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Abstract: Nowadays remotely operated vehicles (ROV) have become a popular tool among biologists and geologists to
examine and map the seafloor. For analytical purposes, mosaics have to be created from a large amount of
recorded video sequences. Existing mosaicing techniques fail in case of non-uniform illuminated environ-
ments, due to the presence of a spotlight mounted on the ROV. Also traditional image blending techniques
suffer from ghosting artifacts in the presence of moving objects. We propose a general observation model and
a robust mosaicing algorithm which tackles these major problems. Results show an improvement in visual
quality: noise and ghosting artifacts are removed.

1 INTRODUCTION

Still in recent past, benthic sampling techniques, us-
ing box corers, Van-Veen grabs or dredges, were the
most common tools for biologists and geologists to
examine the seafloor and to groundtruth geophysical
datasets (sidescan sonar, multibeam, seismic). How-
ever, during the last decade the use of ROV’s and
submersibles became more and more widespread in
marine research. The increasing ROV-based explo-
ration and visualization of deep-water environments
revealed a large number of new insights in already
long studied environments. These new technologies
producing a large amount of visual data (formerly
not available as such) are claiming for new analytical
methods, both qualitative and quantitative.

Image mosaicing is the process that warps a col-
lection of overlapping images into a common coordi-
nate system and that merges the overlapping regions
of the warped images into a single image which cov-
ers the entire visible area of the scene. The merged
output image is called the mosaic or the panorama.
Registration is finding the appropriate transformation
of an input image or a set of input images with re-
spect to a reference image. Many registration meth-
ods require users interaction through selecting ground
control points (GCP) in the reference image and their
corresponding points in the input image. GCP’s are a
set of selected pixels (or regions) that contains impor-

tant features like intersection of roads or coastlines.
However manual registration requires a lot of time
and labour and is furthermore not accurate due to hu-
man mistakes (Luong et al., 2004). The huge amount
of incoming video data from new missions mandate
the need for automatic registration.

Several automatic registration techniques do exist,
they can roughly be divided into two categories: area-
based (e.g. minimizing the overlapped intensity dif-
ferences, Fourier-based methods, etc.) and feature-
based methods (Zitova and Flusser, 2003; Lowe,
2004; Tuytelaars, 2000). Intensity-based registration
methods require a uniform illumination throughout
the video sequence and is consequently not suitable
for our application. Most blending methods use an
averaging scheme which results in ghosting effects
when dealing with moving objects. These two major
issues require novel techniques. In the next chapters,
we propose a general observation model, we describe
our algorithm and we discuss the results.

2 THE OBSERVATION MODEL

In our specific case, we propose an extension of the
generic model used in (Pires and Aguiar, 2005). Each
pixel of the ith video frame Ii can be modeled as a
noisy sample of the panorama P which can addition-
ally be occluded by a moving object O. The moving
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objects in this situation are benthic animals (see fig-
ure 1). The local illumination changes due to the spot-
light of the ROV are modeled by the filter H , also the
end of a floating rope from the ROV (which is visible
on a somewhat static position throughout the video
sequence) will be incorporated by H (see figure 1).
Since a video frame Ii has only a limited view of the
panorama, we truncate its view with a binary region
of interest mask Mi. If the region is observed by the
ith image, then Mi(xi) will become 1 otherwise 0.
The generic observation model will become

Ii(xi) =[[(1 − δu−ut
)P (u) + δu−ut

O(ut)]

· H(xi) + N(xi)]Mi(xi)
(1)

where N denotes the sum of the noise generated
with and without the spotlight filter H . In the rest
of this paper we assume that the noise has a zero-
mean Gaussian distribution. The image coordinates
xi = (xi, yi) are expressed in the coordinate system
of the image Ii, while the coordinates u = (u, v) are
expressed in the coordinate system of the panorama
P , which is in our case the same as the coordinate
system of the reference image I0. Since the objects
O are moving, the coordinates ut are related to time.
The function δu−ut

is the Dirac delta function, which
yields 1 if u equals to ut and zero otherwise. If the
delta function is 1 than the panorama is occluded by
the moving objects and we deal with an unoccluded
panorama otherwise. Note that the delta function is
only defined on the discrete grid, which means that
no subpixel coordinates are used here.

The relationship between the reference coordinate
system of the panorama P and the coordinate system
of the images Ii is denoted for example by a global
parametric mapping model. Perspective projection
models (8 degrees of freedom) and polynomial mod-
els, such as translation, affine or biquadratic transfor-
mations (with respectively 2, 6 and 12 degrees of free-
dom), are very common in use (Zitova and Flusser,
2003). The coordinates xi and u are related by

xi = m(θi;u) (2)

We have to estimate first the parameters of the map-
ping model, this is known as the registration problem.
Our final goal is then to recover the panorama P in
good lighting conditions as much as possible without
the moving objects, which is related to robust back-
ground estimation.

3 THE MOSAICING SYSTEM

As we have mentioned in the previous chapter, we
have to estimate the parameters θi of the mapping

Figure 1: An original image from the video sequence. The
poor illumination conditions and the presence of benthic an-
imals (and the floating rope visible at the up middle part of
the image) make mosaicing much more difficult.

model m first. Since the parameter space, for di-
rect mapping between the image Ii and the panorama
P , is very large, we register the images sequentially
in order to reduce the computation time. This pro-
duces good initial estimations, but it still can lead to
propagation errors, which is clearly visible for non-
consecutive video frames covering the same region
of the panorama. In the second step, the estimation
of the parameters is then corrected by registering the
images Ii with a temporary build mosaic. Deriving
a global optimal solution for the parameters θi as
in (Pires and Aguiar, 2005) is very difficult because
of the presence of the spotlight. Because we a pri-
ori know how the spotlight filter H approximately
behave, we can use a predefined weight map W to
model the behaviour of H . The weights W (xi) are
low if we want to exclude a specific region. In the last
step, the final mosaic P is estimated by combining the
overlapped frames.

3.1 Robust Image Registration

Because of the spotlight, we can not use featureless
registration methods. So we build a robust feature
point matching algorithm in order to register subse-
quent images Ii and Ii+1 and estimate parameters
θ′i+1. Since areas of uniform intensity,i.e. with no
structural information, do not give us reliable registra-
tion information, we need to find well textured blocks.
We apply the Noble corner detection (Noble, 1988) as
the feature point detector on image Ii. Since we only
use the feature point detector to distinguish areas with
uniform intensity from ares with interesting structural
information, there is no point using more complex (in-
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variant) detectors (and descriptors) as in (Lowe, 2004;
Tuytelaars, 2000). We define the (squared) blocks
B1 on image Ii around the detected feature points.
These blocks are matched with blocks B2 from im-
age Ii+1 using the weighted zero-mean normalized
cross-correlation (CC):

CC =

∑
i

wi(B1,i − B1)(B2,i − B2)√∑
i

wi(B1,i − B1)2
∑

i

wi(B2,i − B2)2

(3)
where B1 and B2 are denoted as the mean values

of respectively blocks B1 and B2. This correlation
measure is illumination invariant, i.e. blocks with a
biased illumination change will yield the same corre-
lation as blocks with no biased illumination change.
The weights wi are chosen to favour the central part of
the window (for example with a Gaussian function).
Higher (subpixel) accuracy is obtained by fitting the
neighbourhood of the highest correlation coefficient
to a second degree polynomial model.

In the next step, we have to estimate the parame-
ters of our transformation model m using the matched
pairs. The influence of the worst matches (outliers)
should be minimized. A robust estimate of these
parameters can be achieved with Hough transforms,
RANSAC, LMeds, M-estimation, bootstrap methods,
etc. (Rousseeuw and Leroy, 1987). Based on the gen-
eralized maximum likelihood and least squares for-
mulation, we will use M-estimators. In particular, the
M-estimate of a is

â = arg min
a

∑
i

ρ(ri,a) (4)

where ρ is a robust loss function and ri is the
scale normalized residual. A good (robust) initial-
ization is crucial for the success of M-estimation,
otherwise it would yield poor results due its low
breakdown point (Stewart, 1999). A robust initializa-
tion is achieved using a coarse-to-fine multiresolution
framework. In the coarsest level, we can use temporal
information from the registration between Ii−1 and
Ii, which also additionally reduces the computation
time. Using Kalman or particle filtering could result
in a better prediction (Doucet et al., 2000). But in this
case, we keep it simple: we use the previous estima-
tion as the new prediction. Solving this robust regres-
sion problem leads to W-estimators and the iterative
reweighted least squares (IRLS) algorithm (Stewart,
1999). In each iteration, the weights of each pair are
adapted in function of their residuals and a weighted
least squares (WLS) algorithm is applied until conver-
gence is reached. In order to recover numerical stable
parameters, singular value decomposition is used to

solve the linear system in the WLS algorithm. We
initialize the weights of the IRLS algorithm with CC
information: if a matched pair has a high correlation
(hence is more reliable), then it should have more in-
fluence on the parameter estimation. After applying
IRLS, we do not only have an estimate for parameters
θ′i+1, but also the final output weights which represent
the importance of each contributing pair. With this in-
formation we can exclude bad registered regions (typ-
ically caused by moving objects) in all levels of the
hierarchical framework.

The combination of the transformation parame-
ters θ′i+1, which are obtained from the registration
between subsequent images, and the parameters θi,
which are obtained between the previous image Ii and
the panorama P , form a good initial estimation for the
parameters θi+1 from the registration between Ii+1

and P . We correct the parameters θi+1 using the same
previously described algorithm and update the provi-
sional mosaic with image Ii+1. Since the next im-
age Ii+2 has the most similar features as image Ii+1

(taking the spotlight into account), more weights are
assigned to the last image when blending it into the
provisional mosaic using an averaging scheme. The
whole process is now repeated for image Ii+2.

3.2 Robust Image Fusion

After transformation and resampling of the images Ii

(using the 8-point windowed Blackman-Harris sinc
function), we have a vector of candidates for each
pixel of the panorama P . Simple averaging will cre-
ate severe artifacts due to non-uniform illumination
conditions, moving objects and possible misregistra-
tion. We can tackle this illumination problem by as-
signing weights to each candidate pixel proportional
to the weights W (xi). Since we are interested in a
panorama in good lightning conditions, the weights
W (xi) for dark regions will tend to zero.

Moving objects can be modeled as a non-zero mean
Gaussian distribution and we classify misregistration
to the noise N . With these considerations, each can-
didate vector is observed as a weighted mixture of
Gaussians. Since we are only interested in the single
Gaussian density which represents the background,
we want to suppress the influence of other densities
by lowering the weights of the candidates which are
part of the moving objects. Similar to background
subtraction techniques (Radke et al., 2005), we cal-
culate the (weighted) average of all candidates. Af-
terwards we compare this average to all candidates,
if the absolute difference exceeds a certain threshold
(typically a number of standard deviations from the
mean background model), then the candidate belongs
most likely to an object and its weight is set to zero.
The new weighted average is a good first estimate,
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which we further refine to the background peak us-
ing robust M-estimation. We recall the fact that we
can not recover the panorama P perfectly if an object
covers the same region on every image. The candi-
dates are represented by their luminance component
in the CIELab colour space. Afterwards, their output
weights, retrieved from the IRLS algorithm, are used
to combine the separate channels in the RGB colour
space.

4 RESULTS

In this paper we have described our algorithm using a
generic transformation model m. In our implementa-
tion, we use the perspective projection model (8 para-
meters):

u = θi,0 + θi,1xi + θi,2yi

1 + θi,6xi + θi,7yi
(5)

v = θi,3 + θi,4xi + θi,5yi

1 + θi,6xi + θi,7yi
(6)

Equation 4 can be solved using IRLS with a weight
function w(r) = ρ′(r)/r (W-estimator). After test-
ing several robust loss functions, we find the logis-
tic function ρlogistic and the Cauchy function ρcauchy

give the best performance respectively to registration
and to image fusion. The corresponding weight func-
tions are

wlogistic(r) = tanh r
r (7)

wcauchy(r) = 1
1 + r2 (8)

Figure 2: A part of a mosaic showing typical dead coral
facies and sediment clogged dead coral.

In figure 2, a part of a mosaic is shown. The
panorama is recovered with less illumination artifacts.
In figure 3 we see a region where a moving object
is removed. Both results are created using the same
image registration parameters. Our proposed image
fusion outperforms traditional blending and addition-
ally it also improves the image quality (compared to

the original image): noise and compression artifacts
are reduced. Also ghosting effects (due to moving
benthic fauna) are removed.

(a)

(b)

(c)

Figure 3: A contrast enhanced detailed region: (a) original
image, merging using (b) an averaging scheme and (c) our
proposed method.

5 CONCLUSION

We have proposed a generic mosaicing model and
we have presented a mosaicing algorithm which can
handle video sequences recorded in a non-uniform il-
luminated environment. Additionally our algorithm
can deal with moving objects. Robust M-estimation
is used in the image registration as well as in image
merging. Our proposed algorithm reconstructs the
mosaic in good lighting conditions. Results show also
an improvement in visual quality: noise and ghosting
artifacts are removed.
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