be modified adaptively 
in terms of the change of range dataset. The 
resulting solution of Eq.(2) would be a global least 
square solution. 

4 EXPERIMENTS AND 
ANALYSIS 

An intuitional way to evaluate the data point 
simplification is to visualize the resulting implicit 
surface. Our experiments of simplifying dataset are 
first carried out on a range dataset of human faces 
for a detailed analysis. The original range dataset 
includes about 35,000 points, which is meshed and 
illustrated in Fig.3a. 
In the first experiment, we apply the pseudo-inverse 
approach to this dataset. About 2,100 control points 
are chosen uniformly over the whole dataset. The 
resulting surface is shown in Fig.3b. Due to the 
reduction of the control points, many details of the 
face are lost. However, it can be noted that the 
essential structures are preserved. Clearly, the 
control points determine the essential structures of 
the face in the resulting implicit surface. When the 
control points are chosen uniformly over the whole 

original dataset, the essential features can be 
unbiasedly chosen as the control points. Indeed, the 
influence of the non-control points in Eq.(5) is very 
limited. We also show the resulting surface only 
based on the control points in Fig.3c (i.e. non-
control points are not used). Obviously, the variance 
between Fig.3b and Fig.3c is very small. 
Furthermore, reducing the number of control points 
to about 1,100, we fit the surface on the basis of a 
selected control point set. The resulting surface is 
shown in Fig.3d. It can be noted that there are no 
distinct details lost in Fig.3d compared with Fig.3c. 
This indicates that uniform sampling can preserve 
the essential structures of the face. But it can also be 
noted that distortions are also visible around the 
nose in Fig.3d. 
In the second experiment, we apply the SVD-based 
approach to the same range dataset as in Fig.3a. In 
this approach, the partition of G dominates the 
quality of the resulting surface. Thus, the two 
criteria of Eq.(7) become highlighted. In our 
experiment, we first consider the first criterion of 

Eq.(7), i.e. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∑

∈Sx

T
iii trdiv ))((1 xxxx , as the 

criterion of partition. Herein, the Partition Algorithm 
described in section 3.2 is simply replaced by sorting 
{ }idiv1 . The control points are reduced to 30,000, 
10,000 and 6,000 points respectively. The resulting 
surfaces are shown in Fig.4. It can be noted that due 
to the non-uniformity of the control points, many 
structures are lost. Clearly, some regions contain few 
or no control points (such as the nose area) while 
others contain an excess of control points (such as 
the cheek area). However, the essential facial 
outlines are still retained. Moreover, when we 
consider the two criteria of Eq.(7), i.e. use the 
partition algorithm to obtain an appropriated 
partition of G, it can be noted that some details of 
the face can also be preserved even if the control 
points are further reduced. The resulting surfaces 
with the different numbers of control points are 
shown in Fig.5. 
Furthermore, comparing our SVD-Based Approach 
with the uniformed down-sampling approach, we 
can compare Fig.5c and Fig.5d with Fig.3c and 
Fig.3d. This is because in Fig.3c and Fig.3d, we 
uniformly down-sampled the control points over the 
original range dataset, and the other non-control 
points were discarded. In addition, the number of 
control points in Fig.3c and Fig.3d are similar to the 
number of control points in Fig.5c and Fig.5d 
respectively. It can be noted that Fig.5c and Fig.5d 
appear more distinct and preserve more details than 
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Fig.3c and Fig.3d, and there are comparatively less 
distortions in Fig.5c and Fig.5d. 
In order to further verify the efficiency of the SVD-
Based Approach, we subsequently apply the SVD-
Based Approach to 5 range datasets with different 
facial expressions. The original numbers of data 
points are in the range of 32,000-35,000, and are 
reduced to 1,100 through our SVD-Based Approach. 
For comparison, we also apply the uniform sampling 
approach to these 5 range datasets, and their point 
numbers are also reduced to about 1,100. All the 
resulting surfaces are shown in Fig.6. It can be noted 
that the resulting surfaces obtained by the SVD-
Based Approach preserve more details, and have 
less distortions compared to the ones obtained by the 
uniform sampling approach. 

  
a.                                        b. 

  
c.                                         d. 

Figure 3: The resulting surfaces through the Pseudo-
Inverse Approach. a) original model, b) result using 
pseudo-inverse approach, c) result using uniform sampling 
approach, d) result using uniform down-sampling 
approach, in which the number of points is reduced to 
about 1,100. 

 a.  30,000 points 

  
b.  10,000 points                 c.  6,000 points 

Figure 4: The facial model is simplified by the SVD-based 
approach with the first criterion of Eq.(7). Non-uniform 
sampling leads to the quality of the resulting surfaces 
decreasing quickly. 

    
a.  10,000 points                   b.  6,000 points 

    
c.  2,000 points                    d.  1,100 points 
Figure 5: The facial model is simplified by the SVD-based 
approach with the two criterion of Eq.(7). Considering the 
uniform sampling preserves many details effectively. 

5 CONCLUSIONS 

In this paper, we presented two approaches of 
computational simplification for medium- or large-
sized range dataset, one is the Pseudo-Inverse 
Approach, and the other is the SVD-Based 
Approach. The novelty in this paper is that we 
devised a novel partition-based SVD algorithm, 
which can effectively reduce the dimension of a 
symmetric square matrix in a given partition case. 
We combined the partition-based SVD algorithm 
with a standard clustering algorithm to form our 
SVD-Based Approach. Experimental results indicate 
that in a given control point set case, the Pseudo-
Inverse Approach can give an optimal solution in a 
least square sense. While in the case of an unknown 
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control point, the SVD-Based Approach can seek an 
appropriate control point set automatically, and the 
resulting surface can preserve more details and 
generate less distortions. 
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