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Abstract: There exist a variety of manufacturing quality inspection tasks where the inspection of a continuous strip of 
material using a scan-line camera is involved. Here the image is very short in one dimension but unlimited 
in the other dimension. In this study, a method of image event detection for this class of applications based 
on adaptive radial-basis function networks is presented. The architecture of the system and the adaptation 
methodology is presented in detail together with a detailed discussion on parameter selection. Promising 
detection results are illustrated for an application to grinded glass edge inspection problem. 

1 INTRODUCTION 

Automating the quality inspection process is an 
application field of computer vision which is 
increasingly becoming a major need for many 
industries (Malamas et al., 2003) . This is due to 
factors such as the increasing market pressure for 
concurrently lowering product costs and increasing 
product quality; the variation and subjectivity in the 
performance of human operators in the inspection 
process and the requirements on the speed- 
throughput of the process. Industries where this 
pressure is especially intense include, among others, 
the glass manufacturing for the automotive and CRT 
markets, the production of the TFT-LCD panels as 
well as the inspection of textiles. (Kim et al., 2001) 
(Cho et al., 2005) 

 
Almost all of these applications require the real-

time non-contact inspection of material flowing 
through the production line. A feasible way of 
achieving this is through automated optical 
inspection, often abbreviated as AOI, where a 
camera is used to detect production defects. If the 
material being inspected is moving or can be moved 
at controlled speed, the use of a scan-line camera or 
a TDI line-scan camera (if better illumination 
sensitivity is required) is appropriate.  

 

Systems using a scan-line camera for inspection 
generates a continuous run of image data with one 
comparatively smaller image axis and a 
comparatively large other image axis. The digital 
processing of such strips of images often require 
either buffered algorithms along the scanning 
direction, or preferably, scan-line based algorithms 
since they are a better match for the data generation 
process. 

2 PROBLEM DESCRIPTION  

Image processing for the inspection of a material on 
the production conveyor consist of modelling the 
material's normal image behaviour as it flows 
through the conveyor. The task is then to perform a 
detection of the anomalous or defective behaviour 
on the material based on changes in the scan-line 
signal.  
 
A class of problems is when the material is a smooth 
but scattering surface such as the side view of a 
manufactured pipe, top view of railway tracks 
(Alippi et.al., 2000) or the grinded edge of a glass 
sheet. Such a scan-line camera signal is illustrated in 
Figure 1. 
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In this case, the normal signal profile has a 
reasonable degree of smoothness corrupted by noise 
due to the scattering properties of the surface or the 
nature of the illumination. For non-defective 
material, the signal behaviour does not change along 
the scanning direction. Defects on the other hand be-
have as unexpected and often fast changes in the 
signal behaviour along the scanning direction. When 
the cross-section (or the scan-line) of the inspection 
image is considered, The Radial Basis Function 
network with its smoothed approximation proper-
ties appears to be ideally suited to model the 
behaviour of the signal (Haykin 1999; Poggio and 
Girosi 1990). In fact, RBF networks have been 
successfully used in a number of detection 
applications (Ahmet W. et al., 1994; Leung H. et al., 
2002; Shen M. et al., 2005). 
 
Modelling the single scan-line with a 1-D RBF 
effectively addresses the problem of suppressing the 
noise while retaining the overall signal behaviour in 
each scan-line. The next important problem is the 
detection of the anomalous behaviour (or defects) 
based on the model of the scan-line and a sequence 
of the scan-line data from the image. We address 
this problem in the following section by introducing 

the RBF model of the scan-line a model mismatch 
based detection algorithm. 

3 THE RBF MODEL AND MODEL 
MISMATCH DETECTION  

3.1 The 1-D RBF Scan-line Model 

The proposed scan-line model is given by 
 

                       (1) 
 

 
Based on the behaviour and the required smoothness 
of the scan-line signal, a model order is chosen. 
Figure 2 illustrates a model with M=7 and M=5 
Gaussian basis functions superimposed with the 
actual noise corrupted scan-line signal. The edge 
region contains approximately 2 basis functions.  
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Figure 2: RBF Approximations to the scan-line signal. 

Figure 1: Scan-line image of material edge. 
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Figure 3: The block diagram of the model mismatch based defect detection algorithm. 
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3.2 Model Mismatch Based Detection 
Algorithm 

The defect detection algorithm is based on the 
assumption that the normal edge behaviour is almost 
stationary (or with very slow variation) across 
subsequent scan-lines while an anomaly or defect is 
an unexpected (and comparatively fast) change in 
this behaviour. Therefore, we propose a detection 
algorithm based on the model mismatch between a 
direct static approximation to the current scan-line 
data and a slowly varying (tracking) adaptive 
approximation which performs a smoothing over the 
history of scan-line data. A block diagram of this 
model mismatch based detection algorithm is 
illustrated in Figure 3. 
 
The proposed detection algorithm maps a sequence 
of scan-line image data Sm[n] into a binary detection 
signal Dm. This is achieved by the following 
procedure: Each mth 1-D scan-line signal data is 
modelled my a 1-D approximating RBF model 
(static model) while the history of all scan-line 
signal data is tracked by means of an adaptive 1-D 
RBF model (adaptive model). The static model is re-
computed for each new data as the best 
approximation to the data. The adaptive model is 
initialized once as the best approximation to the data 
and then updated for each new scan-line data by a 
small amount determined by the adaptation rate μ. 
For non-defective behaviour of the signal, the static 
approximation to the scan-line data is close to the 
adaptive approximation to the history of the scan-
line data. Hence, the distance computed between the 
two models is small. 
 
When a defective behaviour is encountered, the 
static approximation immediately reflects the defect 
behaviour while the adaptive approximation, 
because of its larger time constant, still reflects the 
regular non-defective behaviour. Hence, a large 
mismatch results between the two models, resulting 
in a large model-to-model distance metric.  
 
(a) Determination of the Static Model Parameters 
 
The model parameters which approximate the mth 
scan-line data are derived by minimizing the mean-
squared-error (MSE) between the scan-line samples 
and the model approximation. The total 
approximation error over the mth scan-line data is 
given by the expression 
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To determine the parameter values minimizing the 
objective function in Eq.2, we take the partial 
derivatives with respect to the model parameters. 
When the approximating model is also substituted in 
the resulting equation, one obtains 
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which, when equated to zero gives the linear system 
of equations given by 
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for i =1,2,...,L. This system can be expressed in 
matrix form. Denoting the inside summations by αil 
members of an LL×  square matrix A, the parameter 
vector by p and the right hand side coefficients as βi 
members of a vector b, this set of L equations can be 
written as  

bpA =⋅ .                                    (5) 
 
The values for the model parameters which are 
optimal in the MSE sense can then be obtained as 
 

bAp ⋅= −1 .                                  (6) 
 
(b) Determination of the Adaptive Model 
Parameters 
 
The parameters of the adaptive model are once 
initialized to be equal to the static model parameters 
at the beginning of the algorithm processing. 
However, for the remaining of the processing, they 
are updated using a variation of the steepest descent 
iterative optimization procedure. The procedure is 
based on the popular Least-Mean Squares (LMS) 
algorithm (Haykin 1996). The choice of the steepest-
descent procedure is based on the fact that we do not 
require a fast adaptation but a gradual and smooth 
one. The additional adaptation speed contributed by 
a technique such as Recursive Least Squares (RLS) 
comes at a significant computational cost and is not 
justified for this application.  
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The speed of adaptation for the present procedure is 
governed by an adaptation rate parameter μ. 
Specifically, for each new scan-line signal data, the 
parameters of the adaptive model are updated along 
the direction of the steepest descent towards the 
optimum parameter values for the given data. This 
direction is determined by the negative gradient of 
the objective function with respect to the parameters. 
Hence the update equations for the adaptive RBF 
model parameters are given by 
  

][1 mEmm ∇−=+ μpp                           (7) 

{ }111 2 +++ −−= mmmmm bpApp μ                     (8) 
 
where 

1+mA and 
1+mb  are those determined from the 

current scan-line data.  
 
(c) The Model Distance 
 
Standard Euclidean distance is used as the model 
distance between the static and the adaptive model 
and is given by 
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(d) Detection Threshold 
 
The model distance computed for each scan-line data 
index m constitutes a model mismatch signal d[m] 
which is subjected to a threshold based peak 
detection to determine the binary detection D[m].  
 
A fixed threshold can be used to perform the 
detection. However an adaptive threshold scheme is 
used in this study to improve the detection 
sensitivity when the background noise in the 
detection signal is low and to reduce false alarms 
when the detection signal is noisy.  
 
The adaptive threshold works by keeping and 
updating two values, namely a partial mean level 
μd[m] and a partial variance level σ2[m]. As long as 
no anomaly is detected, these levels are updated 
according to the equations 
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An anomaly is detected when the condition in Eq. 12 
is satisfied. Here td is the threshold of detection. In 
this case, the adaptation of the mean and variance is 
not performed for the duration of the detection so as 
not to corrupt these parameters which reflect the 
normal behaviour of the image. 
 

][])[][( 22 mtmmd ddd σμ ⋅>−               (12)  
 
(e) Post Processing of Detected Anomaly 
 
The most important stage of the algorithm is the 
detection of the anomaly in the image to indicate the 
presence of a defect. However, once the defect is 
located, it also needs to be sized across the strip 
image and if possible, classified. This is achieved 
through a second stage of post-processing, in 
particular on the region indicated by the detection 
stage. Although the detection algorithm proposed 
can be easily applied to other application domains 
with similar strip material inspection needs, this 
post-processing stage is more application domain 
specific. Here a solution for a particular application 
domain will be considered. 
 
As it is illustrated in the experimental results section, 
we consider in particular two types of defects from 
the application domain of grinded glass edge 
inspection. The first type of these defects are 
"shiner" defects and are composed of the lack of 
proper grinding at the middle of the glass edge. This 
type of defect appears dark to oblique illumination 
while the properly grinded region appears light due 
to the scattering of the incident illumination. The 
second type of defect we consider is called an "edge 
chip" and is the breaking of a small piece of glass 
from the region where the glass surface and grinded 
edge meet. This type of defect is usually harder to 
detect since the edge signal is particularly noisy on 
the sides and the chip appears as a small deviation in 
the edge thickness in this region. 
 
To determine the type and across dimension of the 
defect the following procedure is applied. First, the 
average values of edge starting and edge ending 
values are extracted from before the beginning and 
after the ending of the defect region along the 
scanning direction. Then the defect region is 
uniformly sampled along the scanning direction. For 
each resulting scan-line segment, the signal 
background level is measured and a signal threshold 
is determined. The threshold is used to determine the 
edge location and number and locations of threshold 
crossings along the edge. For very small defect 
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lengths along the scanning direction, only a single 
sample from the centre may be considered for this 
sampling. 

 
Any major deviation from the average edge starting 
and ending positions around the defect region is 
considered as a side defect (edge chip) with its side 
location information. The maximum value across the 
defect-sampling of any such deviation provides the 
across size of a side defect. Also, any additional 
threshold crossings inside the edge identify an inside 
defect (shiner). The size is measured as the 
maximum separation between the beginning-
crossing and the ending-crossing across the defect-
sampling. 

Parameter Selection for the Application Domain 
The following is a discussion of a reasonable set of 
guidelines for the selection of some algorithm 
parameters: 

 
Scaling Factor 

 

The signal may be pre-processed with a scaling and 
clipping before the detection stage is performed. For 
the present application domain, from the 
experimental data, it is observed that that a fixed 
scaling can be used throughout the detection stage. 
However, with varying camera/edge distance and 
dynamic illumination power control, an adaptive 
procedure may also be adopted.  

 
Gaussian Functions 
 

The number of the Gaussian functions used in the 
approximation determine how well the edge signal is 
approximated. Therefore, a larger number means a 
better approximation. However, the increasing 
number increases the computational complexity of 
the approximation and decreases the smoothing 
effect, resulting to also model the noise. This is 
clearly not desirable. Therefore, the choice should be 
as small as possible as long as a distance between 
the static and adaptive models has a significant 
enough peak in a defect region to allow detection. 
M=3 or M=5 Gaussian functions whose centers are 
distributed along the edge is observed to provide 
good results. We have preferred an odd number of 
Gaussian functions due to the symmetry of the 
signal and in order to have maximum sensitivity in 
the center of the image strip. 

 
The Gaussian means are determined to provide a 
uniform distribution along the edge. For the M=3 
case, one mean can be placed in the center of the 

edge and remaining two on the estimated edges. 
Small, gradual changes on the edge will not have a 
serious impact on the approximation. 
 
The variances of the Gaussian functions are all the 
same and determined by the choice of their number 
and mean values. More specifically, the distance 
between two adjacent Gaussian functions determines 
this choice. The main criteria is to obtain a smooth 
enough approximation. A variance value of σ = 2.5d 
where d is the distance between adjacent Gaussian 
functions gives an acceptable smoothness. This 
value is used for the approximations in Figure 1. 

 
Adaptive Model Adaptation Rate 

 

This value determines how fast the adaptive model 
will follow the changes in the edge signal. Too small 
a value will render the adaptive model fixed, which 
will not be able to track a gradual change in the edge 
signal. Too large a value will cause the adaptive 
model to follow the changes in the edge signal very 
closely and the model distance signal will always 
remain small making detection very difficult if not 
impossible. For a reasonably steady edge signal, 
values in the range  0.0005 to 0.005 are found to be 
reasonable choices for this application. 
 
Detection Threshold 

 

This threshold determines the sensitivity of detecting 
a defect and also affects the size measurement of the 
defect along the strip direction. As the threshold 
increases,  only larger disturbances on the edge will 
trigger a detection. On the experimental samples 
considered for this application domain, a threshold 
value of   10 to 20 were appropriate choices. The 
parameter range can be tuned by experimentation 
with the application domain. This parameter is 
considered to be the only user controllable parameter 
to adjust the sensitivity of the overall system so as to 
eliminate the detection of very small defects.  

4 EXPERIMENTAL RESULTS 

For the experiments, we consider the application 
domain of grinded glass edge inspection. The edge is 
illuminated with coherent light at an oblique angle. 
The properly grinded edge is a scattering surface and 
back scatters enough light to generate a light signal. 
The grinding problems and missing parts on the 
edge can be visually observed to be present in the 
signal. Figure 4 illustrates the two aforementioned 
defect types on the grinded glass edge. Figure 5 
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presents the detection stage results for the more 
difficult case of an edge chip. The model mismatch 
signal is illustrated in the first part of the figure 
while the detection signal with the determined 
beginning and ending of the image anomaly is 
illustrated on the second part. From this figure, one 
can observe that the model mismatch based 
detection procedure successfully reduced the image 
event detection into a one dimensional peak 
detection task. 

 
 

 
Figure 4: Examples of two important defect types from 
grinded glass edge inspection. (a) "Shiner" grinding 
problem (b) Edge chip (upper centre of the image). 

Detection SNR with Signal Scaling 
 

One interesting observation of the experimental 
results is the improvement of the detection 
performance of the algorithm with a software scaling 
of the image signal. In reality, the noise present in 
the signal is primarily due to the coherent nature of 
the illumination and the resulting effects. Although 
software scaling up of the image intensity may 
roughly correspond to an increase in physical 
illumination  intensity, the noise is expected to scale 
with the signal and hence no SNR improvement is 
expected. 
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Figure 5: Edge chip detection. (a) the model mismatch 
signal, (b) the detection signal based on a user specified 
threshold. 

However, it is observed that when the signal is 
scaled up so that higher intensity noise is clipped at 
the upper limit of the dynamic range of the signal, 
this has an overall positive effect on the performance 
of the model mismatch based detection. In fact, this 
positive effect is also visually apparent from the 
image data as can be seen in Figure 6.  

  
 

  
Figure 6: Edge chip defect images for software scaling of 
the image signal for scaling factors of s=1.0, 1.5, 2.0 and 
2.5 respectively from top left to bottom right. 

The model mismatch signal for the first case of 
s=1.0 and the last case of s=2.5 are illustrated in 
Figure 7 below. Assuming that the "signal" in the 
model mismatch signal is the defect peak and the 
background variation is the noise, one can conclude 
that the SNR relevant to the detection algorithm 
clearly improves. These results are also in agreement 
with a recent study (Sakurai et al., 2002) in the field 
of semiconductor inspection. 
Experiments have been also conducted to assess the 
sensitivity of the detection algorithm for different 
defect sizes and positions on the image signal. For 
this purpose, a set of simulated defects have been 
generated with characteristics similar to the 
observed defects. The lack of a large selection of 
real defect samples have been a limiting factor at 
this point. The results for these experiments are 
summarized in the following sections. 
 

 

 
Figure 7: Illustration of model mismatch signal for the 
edge-chip defect for scaling factors s=1.5 and 2.5 
respectively. 
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Detection Sensitivity with Defect Size 
 

Figure 8 illustrates the set of simulated defects 
generated on the grinded glass edge signal with one 
real "shiner" defect sample (at the very right of the 
image data). The model mismatch signal is also 
illustrated in the figure and indicates the expected 
degrading of the performance with defect size. A 
total of 10 defects are considered on the glass edge 
(which is considered to be the more challenging 
case) with decreasing size from 1.3mm down to 
0.1mm. The figure clearly illustrates the limit of 
detection which is at defect # 6 at 0.51mm.  
 
The experiments with the defect location across the 
image data show a small amount of variation with 
the sensitivity remaining at a promising level. This is 
illustrated in Figure 9 for a simulated defect size of 
0.91mm. Note that all defects including the ones on 
both sides (corresponding to edge chip defects) are 
detected for this defect size. The reason for the 
sensitivity variation illustrated is the presence of a 
mixture of Gaussians as the signal approximation 
tool with different Gaussian mean locations across 
the edge signal. The number of Gaussians have been 
set to M=5 for the experiment shown in the figure. A 
smaller M=3 value also leads to an operational 
system with less computational complexity but with 
a more severe sensitivity variation across the image.  

5 CONCLUSION 

A model mismatch image event detection method 
based on a 1-D Radial Basis Function Network 
approximator for inspecting scan-line images of strip 
materials is presented. The method operates on the 
principle of detecting the mismatch between a static 
model derived from the scan-line and an adaptive 
model which tracks the slow changes in the signal.  
Thus the detector can accommodate slow variations 
in the image while keeping sensitive to the fast 
anomalies (defects). Experimental results on real 
defect samples and simulated defects have shown 
promising performance results in an application 
domain of grinded glass edge inspection. 
 

 
 
 

 
Figure 8: Experiment on detection performance with 
varying defect sizes. 10 simulated edge chips and a real 
"shiner" defect is present in the image. 
 
 

 
 
 

 
Figure 9: Experiment on algorithm sensitivity across  
the image. Simulated defect size is 0.91mm. 
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