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Abstract: In this paper, we study the problem of reconstructing the polyhedral structures of a generalnD polyhedral
scene from its single 2D line drawing. With the idea of local construction and propagation, we propose a
number of powerful techniques for general face identification. Our reconstruction algorithm, called “nDView”,
is tested by all the 3D examples we found in the literature, plus a number of 4D and 5D examples we devised.
Our algorithm does not prerequire the dimensionn of the object nor the dimensionm of its surrounding space
be given, and allows the object to be a non-manifold in which neighboring faces can be coplanar. Another
striking feature is its efficiency: our algorithm can handle 3D solids of over 10,000 faces, with a speed 100
times as fast as the fastest existing algorithms on 2D polyhedral manifold reconstruction.

1 INTRODUCTION

Representing and perceiving annD object has been
a very fascinating problem in both science and art
(Miyazaki, 1983). Forn = 3, the simplest represen-
tation is a line drawing which is the 2D projection of
the wireframe of the object, like drafting in geometric
design and mathematical diagram. To perceive annD
object one needs to rebuild thenD structure from its
2D projection.

How can then dimensions be recovered from a rep-
resentation in which almost all dimensions are lost?
To start with, let us analyze how a solid in 3D space
is perceived. No one can direct his eyesight to pierce
through the solid. The only perceived object is the
boundary of the solid, which is a 2Dclosed manifold.
It is the closedness that allows us to fill the bound-
ary with solid content to achieve one more dimension.
When we watch a line drawing of the wireframe of a
solid, which is essentially one dimensional, we ex-
tract each cycle of edges, either fill it by a plane or by
some other surface to improve its dimension by one.
Then we detect if any closed manifold is formed by
the planes and surfaces, and if so, gain one more di-
mension by filling the closed manifold with solid con-
tent. The closedness of a manifold and a pattern to fill
it are the two essential things in our 3D perception
from low dimensional data. The following concept

generalizes this observation tonD object perception.
The wireframe modelof an nD object consists of

(1) a set ofedgesconnecting a finite set of points,
calledverticesof the object, (2) a subset ofrD cycles
for 0 < r < n, calledboundaryrD cycles, which are
the boundaries of the(r+1)D pieces of the object, (3)
a set of filling patterns, each for a boundaryrD cycle.
The simplest fillings are affine flats. The correspond-
ing wireframe models are calledpolyhedral scenes.
They can be used to approximate other shapes and
thus are among the most thoroughly studied models.
In this paper we consider only such models.

A transparentline drawingof a wireframe model
is the image of a perspective or parallel projection
from the surroundingmD affine space of the wire-
frame model to the image plane, such that all the
edges and vertices are revealed, and if three vertices
are not collinear in themD space, nor should their
images.

Figure 1 shows a (transparent) line drawing of a
torus in 3D space. It has 6 triangular cycles and 9
square cycles of edges. If all the 15 cycles of edges
are interpreted as polyhedral faces, then the 2D faces
form 6 cycles of faces which are the boundaries of 6
triangular columns. If the 6 cycles of faces are inter-
preted as triangular columns then they form a cycle of
3D faces, which is the boundary of a 4D ball, i.e., the
cycle of 3D faces forms a 3D sphere. So if the object
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Figure 1: A torus in 3D space.

is required to be a 3D manifold, then the line draw-
ing has a unique interpretation which is a 3D sphere.
On the other hand, if the object is required to be a 2D
manifold, then the line drawing has another unique in-
terpretation, which is a torus in which the 6 triangular
cycles are hollow instead of being filled.

This example shows that the problem of wireframe
reconstruction from a single line drawing is rather
“ill-posed”: without a priori knowledge on the shape
and dimension, any cycle can be either filled up or
hollow, and the result is always a solution. What is
the criterion for a “most plausible solution”?

There are three cases each with its own criterion.
The first case is on a single 2D manifold in 3D space
(Liu et al., 2002). Most applications, e.g., the drafting
of machine parts, belong to this case. The criterion
is that all given vertices and edges must be included
in a 2D manifold such that the neighborhood of every
vertex and edge is homeomorphic to a disc. The sec-
ond case is on objects in 3D world in which no two
neighboring faces are coplanar. The criterion for an
optimal solution is that it should be most likely iden-
tified by a human being. Quantitatively this criterion
is described as follows (Shpitalni and Lipson, 1996):
There should be as many faces as possible passing
through as many edges as possible. The third case is
the most general one: we consider polyhedral scenes
of maximal dimensionn in anmD surrounding space
in which neitherm nor n is given, the objects need
not be a single manifold and two neighboring faces
can be coplanar. In Section 2 of this paper, a principle
of psychological selection is proposed as the criterion
for optimal solution in this case.

For several decades, the study of wireframe models
and their reconstructions has been an active research
topic in computer-aided design, computer graphics
and computer vision (Agarwel and Waggenspack,
1992), (Ganter and Uicker, 1983), (Courter and
Brewer, 1986), (Hanrahan, 1982), (Marill, 1991). In
the literature, all algorithms for 3D reconstruction
consist of two steps: searching for all the cycles in the

wireframe which are face candidates, and then iden-
tifying faces from the candidates. Each step has ex-
ponential complexity, so the reconstruction from 2D
to 3D has double exponential complexity. Since the
problem is NP-complete theoretically, most research
focuses on improving the practical efficiency by re-
ducing the number of potential faces produced in the
first step, i.e., in cycle searching. However, all the al-
gorithms in the literature areglobal in that the search-
ing is within the whole wireframe. A consequence
is that the number of potential faces is usually much
larger than the number of real faces. There remains a
lot of room for further improvement in efficiency.

In this paper, we first extend the study of polyhe-
dral scene reconstruction from 3D tonD, under the
most general assumption that neither the dimension
n of the object nor the dimensionm of its surround-
ing space is given, and whether or not the object is a
manifold is unknown. We then propose several pow-
erful new techniques for face identification, and de-
sign an algorithm for fast and general face identifica-
tion. Among the new techniques, the most prominent
one is localization, i.e., the cycle searching and face
identification are carried out locally and the results are
propagated locally. In the classical casem = n = 3,
our algorithm can handle complicated 3D objects of
over 10,000 faces, outperforming all other algorithms
in both speed and range of application. For the exam-
ples in (Liu and Lee, 2001), (Liu et al., 2002), (Sh-
pitalni and Lipson, 1996), our algorithm can generate
all the solutions for ambiguous wireframes, and pro-
duces much fewer redundant cycles which are not real
faces.

The study of generalnD scene reconstruction from
a single line drawing is valuable at least in scien-
tific visualization and high-dimensional animation in
entertainment industry: scientists and artists may be
very much excited to find that their conceptual and
spiritual nD object be readily embodied in, perceiv-
able and recognizable from a single 2D line drawing.

2 ND POLYHEDRAL SCENE
COGNITION

2.1 Constraints on Line Drawings

A perspective projectionfrom mD to 2D is the com-
position of m − 2 successive perspective projec-
tions whose projective centers are linearly indepen-
dent vectors, and at least one center is an affine point.
A parallel projectionfrom mD to 2D is the compo-
sition ofm − 2 successive parallel projections whose
projective centers are linearly independent directions.

A naive way of visualizing such a projection is to
imagine watching a TV program, in which there is
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a guy watching another TV program, and in that TV
program there is still another guy watching still an-
other TV program, etc. If each TV program is ob-
tained by a pinhole camera through perspective pro-
jection, then them− 2 successive perspective projec-
tions transforms themD world into a 2D image.

The reconstruction is the inverse procedure of the
above sequence of projections: the input is the 0D
and 1D information displayed in a 2D space: vertices
and edges of the polyhedral scene; the reconstruction
from 2D to 3D is to identify the real 2D faces of the
scene; going this way, the reconstruction from(m −
1)D to mD is to identify the real(m − 1)D faces.

In a wireframe model, a 0Dface is a vertex, a 0D
cycleis the two vertices of an edge, and a 1Dfaceis an
edge. Forr > 0, anrD cycleis a set ofrD faces such
that (1) if two faces intersect, the intersection belongs
to theiriD faces for0 ≤ i < r, (2) any(r − 1)D face
of onerD face is shared by exactly one otherrD face
in the set. Forr > 1, anrD faceis an(r − 1)D cycle
filled by therD affine flat surrounded by it.

If two rD faces share at least two(r − 1)D faces
which are in different(r − 1)D planes, then the two
rD faces must be in the samerD affine plane, i.e.,
coplanar. The union of a set ofrD coplanar faces
is called anrD polyface, and the faces are said to be
mergedtogether. An advantage of this concept is that
usually we do not need to decompose a polyface into
non-overlapping faces.

Some geometric constraints must be satisfied for
an(r − 1)D cycle to be eligible for being anrD face.
In previous work on face identification, it is gener-
ally assumed that any two neighboring faces are not
coplanar. We feel that this is too strong a constraint to
include many interesting models, so we discard it.
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Figure 2: Face adjacency constraint (left: if bothACDEB

andFCDEG are 2D faces then they must be coplanar);
Non-self-intersection constraint (right: since edgesHI and
JK intersect not at a vertex, cycleHIJK cannot be the
projection of a 2D face).

The polyhedral setting imposes a strong constraint,
called therD face adjacency constraint(Shpitalni and
Lipson, 1996): if tworD faces share two(r − 1)D
faces which are in different(r − 1)D affine planes,
then the tworD faces must be in the samerD affine
plane, i.e., are coplanar.

In a line drawing of anmD polyhedral scene, if two
edges are collinear, so are they in themD scene; if

two edges cross not at a vertex, they do not intersect
in the mD scene. By a perspective projection, a 2D
face is projected onto a 2D region of the image plane
whose boundary does not intersect itself. The 2Dnon-
self-intersection constraintsays that if two edges in-
tersect not at a vertex, then they cannot belong to the
same 1D cycle.

The 2D non-interior-intersection constraint(Liu
et al., 2002) says that if two 1D cycles intersect at
only two vertices and the line segment between the
two vertices intersects both the enclosed regions of
the 1D cycles in the image plane, then either the two
cycles form a polyface, i.e., are coplanar, or at most
one can be assigned as a face.
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Figure 3: Non-interior-intersection constraint (left: If both
ABCDE andHGCFE are 2D faces then they must be
coplanar, otherwise their intersectionCE must be a visible
edge); Chordless constraint (right: cycleIJLMK contains
a chordJK, so it is not assigned as a face, instead,IJK

andJLMK can be assigned as faces).

If an rD faceF does not belong to anrD cycleC
but its intersection withC is exactly the boundary of
F , thenF is called achordof C. A face with chord
can always be decomposed along its chord into two
coplanar faces, and can thus be replaced by the two
faces sharing the chord. However, the two faces need
not be coplanar any more. To gain more degree of
freedom in the reconstruction, anrD cycle with chord
is not assigned as a face. This is therD chordless
constraint.

2.2 Principle of Psychological
Selection

For a general object in an unknown environment, a
human tends to choose a face identification in which
there are as many edges as possible participating in
as many faces as possible, which is the guideline for
the algorithms in (Liu and Lee, 2001) and (Shpitalni
and Lipson, 1996). If the dimension is unknown, the
most important goal should be to find the highest di-
mensionn, for which the above guideline may not be
helpful.

Our principle of psychological selectionis that for
r > 1, the rD face identification should make as
many (r − 1)D faces as possible participating in as
manyrD faces as possible, such that the sequence of
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numbers of non-coplanariD faces is maximal lexico-
graphically, fori from n down tor.

For example, if a line drawing has two explana-
tions, one is two 3D faces together with fifty 2D faces
not belonging to the 3D faces, the other is one 3D face
together with one hundred 2D faces not belonging to
the 3D face, such that any two faces of the same di-
mension are not coplanar, then it is the former expla-
nation that is chosen as the optimal solution. Thus,
our principle of psychological selection is different
from that in (Liu and Lee, 2001) and (Shpitalni and
Lipson, 1996). Its goal is to find first the highest di-
mensionn, second as many as possiblenD faces that
are non-coplanar.

2.3 Principle of Rigidity

To improve the speed for finding the first optimal so-
lution, it is very important to arrange the face can-
didates in such an order that the most plausible ones
come first. We classify the cycles according to their
rigidity so that they have differentlevels of priorityin
face identification.

By the definition of a cycle, the supporting affine
plane of an(r − 1)D cycle has dimension at leastr.
If in the geometric reconstruction fromrD to (r +
1)D, for a given(r−1)D cycle in therD affine plane,
the dimension of the configuration space of the lifted
cycle isk + r + 1, then therigidity of the cycle is
defined to be−k, and theflexibility of the cycle is
defined to bek. A cycle of rigidity 0, or−1, or < −1
is said to berigid, or elastic, or plasticrespectively.

For example, ifr = 2, a 1D cycle ofk + 3 non-
collinear vertices has rigidity−k, see Figure 4. How-
ever, most rigid cycles are not boundaries of sim-
plices. For example, the boundary of any column or
wedge is a 2D rigid cycle.

A

B C

D

E F

G

H

I

J K

L

Figure 4: Rigidity of 1D cycles: rigid (left), elastic (middle)
and plastic (right).

Our principle of rigidity is that rigid cycles are al-
ways identified as faces, and elastic cycles are more
likely to be faces than plastic ones. The explanation
is as follows:
1. Rigid cycles are boundaries of either real or interior

faces of the object. If they are all assigned as faces,
they never force any two faces of different planes
to be coplanar. If the object is not assumed to be a
manifold, then taking all rigid cycles as real faces
conforms to the principle of psychological selec-
tion.

If the object is required to be a manifold, then tak-
ing all rigid cycles as real faces induce a decompo-
sition of the object into smaller ones of the same di-
mension, and by our manifold assembly algorithm
to be introduced in the next section, all interior
faces can be removed.

2. Elastic cycles are next to rigid ones in simplicity.
Experiments show that they are the next most plau-
sible face candidates.

3 NEW TECHNIQUES AND
ALGORITHM FOR
COGNITION

Below we propose several new techniques for struc-
tural reconstruction based on the above perception
principles. Without loss of generality, we only de-
scribe the classical case of finding 1D cycles in 2D
face identification.

3.1 Localization

To speed up the finding of the highest dimension, we
propose to search for the cycleslocally in the wire-
frame, then propagate the result to construct more cy-
cles. This technique proves to be effective also in re-
ducing the number of redundant cycles.

Let C be a wireframe model. Alocal wireframe
modelof C is a subset of the vertices ofC together
with all the higher dimensional faces formed by the
subset of vertices. Alocalization filter, or localiza-
tion, of C is a sequence of local wireframe models
S1 ⊂ S2 ⊂ . . . ⊂ Sk = C in which each successor
introduces more vertices than its predecessor. With
the introduction of new vertices, all the edges among
them and the existing vertices are introduced.

Localization is often realized bypropagation
through edges. Starting from a vertex called theori-
gin, we localize the wireframe by considering only
the subgraph of the origin and its neighboring ver-
tices. Within the local wireframe we identify the
faces. Then we set the origin to be the current local
wireframe, and repeat the localization and identifica-
tion procedure. By introducing new vertices accord-
ing to the closeness of their relations with the existing
ones and the rigidity of the cycles formed by them,
the complexity of cycle searching can be reduced.

In Figure 5(a), a localization goes as follows:

{1} ⊂ {1, 2, 3, 4} ⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}
⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9, 0, a, b, c}.
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Figure 5: Localization, deletion and blocking.

3.2 Deletion

To further control the number of face candidates,
we propose two techniquesdeletionandblocking, to
reduce the scope of cycle searching by deleting or
blocking the branches that do not produce any new
face candidates.

For a general object, the criterion for an edge to be
deletable is thatthe deletion does not influence the fi-
nal identification of 2D faces and polyfaces. By our
principle of psychological selection, an edgeE in the
procedure of localization can be deleted if by assign-
ing any new cycle through it as a face, (1) the num-
ber of non-coplanar faces does not increase, (2) if any
new vertexV is to be added into the polyface con-
taining the face, there is always a cycle of edges in
the polyface that passes throughV but not E, i.e.,
deletingE does not preventV from joining the poly-
face via a cycle of edges. The following theorem can
be proved within graph theory.

Deletion Theorem. In cycle searching, if for an
edgeE not collinear with any other edge, all its
neighboring edges are already in faces containing
edgeE, thenE can be deleted. Such an edge is said
to be saturated.

In Figure 5(a), if three cycles125a04, 138c94
and126b73 are already assigned as faces, then edges
12, 13, 14 are saturated and can be deleted. Then ver-
tex 1 is no longer connected to any other vertex and
can be deleted. See Figure 5(b).

3.3 Path Blocking

In Figure 5(b), the vertices in the localization form
a big cycle25a049c837b6. This cycle cannot be a
face, otherwise all three constructed faces have to
be merged. In searching for more face candidates
passing through a fixed vertex, those faces having
been identified can block off some search branches
by avoiding identified faces to merge, according to
our principle of psychological selection. This tech-
nique is extremely useful in reducing the number of
branches in cycle searching.

For a general object, if a branch of edges intersects
a face at least at three vertices which are not collinear,
then the branch is blocked by the face. The block is
called aface block. If a branch meets two different
face blocks, then it is blocked permanently. If along a
branch there is only one face block, then the branch of
edges can be merged with the face to form a polyface.

In Figure 5(b), suppose we want to find a new cy-
cle passing through vertex 2. From 2 to 6, the path
is blocked by face62137b. From 2 to 5, the path
is blocked by face04125a. The two different face
blocks permanently block any new cycle from pass-
ing through branch 625.

In (Liu et al., 2002), the models are 2D manifolds in
which no two neighboring faces are coplanar. If a cy-
cle is identified as a face then no other branch passing
through two edges of it can generate a face. Here one
face suffices to block off the branch permanently. For
a general object, this single blocking does not work.

There are other types of blocks. The 2D non-self-
intersection constraint can block some branches per-
manently. The blocks are calledintersection blocks.
The 2D non-interior-intersection constraint can block
some branches from including the interior of an exist-
ing face. The blocks are calledinterior blocks. The
2D chordless constraint can permanently block some
branches from generating cycles with chords. The
blocks are calledchord blocks.

3.4 Manifold Assembly

In many applications it is required that the object be a
2D manifold. For this special purpose, there are two
alternatives to revise our general-purposed structural
reconstruction algorithm:

Anterior Approach: Employ the a priori constraints
of a 2D manifold in the general algorithm from
the start, by revising the localization, deletion and
blocking techniques accordingly (Liu et al., 2002).

Posterior Approach: Use the general algorithm to
produce a set of 3D faces which are themselves 2D
manifolds. Assemble the 3D faces into a single 2D
manifold. This approach, calledmanifold assem-
bly, appears to be more efficient than the previous
one.

Our manifold assembly algorithm follows a local
propagation approach, and employs the following 2D
manifold assembly principles:

Principle 1. (Face assembly)If two 3D faces inter-
sect at a 2D face whose edges are of degree greater
than two, then the 3D faces can be assembled at the
2D face by removing it; if one edge has degree two,
then one 3D face must be deleted.

Remark: For a set ofrD faces, thedegreeof an
(r − 1)D face with respect to the set is the number
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Figure 6: Manifold assembly principles.

of elements in the set passing through the(r− 1)D
face.

For example, in Figure 1 we can assemble columns
F1F1′F1′′ andF1′′F2′′F3′′ , and denote the result by
O. Then faceF1′′ is deleted, and its neighbors
F1, F1′ , F2′′ , F3′′ each have a degree-2 edge. The
four neighbors disallow the other four columns to be
annexed toO. As a result, vertexV1′′ is absent from
O. AlthoughO itself is a 2D manifold, it does not
provide the whole line drawing with such an explana-
tion.

Principle 2. (Edge assembly)If two 3D faces inter-
sect at an edgeE but not at any 2D face, then they
can be assembled at the edge if and only if within
the line drawing, a 2D faceF1 atE in one 3D face
is within the 2D region of a 2D faceF2 at E in
the other 3D face. If no such two 2D faces then
one 3D face must be deleted; else the assembling
is realized by replacing the two 2D faces by their
difference in the polyface generated by them.

For example, in Figure 6(b) cubeABCDEFGH
and tetrahedronIJKL share a common edgeIJ .
FaceIJK can be merged into either faceBCEG or
faceABGH. On the other hand, faceIJL can only
be merged into faceBCEG. As a result, faceIJK
can only be merged into faceABGH.

Principle 3. (Vertex assembly) If two 3D faces in-
tersect at a vertexV but not at any 2D face or edge,
then they can be assembled at the vertex if and only
if within the line drawing, a 2D faceF1 at V in
one 3D face is within the 2D region of a 2D face
F2 at V in the other 3D face. If no such two 2D
faces then one 3D face must be deleted; else the
assembling is realized by replacing the pair of 2D
faces by their difference in the polyface generated
by them.

For example, in Figure 6(a) cube12345678 and
tetrahedron3abc intersect at vertex 3. Face 2376 can
be merged with either face3ab, or face3ac, or face
3bc, leading to three different manifold structures.

Principle 4. (Empty assembly) If two 3D faces do
not intersect, then they can be assembled at two 2D
faces if and only if one 2D face is within the 2D

region of the other 2D face. To assemble the two
3D faces is to replace the pair of 2D faces by their
difference in the polyface generated by them.

For example, in Figure 6(a) cube12345678 and
cubeABCDEFGH can be assembled at either the
pair of faces(1234, ABCD), or the pair of faces
(1584, ABCD), leading to two different manifolds.

Principle 5. (Orientation assembly) If two 3D
faces are assembled then their orientations must be
compatible at their common 2D faces.

For example, in Figure 6(b) cubeABCDEFGH
and columnNOPQRS can be assembled in four dif-
ferent ways:

(1) (ABCD,NOP ) and(EFGH,QRS),
(2) (ADFH,NOP ) and(EFGH,QRS),
(3) (ABCD,NOP ) and(BCEG,QRS),
(4) (ADFH,NOP ) and(BCEG,QRS).
In assemblings (2) and (3) the orientations of the

cube and the column are incompatible at their com-
mon faces, so only assemblings (1) and (4) are al-
lowed.

3.5 The Main Algorithm – nDView

Input: (1) a 2D line drawing composed of vertices
and edges. A vertex is represented by its 2D coor-
dinates, an edge by two vertices.
(2) A set of lines. A line is represented by a se-
quence of collinear edges.
(3) A vertex as the origin of localization.

Output: Objects of dimension> 1: faces and poly-
faces.

Initialization: Find all pairs of edges intersecting not
at a vertex.

Step 1. Localization start: Start from the origin,
use localization to generate a set of new vertices.

Step 2. Cycle searching:Generate faces by the
depth-first cycle searching strategy, together with
the deletion and blocking techniques.

Step 3. Dimension upgrading:Start from the 2D
local wireframe constructed so far, construct higher
dimensional faces in a hierarchical order, following
a procedure similar to Steps 1 to 3.

Step 4. Assembling:It occurs if the result is re-
quired to be a manifold of given dimension. The
assembling is also local.

Step 5. Localization end: Go back to Step 1 for an-
other round of localization. Terminate after all ver-
tices are included.

Step 6. More solutions and completeness:Explore
thestate-space treesto get more (or all) solutions.
The vertices of therD state-space tree arerD
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non-rigid cycles with theirstates. A vertex here
has two states: either the cycle is identified as a
face, or not allowed to be a face. A descendent
of a vertex in the tree is a cycle found after the
vertex (cycle with a state) has been found in the
localization.

Remark. (1) Although a specific set of 2D co-
ordinates are given in the input, they are used
only to test the inequalities occurring in the 2D
non-self-intersection constraint, the 2D non-interior-
intersection constraint and the 3D assembly. A solu-
tion based on these coordinates is acceptable as long
as the polyhedral structures are compatible, no matter
if the coordinates satisfy the realizability conditions
for nD geometric reconstruction. This is true for all
face identification algorithms in the literature.

(2) The main algorithm above improves the practi-
cal efficiency but not the theoretical one. Step 6 is a
procedure having double exponential complexity for
a fixed dimensionr. For the examples tested in our
experiments, the algorithm can always find a solution
reaching the maximal dimension without resorting to
Step 6. if a different solution is needed, then chang-
ing the origin of localization in the imput is usually a
better option than carrying out Step 6.

3.6 Experiments

We have implementednDView in VC++ 6.0,
have tested all the examples in (Agarwel and
Waggenspack, 1992), (Liu and Lee, 2001), (Liu et al.,
2002), (Shpitalni and Lipson, 1996), etc., in addition
to a dozen higher dimensional ones designed by our-
selves, e.g. the line drawings in Figure 7.
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Figure 7: 4D cube (a); 5D polytope (b); 4D polytope (c);
5D polytope (d).

For the classical casem = n = 3, we make com-
parison between our algorithm and the existing fastest

algorithm for face identification of 2D manifolds (Liu
et al., 2002), using the steam box model shown in
Figure 8(a) and a sequence ofN steam boxes con-
nected by cubes as typical 2D manifolds of genusN .
The reason for this choice is that Figure 8(a) is the
most complicated example in (Liu et al., 2002) and
about half of the cycles constructed there are redun-
dant ones, in sharp contrast to all other examples in
that paper.
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Figure 8: Face identification.

The following table collects some data from our ex-
periment. In the table, by “global search” we mean
the algorithm in (Liu et al., 2002), by “local search”
we mean our algorithmnDView. The table reveals
that for very smallN our algorithm runs a little bit
slower, but very soon with the growth ofN , our algo-
rithm runs much faster. Forn = 100 our algorithm
runs more than 100 times faster than the algorithm in
(Liu et al., 2002). Figure 9 in the next page shows the
comparison of the computing time graphically. The
tests are made on an HP Desktop PC of Intel 3.40GHz
CPU and 1GB RAM.

N Global search Local searchG : L
timeG (sec.) timeL (sec.)

1 0.006 0.025 0.24
10 6.172 1.890 3.26
20 23.796 7.094 3.35
30 189.589 16.687 11.36
40 450.031 31.687 14.20
50 1165.547 53.077 21.96
60 1745.013 81.578 21.39
70 2383.511 118.328 20.14
80 4513.983 165.358 27.29
90 16148.985 230.562 70.04
100 41327.325 320.765 128.83
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4 CONCLUSION

In this paper, we study the problem of machine per-
ception ofnD polyhedral scenes from a single 2D line
drawing. We propose a number of efficient techniques
for the structural reconstruction. By testing them with
classical 3D examples, we find their superiority over
existing ones. The work should prove to be valuable
for high-dimensional scientific and artistic visualiza-
tions.

N: number of steam boxes
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Figure 9: Comparison of computing time: local search
(solid line) vs global search (dashed line).
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