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Abstract: Local anomaly detectors have become quite popular for applications requiring hyperspectral (HS) target 
detection in natural clutter background assisted by an image analyst. Their popularity may be attributed to 
the simplicity of the algorithms designed to function as such. A disadvantage of using such detectors, 
however, is that they often produce an intolerable high number of detections per scene, which—according to 
image analysts—becomes a nuisance rather than an aiding tool. We present an effective local anomaly 
detector for HS data. The new detector exploits a notion of indirect comparison between two sets of samples 
and is free from distribution assumptions. The notion led us to derive a compact solution for a variance test, 
in which, under the null hypothesis, the detector’s performance converges to a known distribution. 
Experimental results using both simulated multivariate data and real HS data are presented to illustrate the 
effectiveness of this detector over five known alternative techniques.  

1 INTRODUCTION 

Local anomaly detectors have become quite popular 
for applications requiring target detection in natural 
clutter background assisted by an image analyst. 
Their popularity may have been attributed to the 
simplicity built into these algorithms. Detectors from 
this family search the pixels of sensor imagery for 
rare pixels whose information significantly differs 
from the local background. These detectors then are 
poised to find both known and unknown target 
types. The disadvantage, however, is that they often 
produce an intolerable high number of detections per 
scene, which according to image analysts becomes a 
nuisance rather than an aiding tool.  
 

Recently, the use of hyperspectral sensor 
imagery (HSI) has also gained renewed attention in 
the target detection community. Its popularity over 
broadband imagery (e.g., forward looking infrared) 
is due to the fact that these passive sensors 
simultaneously record images for hundreds of 
contiguous and narrowly spaced regions of the 
electromagnetic spectrum. Each image corresponds 
to the same ground scene, thus creating a cube of 
images that contain both spatial and spectral 
information about the objects and backgrounds in 
the scene. HSI has been used in various fields 

including geology, urban planning, geography, 
cartography, and the military (Schowengerdt, 1997). 
A host of different types of anomaly detectors and 
their performances in HSI are discussed in 
(Manolakis, 2002), (Kwon, 2003), (Schweizer, 
2000), and (Yu, 1997).  

 

Our recent interest has been on a general idea for 
anomaly detection, one that performs a comparison 
between two observations by an indirect means. The 
implementation of this idea has the potential to 
preserve the number of meaningful anomaly 
detections and to significantly reduce the number of 
meaningless anomaly detections. Fig. 1 clarifies this 
principle. 

 

Comparing two samples from digitized imagery 
often yields three particular study cases: (1) results 
from two relatively pure samples belonging to the 
same population (Y in Fig. 1), (2) results from two 
relatively pure samples belonging to distinct 
populations (X and Y), and (3) results from a 
composite sample (XY mixture) and a single 
component (e.g., Y) sample of that mixture.  For 
example, a comparison between two observations 
sampled from the same tree class falls under case 1, 
a comparison between a sample from a ground 
vehicle and a sample from a local grass falls under 
case 2, and a comparison between a sample with two 
components (e.g., a tree & its shadow) and a sample 

277
Rosario D. (2006).
A NOVEL ASYMMETRIC VARIANCE-BASED HYPOTHESIS TEST FOR A DIFFICULT SURVEILLANCE PROBLEM.
In Proceedings of the First International Conference on Computer Vision Theory and Applications, pages 277-284
DOI: 10.5220/0001360802770284
Copyright c© SciTePress



from one of these components (e.g., shadow) falls 
under case 3.   

 

Using a conventional dual rectangular window 
(see Fig. 2) to sample locally the imagery, one can 
readily verify that case 3 appears quite often and is 
arguably responsible for generating a high number 
of nuisance detections. The reason is that region 
discontinuities are abundant in scene imagery. Local 
anomaly detectors based on conventional statistical 
methods tend to declare a spectral sample near a 
transition of spectral class regions as a local 
anomaly. This declaration is correct in the statistical 
sense, but also unfortunate, because a local anomaly 
detector seems to behave more like an edge detector.   

F
Figure 1: The number of nuisance detections may be 
significantly reduced by comparing, instead, the union of 
candidate samples to one of the candidates. Another 
advantage of using this principle is that the number of 
meaningful detections is preserved. 

 
We can convert this weakness to strength by 

comparing in some form the union of the two 
samples to one of the individual observations.  Fig. 1 
depicts the notion of this indirect approach and its 
relevance to comparing two samples. Using this 
notion, it is plausible that results for cases 1 and 2 
would be unaffected in the statistical sense, but that 
results for case 3 would be affected, as shown, 
because the construction of a new sample (consisting 
of both XY and Y) merely adds more evidence about 
Y, making the original composite sample XY a softer 
anomaly in respect to the combined sample XYY.  

 

The focus in this paper is to propose a compact 
anomaly detector that exploits the principle of 
indirect comparison depicted in Fig 1. This new 
detector is based on a nonparametric model and has 
an asymptotic behavior of the chi square distribution 
with 1 degree of freedom. For convenience, this 
detector will be referred to as the Asymmetric 
Variance Test (AVT) detector.  

 

This paper is organized as follows: Section 2 
formulates the technical problem. Section 3 proposes 

the AVT detector. Section 4 describes alternative 
techniques. Section 5 compares results between the 
AVT detector and alternative techniques using 
simulated multivariate data and real hyperspectral 
(HS) data. Section 5 concludes the paper. 

2 PROBLEM FORMULATION 

Let B be the clutter background of a simulated 
multispectral cube having size r x c x b. Let B 
consist of highly correlated but distinct multivariate 
random samples of multiple homogeneous classes Ck 
(k = 1, …, nc).  

 

Now consider a dual rectangular window, as 
shown in Fig. 2 (top) and in Fig 2 (bottom) as dotted 
boxes at positions a and b, separating the local area 
into two regions—the inner window region (Win) and 
the outer window region (Wout). This dual window 
will slides concentrically across the area r x c in 
each simulated cube, such that, at each discrete 
position in the imagery, multivariate vector samples 

[ ]tx pbppp xxx 020100 ,,, L=  (p = 1, … n0) that are 
viewed within Wout will be compared in some form 
to multivariate vector samples 

[ ]tx qbqqq xxx 121111 ,,, L=  (q = 1, … n1) that are 
viewed within Win. The size of the dual window is 
set such that the Win encloses a target sized region 
and the Wout includes its surrounding region. If the 
dual window is placed within a spatially 
homogeneous region consisting of similar types of 
materials, such as natural backgrounds, the statistical 
characteristics of samples that are observed within 
Win and Wout will be similar to each other. Samples 
within Win and Wout will contain significantly 
different statistical features, if the dual window is 
centered on a region where a target, for instance, is 
surrounded by its local background. Use of 
appropriate cutoff thresholds on anomaly detectors’ 
outputs would allow most targets to be detected as 
local anomalies, but unfortunately a high number of 
detections is attributed to background responses. 

 

A proportionally sized dual rectangular window 
with respect to the cubes’ sizes is shown at different 
positions on B, see Fig. 2 (bottom). Depending on 
the detection technique being used, these 
multivariate samples p0x  and q1x  will be 
transformed into two sequences 

( )
00010   ,    , nxxx L=  and ( )

11111   ,    , nxxx L=  for 
comparison. This transformation is discussed next. 
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In general, local spectral information in HS data 
is highly correlated, so, to promote statistical 
independence, which will be assumed in our model, 
we propose a two step pre-processing stage for the 
data: (1) differentiate p0x  and q1x  to yield  

[ ]t
)1(0010200 ,, −−−=Δ bppbppp xxxx L  (p = 1, … 

n0) and  [ ]t
)1(1111211 ,, −−−=Δ bqqbqqq xxxx L  (q 

= 1, … n1), and  1
1
∑
=

Δ=Δ
kn

i
ki

k
k n

; and (2) apply 

the following metric, 

        ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ΔΔ
ΔΔ

=
ki

k
t

i
kix

0

0arccos180
π

         (1) 

where k = 0,1; the operator || z || denotes the squared 

root of ztz; and 
t][ ⋅ denotes the vector transpose 

operator.  

 
     Cube B                TRUTH               Cube BT 
Figure 2: Training cube B , shown as the average of five 
planes, will be used to obtain cutoff thresholds for 
multiple simulated realizations of testing cube BT , also 
shown as the average of five planes. The testing cube is 
considered a challenging target background configuration 
for conventional anomaly detectors because some of 
background stripes’ sizes correspond to the size of the 
inside window. The ground truth mask is a binary image, 
where bright square rectangles representing values of 1 
validate target locations. Targets labelled differently (e.g., 
T1 versus T3) have different statistical characteristics. 
 

Using (1), let x0 denote the reference feature 
vector, x1 the test feature vector, and let both vectors 
be distributed (~) by unknown joint distributions f0 
and f1, respectively, or    
               (x)fxxx n 11111  ~  ),...,(

1
=            (2) 

               , ~ ),...,( 00010 0
(x)fxxx n=             (3) 

where, n0  =  n1  in this particular implementation. 

 

     The dual window is expected to systematically 
slide across the imagery and at each location will 
pose this question: Do x0 and x1 belong to the same 
population, or class, in the feature space? If the 
answer is no, the test sample will be labelled as an 
anomaly with respect to its surroundings at that 
location. Random vectors x0 and x1 are inputs to the 
model discussed next. 

3 PROPOSED DETECTOR 

We propose in this section the asymmetric variance 
test (AVT) anomaly detector. Let random variables 
x0 and x1 be observed according to the model 
        , ~   ),...,( 11111 1

(x)g iidxxx n=       (4) 

       , ~  ),...,( 00010 0
(x)g iidxxx n=        (5) 

where, x0 (test sample of size n1) and x1 (reference 
sample of size n0) are independent, g1 and g0 are 
unknown, and 

    ,    , 2
1111 ∞<== σμ jj xVarEx    (6) 

    ,    , 2
0000 ∞<== σμ jj xVarEx    (7) 

                      ( ) .2
0

2
00 ∞<=− ζμjxVar         (8) 

     Now, consider the null hypothesis 
            ( ).0      : 2

00 >= ττσH                (9) 

 

In (9), we would like to test the hypothesis that 
the variance from a reference sample is equal to an 
arbitrary positive value. At a first glance, the null 
hypothesis does not seem too effective, as a 
discriminant feature, because τ  can take any 
positive value, and additionally the variance, as a 
discriminant feature, does not account for the mean, 
which itself can be another discriminant feature. 

 

However, one can cleverly incorporate the 
indirect comparison approach discussed earlier to 
test (9), designing in the process a rather effective 
anomaly detector. A solution follows. 

 

Let the combined sample be represented by 
  ( ) ( ),,...,,,...,,...,

10 1110011 nnn xxxxttt =≡     (10) 
where, n = n1+n2, and lets assume that its 
components have the same variance, i.e., 

( ) ∞<= 2

uktVar σ . The last assumption may not be 

satisfied for all t, but would certainly be satisfied 
when x0 and x1 are sampled from the same 
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population, in which case one could set 2ˆuστ =  in 

(9), where 2ˆuσ  estimates 2
uσ . 

 

Denoting the symbol >>  as much greater then, 
and ≈  as approximately equal to, the implications of 
setting 2ˆuστ =  for the study cases shown in Fig. 1 
are as follows:  
Case 1: Yx ∈0 , Yx ∈1 , thus, 2

0
2ˆ σσ ≈u  (non-

anomaly). 
Case 2: Xx ∈0 , Yx ∈1 , thus, 2

0
2ˆ σσ >>u   (strong 

anomaly, especially for tight distributions having μ0 
significantly different from μ1). 
Case 3: XYx ∈0 , Yx ∈1 , thus, 2

0
2ˆ σσ <u  or 

2
0

2ˆ σσ ≈u   (softer anomaly, as the union 10   U xx  
merely adds more evidence about Y, retaining the 
overall characteristics of the original mixture x0). 

 

Without the Normality assumption in (4) and (5), 
deriving a test for the null hypothesis in (9) can be 
quite difficult. But as we anticipate a relatively large 
sample size in HSI, we shall rely on the central limit 
theorem (CLT) (Casella, 1990) to design the new 
detector.  

 

Using the weak law of large numbers (WLLL), 
see for instance (Casella, 1990), the set of 
parameters ( )2

00  ,σμ  can be estimated by the 
following consistent estimators: ( )2

00  , sx , 
respectively, where 

            ( )
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                      Following (11), under general regularity 
conditions and using the denotations in (4), CLT 
ensures that the random variable z1, below, 
converges in law to the standard Normal distribution 
[N(0,1)], as the sample size 0n  increases, or   

         ).1,0(
02

0

22
0

01 Nsnz n
o

⎯⎯⎯ →⎯ ∞→
−

=
ζ
σ          (12) 

To estimate 2
0ζ  using a consistent estimator 

( )2
0

ˆζ , consider this rationale: Let 

( )2
00 μϑ −= jj x  and note that, based on (7) 

and (8), ( ) 2
0σϑ =jE  and ( ) .2

0ζϑ =jVar  A 

consistent estimator of ( )jVar ϑ  then would 
qualify for application in (12). An obvious estimator 

of ( )jVar ϑ  is 
( )

∑
= −

−
=

0

1 0

2

1
ˆ

n

j

j

n
V

ϑϑ
ϑ , where ϑ  

is the sample average using all jϑ ’s. Notice that 

ϑV̂  can be also expressed by the following 
decomposition 

( ) ( ){ }∑ =

−− −−−−= 0

1

22
0

22
0

1
0

1
00 )1(ˆ n

i innnV σϑσϑϑ , 
where the normalized summation term (which does 

not includeϑ ) tends to 
2
0ζ  in probability by the 

WLLN, and the term that includes ϑ  tends to zero 

in probability also by the WLLN. Therefore, ϑV̂  is a 

consistent estimator of 
2
0ζ . In addition, using 

results from (11), notice that 2
0s  is also a consistent 

estimator of ( )jE ϑ . We then propose the 
following consistent estimator of 

( )[ ]22
0 jj EE ϑϑζ −=  to be: 
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     Setting 2ˆ uστ =  in (9), where 
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if the null hypothesis in (9) is true, the following 
must also be true 
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ˆ
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02 Nsnz n
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Using properties of the family of chi square 
distributions [see, for instance, (Casella, 1990)], the 
following are also true under the null hypothesis: 

  ( )
,2

12
0

222
0

0
2
2 0ˆ

ˆ
χ

ζ
σ

⎯⎯⎯ →⎯ ∞→
−

== n
u

AVT
s

nzZ    (16) 

where 2
1χ  is the chi-square probability density 

function (pdf) with 1 degree of freedom (dof). 

Testing hypothesis H0 in (9) using (16) 
constitutes the AVT anomaly detector. A decision 
threshold T can be determined via ∫

∞

=
T

dww ,)(2
1 αχ  

where α  is the type I error (i.e., the probability of 
rejecting H0, given that H0 is true). The user chooses 
α , and for values of ZAVT greater then T, hypothesis 
H0 is rejected implying that x0 and x1 are most likely 
sampled from different populations; hence, they are 
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anomalous to each other. Otherwise, they are not 
significantly anomalous to each other. 

 

4 ALTERNATIVE APPROACHES 

A few comments are made in this section on five 
well known alternative techniques, which shall be 
used in this paper for comparison purposes. Their 
mathematical representations are briefly described 
and their references are made to the reader. The 
alternative techniques are known as: RX (reed-
xiaoli), DPC (dominant principal component), EST 
(eigen separation transform), FLD (Fisher’s linear 
discriminant), and ANOVA (analysis of variance). 

 

The RX technique (Yu, 1997), the industry 
standard, is based on the generalized likelihood ratio 
test and on the assumption that the population 
distribution family of both test and reference 
samples are multivariate normal. The FLD technique 
(Kwon, 2003) is also based on the same assumption, 
but differs in its subtleties in answering the question 
whether the test and reference samples are drawn 
from the same normal distribution. The FLD 
technique promotes separation between classes and 
variance reduction within each class. The DPC and 
EST techniques (Kwon, 2003) are both based on the 
same basic idea, i.e., data are projected from their 
original high dimensional space onto a significantly 
lower dimensional space using a criterion that 
promotes highest sample variability within each 
domain in this lower dimensional space. Differences 
between DPC and EST can be appreciated through 
their mathematical representations. 

 

Four of these techniques use multivariate vector 
samples as inputs, see Fig. 2 (top). These detectors 
are defined as: 

  ( ) ( )outin
1

out
t

outin xxCxx −−= −
RXZ ,   (17) 

              ( )outin
t
in xxE −=PCAZ ,                (18) 

             ( )outin
t
ΔC xxE −=ESTZ ,               (19) 

and 
           ( )outin

t
/SS xxE

wb
−=FLDZ ,            (20) 

where 
in

x  is a sample mean vector from a set of 

inside-window vectors (i)

in
x , each having b spectral 

bands; 
out

x  is similar but sampled from the outside 

window (i)

out
x ; 1

out
C

−  is the inverse sample covariance 
using all vectors sampled from the outside window; 

t

in
E  is the highest energy eigenvector of the 
eigenvector decomposition of the inside-window 

covariance; t

ΔC
E  is the highest positive energy 

eigenvector of the eigenvector decomposition of the 
covariance difference (inside-widow minus outside-

widow); and 
t

wb /SSE  is the eigenvector 

decomposition of the scatter matrices ratio 
1

WBSS −
, 
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and 
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where totalx  is the sample average vector using all of 
the samples from the inside and outside windows, 
and nin and nout are the sample size of the inside and 
outside windows, respectively. For additional details 
on these detectors, see (Kwon, 2003). 

 

Our interest in having a well known method 
operating in the same feature space of the new 
detector’s feature space motivated us to adapt the 
ANOVA method into anomaly detection. In the 
context of our discussion, using sequences (4) and 
(5) as inputs, the ANOVA detector is defined as 

         
( )

2

1

0

2
0

 
S

xxn
Z i

i
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∑
=

−
=             (23) 

where, ix  (i = 0, 1) are the sample means of (4) and 
(5), also from (4) and (5) 
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and using a version of (11) for x1, the pooled 
variance can be defined as 

)1()1(
)1()1(

00

2
00

2
102

−+−
−+−

=
nn

snsnS .       (25) 

To the best of our knowledge, the ANOVA 
method was never applied to the problem in context. 
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5 COMPARATIVE RESULTS 

In this section we describe the implementation and 
results for two experiment types, one using 
simulated multivariate data and another using real 
hyperspectral data. 

5.1 Simulated Multivariate Data  

Let a background B  consist of six classes 

54321 ,,,, CCCCC  and 6C , and be constructed 
using highly correlated, normally distributed 
multivariate samples, as follows  

( ) ( ) ( )
( ) ( ) ( ),,~  ,,~  ,,~

,,~  ,,~  ,,~

665544

332211

ΣΣΣ
ΣΣΣ

μμμ
μμμ

NCNCNC
NCNCNC  (26)                                                         

where, “~” denotes “is distributed as,” and the 
parameters in (26) are specified as 
 

    

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Σ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000.101421.140000.201421.140000.10
1421.140000.202843.280000.201421.14
0000.202843.280000.402843.280000.20
1421.140000.202843.280000.201421.14
000.101421.140000.201421.140000.10

    ;

650
660
720
640
630

1μ

 

 

and 30012 −= μμ , 78013 −= μμ , 

140014 += μμ , 80015 −= μμ , and 

200036 += μμ . 

 

Background configuration B  was constructed to 
form a total volume of 256 x 256 x 5 using 
simulated realizations of the six classes, as shown in 
Fig 2 (bottom). The column widths of narrow stripes 
in B  were chosen to match the column width of Win 
(inside window), see Fig. 2. For targets, five 
different multivariate random variables were 
specified, ,4,3,2,1 TTTT  and 5T ; they were 
specified as follows: 

( ) ( ) ( )
( ) ( ),,~5  ,,~4          

,,~3  ,,~2  ,,~1

54

321

ΞΞ
ΞΞΞ

ττ
τττ

NTNT
NTNTNT    (27)                                           

where, 60011 −= μτ , 200012 +=ττ , 

205013 +=ττ , 5014 +=ττ , 10015 +=ττ , 

and, for simplicity, the correlations imbedded in Ξ  
were all equal to 1, and the variances were all equal 
to 100. Targets were constructed to form sub-
volumes of constant space size 9 x 9 x 5 using 
simulated realizations as specified in the third 
dimension. Samples of BT  cube were formed by 
simulating realizations of B  and adding (9 x 9 x 5) 

subcubes of simulated realizations of 
,4,3,2,1 TTTT and 5T , as shown in Fig. 2. 

 

Details on the information presented in Table 1 
and Fig. 3 are discussed next. In order to estimate 
type I and type II errors, a 2 dimensional (2D) mask 
was required to validate the spatial location of 
targets in the simulated imagery. This mask is binary 
and often referred to in the target community as 
ground truth, see Fig. 2.  
 

Table 1: Confidence Intervals (95% CI). 
 

Alg      Type I Error  
        95% CI 

1.0 – Type II 
Error 95% CI 

 LB    UB   LB   UB 

 
 
AVT 
 
 

0.111715   
0.011173  
0.001400 
0.000802 
0.000788 

0.112103   
0.011399 
0.001496 
0.000817 
0.000794 

1.000  
1.000  
1.000 
1.000   
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 

 
 
RX 
 
 

0.101381   
0.009608   
0.000851  
0.000921 
0.000074 

0.101805   
0.009831 
0.000861  
0.000923  
0.000079 

1.000   
1.000 
0.700   
0.500 
0.500 

1.000   
1.000 
0.700  
0.500  
0.500 

 
 

FLD 
 
 

0.101444   
0.010374 
0.001120 
0.000072 
0.000019 

0.101535   
0.010522 
0.001279 
0.000112 
0.000042 

0.667   
0.500 
0.500  
0.500  
0.500 

0.667   
0.500 
0.500 
0.500 
0.500 

 
 
Anova 
 
 

0.100254  
0.009011   
0.000978 
0.000077 
0.000032 

0.103467   
0.009827 
0.001151 
0.000107   
0.000050 

1.000   
0.500 
0.500   
0.500 
0.500 

1.000   
0.500 
0.500   
0.500 
0.500 

 
 

EST 
 
 

0.101303   
0.010374 
0.001120   
0.000072 
0.000019 

0.101394   
0.010522 
0.001279   
0.000112 
0.000042 

0.700  
0.300 
0.300   
0.300 
0.300 

0.700   
0.300 
0.300   
0.300 
0.300 

 
 

DPC 
 
 

0.101444   
0.010374 
0.001120   
0.000072 
0.000019 

0.101535   
0.010522 
0.001279   
0.000112 
0.000042 

0.667  
0.500 
0.500 
0.500 
0.500 

0.667   
0.500 
0.500 
0.500 
0.500 

 
In a nutshell, a detector tests a simulated cube 

producing a 2D output surface of real values. A 
detector-corresponding cutoff threshold, which is 
based on a specified type I error and which is 
relevant to the cube’s background excluding targets, 
is applied to that surface, such that, pixel values that 
are above the threshold and which fall within target 
regions, as validated through a corresponding 
ground truth mask, are considered a correct target 
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detection; otherwise, they are considered a false 
detection. These measures can be converted into 
type I and type II errors by estimating the probability 
of correct target detection, which is equivalent to 1 
minus type II error, and by estimating the probability 
of false detections, which is equivalent to type I 
error.     
 

              
Figure 3: Examples of output surfaces (3D view). 

  
A single simulated realization of the background 

configurations B  was used to obtain cutoff 
thresholds based on the following set of desired 
Type I errors:  

( ).10 ,10 ,10 ,10 ,10 54321 −−−−−=α            (28) 

 

Type I errors were estimated for each detector 
using their corresponding sets of cutoff thresholds 
on their output surfaces after testing each detector on 
M = 1500 simulated realizations of BT . 

 

A generic null hypothesis 
0H  can be stated for 

this simulation as follows: At any given location in a 
simulated cube, samples observed in inW  belong to 

the same class of samples observed in outW . The 
lower bound (LB) and upper bound (UB) confidence 
intervals (CI) are sown in Table 1. 

 

     In order to gain a better appreciation for the 
differences in performance among different 
detectors, see examples output surfaces (3D viewing 
perspective) shown in Fig. 3 

5.2 Real Hyperspectral Data  

Data from the well known Hyperspectral Digital 
Imagery Collection Experiment (HYDICE) sensor—
a U.S. Air Force Sensor—were used to compare the 
anomaly detectors in this paper. The imagery used is 
from the so-called Forest Radiance I (FR-I) dataset 

and the spectral average (from 150 bands) of the 
sub-cube in reference are shown in Fig. 2 (far left), 
as a two dimensional (2D) image. In FR-I, 14 
stationary motor vehicles can be observed on sparse 
grasses, near a forest in Aberdeen, Maryland, U.S. 
The vehicles in FR-I are considered the targets in 
this dataset. 

 

Effective local anomaly detectors are expected to 
accentuate objects in the scene that are significantly 
anomalous to their immediate surroundings and to 
suppress noise. Noise in this context also includes 
strong responses due to a major transition in local 
regions (e.g., grass and shadow). 

 

Examples of 2D output surfaces are shown in 
Fig. 4 for the six detectors on HYDICE FR-I data. 
These surfaces are displayed in Fig. 4 using the 
same colormap (false color), where stronger 
intensities depict stronger evidences of local 
anomalies.  
 

 
Figure 4: Decision surfaces for the HYDICE FR-I data, 
forest radiance. The intensity of local peaks reflects the 
strength of anomaly evidences as seen by different 
detectors. 
  

Fig. 5 presents output surfaces of the industry 
standard RX detector and the new AVT detector, as 
both these detectors are applied to a difficult 
surveillance problem: Ground to Ground (GG) 
anomaly detection. The difficulty with this problem 
is that, since both a potential target and the viewing 
sensor are found approximately at the same ground 
elevation, the range between targets and sensor are 
unknown, which means that targets’ sizes are 
unknown. Additionally, targets may be found in 
concealment, e.g., targets in tree shadows. 

 

     To handle the GG detection difficulty, the outside 
window was eliminated, and two spectral sample 
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sets (see square boxes in Fig. 5, top scene) were 
made available to the detectors to represent samples 
viewed by the outside window. (Notice that in the 
GG problem the outside samples are fixed, while the 
inside samples will change from location to location, 
as the inside window slides across the imagery). 
This is a contrast to the high altitude problem 
discussed earlier. 
 
        SCENES                RX                    AVT 

 
Figure 5. Ground to ground anomaly detection. 

 
The criteria for selecting the fixed outside samples 
were based on the abundance level of particular 
types of background objects, e.g., in those scenes 
shown in Fig. 5, the two most dominant (abundant) 
objects in their background are general terrain and 
tree leaves, see Fig. 5. The first scene (column 1, 
top, in Fig. 5) has two ground vehicles and a person 
between these vehicles. The second scene (column 
1, center) has a ground vehicle and a person in its 
vicinity. The third scene (column 1, bottom) has a 
person and a ground vehicle in tree shadows. 

 

So, for a given detector, a set of 100 spectral 
samples of terrain and another of tree leaves were 
presented as sample references R1 and R2, as they 
will be compared to samples W viewed by the inside 
window at a give location (i,j) in the imagery. 
Denote OUTPUT(i,j) the final output result for this 
detector at location (i,j), such that OUTPUT(i,j)  is 
equal to the minimum between D1 and D2, where 
D1 is the detector’s testing result between R1 and W, 
and D2 is the detector’s testing results between R2 
and W. The OUTPUT surface for the RX and AVT 
detectors are shown in Fig. 5, as these detectors 
tested the scenes shown in the first column. The 
output surfaces show that the AVT anomaly detector 
can suppress the background and accentuate the 
presence of the ground vehicles and the person in 

those scenes, while the industry standard anomaly 
detector can not.   

6 CONCLUDING REMARKS 

We have presented a new local anomaly detector for 
hyperspectral sensor imagery. The new detector 
(AVT) exploits a notion of indirect comparison 
between two sets of samples and yields an 
asymptotic behavior, under the null hypothesis, of 
the chi-square distribution with 1 degree of freedom. 
The AVT detector is simple to implement and has 
shown to be very effective accentuating meaningful 
local anomalies, while suppressing meaningless 
local anomalies in challenging scenes. Results from 
this paper elevate the role of anomaly detection from 
mere screening (a low impact practical value) to an 
effective focus of attention (a high impact practical 
value). 
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