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Abstract: This paper presents the methods for both data processing and compact representation of measured isotropic 
spectral BRDF. For the data processing, we develop a numerical method for filtering the noises, re-sampling 
the data from non-uniform sampling to uniform sampling, and interpolation. For the compact representation, 
we propose a method to represent the spectral BRDF in both the spectral and spatial domains. In spectral 
domain, for each pair of the incident and outgoing directions, we represent the spectral BRDF with Fourier 
coefficients. In spatial domain, for all the outgoing directions of a given incident direction, we represent the 
same-order Fourier coefficients either directly using a linear combination of spherical harmonics or a linear 
combination of spherical harmonics and a Gaussian, depending on their angular dependencies. Three 
Gaussian expressions are presented. Numerical studies are given for a measured isotropic spectral BRDF.  

1 INTRODUCTION 

Characterizing light reflection from object surfaces 
is essential in many areas, such as computer graphics 
and visualization, image analysis, remote sensing, 
medical imaging, confocal microscopy imaging, 
computational simulation, nondestructive inspection, 
and etc. The surface light reflections are generally 
described by a bi-directional reflection distribution 
function (BRDF) 
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which is the ratio of the reflected radiance odL  in 
direction ( , )o oθ ϕ  to the incident irradiance 

cosi i iL dθ Ω  in solid angle sini i i id d dθ θ ϕΩ =  (Figure 
1), and λ  is the wavelength. The incident (or 
lighting) and outgoing (or viewing) directions are 
specified respectively using the angle pairs ( , )i iθ ϕ  
and ( , )o oθ ϕ . 

Some analytic models have been developed to 
describe surface reflection behavior. However, the 
current analytic models were developed based on 
various assumptions so that they are not applicable 
for all kinds of surfaces. Alternatively, one may 
obtain the raw data of BRDFs from the experimental 
measurements. However, there are some problems 
with the raw data. First, the data has unavoidably 
involved the noises so that the data cannot be 

directly used. Second, we cannot measure the raw 
data for arbitrary pair of incident and outgoing 
directions, so we need a method to accurately 
interpolate the unmeasured pairs from all the 
measured pairs. Third, the measured raw data is 
often non-uniformly sampled. However, in some 
cases the uniformly sampled data is necessary for 
practical application. Fourth, since a spectral BRDF 
is a five dimensional function, the storage of raw 
data unavoidably occupies a huge space. 

 

 
Figure 1: The geometry and notations of BRDF definition. 

 
In this paper, we present the methods for both 

the data processing and compact representation. For 
the data processing, we developed a method to filter 
the noises involved in the raw data, resample the 
data, and interpolate it for the unmeasured pairs of 
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incident and outgoing directions. For the compact 
representation, we proposed a method to represent 
the spectral BRDF. In this method, for each pair of 
the incident and outgoing directions, we represent a 
BRDF with the Fourier coefficients. For all the 
outgoing directions of a given incident direction, we 
represent the same-order Fourier coefficients either 
directly using a linear combination of spherical 
harmonics or using a linear combination of spherical 
harmonics and a Gaussian, based on their angular 
dependencies. The reconstruction of spectral BRDF 
from representation just reverses this process. 

This paper is organized as the follows. Section 2 
reviews the background. Section 3 elaborates the 
data processing method. Section 4 describes the 
representation method. Section 5 presents the 
numerical studies. Section 6 gives the conclusions 
and future work. 

2 BACKGROUND 

Current analytic models commonly decompose the 
entire reflection into the diffuse and specular 
components. The diffuse component is typically 
assumed to be a Lambertian, but the specular 
component varies among models. A simple approach 
describes the specular component with the empirical 
functions (Phong, 1975; Strauss, 1990). More 
accurate models were developed from physically 
based approaches. One physically based approach 
uses Kirchoff theory with the tangent plane 
approximation (Beckmann, 1963). He et al. (1991) 
used this approach to model complex effects 
including light polarization, surface masking and 
shadowing, and subsurface scattering. Another 
approach is based on the Torrance-Sparrow 
microfacet model of surfaces (Torrance, 1967). This 
model assumes that a rough surface is comprised of 
many V-shaped planar, perfectly smooth, and 
isotropic microfacets. The specular component is 
expressed as a product of the Fresnel coefficient, the 
masking and shadowing factor, and the surface 
orientation probability, as presented in the Blinn-
Cook-Torrance model (Blinn, 1977; Cook, 1982). 

An early measurement of BRDFs used gonio-
reflectometer (Murray-Coleman, 1990). However, 
the equipment is very expensive, and the 
measurement takes very long time. Ward (1992) 
introduced a novel device called imaging gonio-
reflectometer. This system uses a half-silvered 
hemispherical mirror to collect the light from the 
sample surface and reflect it back into a CCD 
camera with a fisheye lens. This device is 

inexpensive and the measurement is relatively faster. 
Dana et al. (1999) developed a simple system to 
measure bidirectional texture functions and BRDFs. 
Marschner et al. (1999, 2000) constructed a simple 
and rapid system to measure isotropic surfaces with 
spherical geometry. Matusik et al. (2003a, 2003b) 
developed a similar device and measured densely 
sampled BRDF data for different materials. 
Recently, Sun et al. (2005) measured some spectral 
BRDFs by the sample-rotated method. In which, the 
spectrum is captured by a PR-650 SpectraScan 
colorimeter. During the entire measurement, the 
colorimeter is fixed. Instead, the sample is rotated 
very often and the light source is relocated several 
times for all sampled incident and outgoing 
directions. 

To save the storage space, it is desirable to 
represent the BRDF with fewer parameters. There 
are three popular representation methods. The first is 
representing a BRDF in terms of an empirical or 
physical model (Ward, 1992; Lafortune, 1997). This 
method is compact, but inaccurate. The second is 
representing a BRDF with a linear combination of a 
set of basis functions, such as spherical harmonics 
(Carbal, 1987; Sillion, 1991), Zernike polynomials 
(Koenderink, 1998), and wavelets (Schröder, 1995; 
Lalonde, 1997). The third is factoring a high-
dimensional BRDF into a sum of low-dimensional 
functions (Fournier, 1995; DeYong, 1997). The 
second and third methods have the same problem: 
there exists a trade-off between the accuracy and 
compactness. For example, given a BRDF with the 
sensitive angular dependency, the larger number of 
coefficients is used, the more accurate the 
representation, but the less compact. 

Most of the previous measurements and 
representations focused on the non-spectral BRDF 
(such as RGB-based). However, spectral BRDF 
offers the better commitment for faithful image 
rendering and analysis. Therefore, we need to 
develop the correspondent methods for the noises 
filtering, data re-sampling, data interpolation, and 
compact representation of measured spectral BRDF. 
All of these considerations ignite the current work. 

3 DATA PROCESSING METHOD 

The errors involved in the measurement of spectral 
BRDF are diversified. First, for different outgoing 
directions, the sample surface viewed by the 
colorimeter is different. The larger is the angle 
between the surface normal and outgoing direction, 
the larger is the area. Since the sample surface is not 
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strictly smooth and isotropic, the measured spectra 
must involve some errors. Second, since the sample, 
light source, and colorimeter are rotated or located 
manually, this can result in another kind of errors. 
Third, the unstable intensity of light source can also 
be a source of errors.  
 
 
 
 
 
 
 
 
 
 
 
                    (a)                                      (b) 

 
Figure 2: Fourier transformations of ( )f t  without noises 
(a) and with noises (b). 
 

Generally, the contribution of experimental 
errors to the measured data oscillates quickly 
between the positive and negative effects. Therefore, 
we can regard them as the noises that are dominated 
by the high frequency components. Consider one-
dimensional case, Fourier transformations of ( )f t  
with and without the noises are shown in Figure 2. 
In the subfigure (a), we can find a cut-off frequency 

Fω  so that ( ) 0F ω =  for Fω ω> . However, in the 
subfigure (b), it is difficult to find such a cut-off 
frequency since the noises contribute wide high 
frequency components to the spectrum ( )F ω . 
Therefore, to filter the noises, we can cut off the 
high frequency components with Fω ω> , and 
perform inverse Fourier transformation to get the 
clean raw data, as shown in Figure 3. 

 
 
 
 
 
 
 

Figure 3: Inverse Fourier transformations for noises 
removing. 

 
Given the one-dimensional function ( )f t , the 

uniformly sampled data 0( )g nT  with the period 0T  
can be expressed as (Glassner, 1995) 

 0 0( ) ( ) ( )
k

g nT f t t kTδ= −∑ . (2) 

The sampling process is shown in Figure 4. 
 
 
 
 
 
 

Figure 4: Illustration of uniform data sampling. 
 
Using the property of convolution, Fourier 

transformation of the sampled data 0( )g nT  is given 
as (Glassner, 1995) 

 0( ) ( )T

k
G F kκω ω ω

κ
= −∑ , (3) 

where 0
0

2
T
πω = , 1

2
κ

π
= , and 

0

1
T T

κ = . ( )G ω  is 

shown in Figure 5. We can see that, copies of ( )F ω  
overlap just a little for 0 2 Fω ω> , and quite a lot for 

0 2 Fω ω< . 

 
 
 
 
 
                     (a)                                          (b) 
 

Figure 5: Illustration of ( )G ω  for 0 2 Fω ω>  (a) and 

0 2 Fω ω<  (b). 

 
To filter the noises from ( )f t , we need to sample 

the raw data with the period 0T  so that 0 Fω ω> . 
Then we can multiply ( )G ω  with a box spectrum 

( )
F

Bω ω , as dotted line shown in Figure 5(a). Finally 
we perform the inverse Fourier transformation to 
obtain the filtered ( )f t . The one-dimensional 
expression is given as (Glassner, 1995) 

 F
0 0( ) ( )sinc ( )

2n
f t g nT t nTω

π
⎡ ⎤= −⎢ ⎥⎣ ⎦

∑ . (4) 

The isotropic BRDF can be described by a four-
dimensional function with the parameters λ , iθ , oθ , 
and oϕ . Following Eqs. (2-4), the BRDF for each 
component of wavelength is given as 

1
1

2 3
2 3

( , , ) [ , , ]sinc[ ( )]
2

sinc[ ( )]sinc[ ( )]
2 2

i o o i
m n l

o o

Wg m n l mT

W WnT lT

λ λρ θ θ ϕ θ
π

θ ϕ
π π

= −

⋅ − −

∑∑∑
 (5) 

where 1T , 2T  and 3T  are the sampled periods for iθ , 

oθ  and oϕ , respectively, [ , , ]g m n lλ  is the uniformly 
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sampled data for the grid point ( i mTθ = , 2o nTθ = , 

3o lTϕ = ), and 1
1
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= , and 3
3
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T
π
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Although the raw data of measured spectral 
BRDF is non-uniformly sampled and densely 
distributed, we can obtain the optimal solution 

[ , , ]g m n lλ  by solving the linear least squares problem 

1
1

2 3
2 3

2

min [ , , ]sinc[ ( )]
2

sinc[ ( )sinc[ ( )
2 2

raw i
m n l

o o

Wg m n l mT

W WmT mT

λρ θ
π

θ ϕ
π π

− −

⋅ − −

∑∑∑
, (6) 

with the constraint [ , , ] 0g m n lλ ≥ . This constraint 
comes from the property that the reflectance is non-
negative. We can implement the non-negative least 
squares (NNLS) algorithm (Lawson, 1995) to solve 
this constrained linear least squares problem.   

For the outgoing directions perpendicular to the 
sample surface, the BRDF has the property: 

3 3( ,0,0) ( ,0, ) ( ,0, )i i iT lTρ θ ρ θ ρ θ= = ⋅ ⋅ ⋅ = . (7) 
In addition, the isotropic BRDF has the property: 

3 3(0, ,0, ) (0, , , ) (0, , , )o o oT lTρ θ λ ρ θ λ ρ θ λ= = ⋅ ⋅ ⋅ = . (8) 
Therefore, we renormalize the matrix in Eq. (6) so 
that the optimal solution still satisfies these 
properties. Assume that 1 2x x=  for the following 
linear least squares problem 

 
11 12 13 1 1

21 22 23 2 2

31 32 33 3 3 2

min
a a a x b
a a a x b
a a a x b

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

, (8) 

the matrix can be renormalized so that the linear 
least squares problem becomes 

 
11 12 13 1

1
21 22 23 2

3
31 32 33 3 2

min
a a a b

x
a a a b

x
a a a b

+⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟+ −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

. (9) 

For the outgoing directions far away from the 
highlights, the BRDF varies smoothly and gradually. 
Hence, the raw data is usually captured sparsely. 
However, the sparse data can result in the failure of 
solving Eq. (6). To solve this problem, we introduce 
the following linear relations into the linear least 
squares problem 

[ 1, , ] 2 [ , , ] [ 1, , ] 0
[ , 1, ] 2 [ , , ] [ , 1, ] 0
[ , , 1] 2 [ , , ] [ , , 1] 0

g m n l g m n l g m n l
g m n l g m n l g m n l
g m n l g m n l g m n l

λ λ λ

λ λ λ

λ λ λ

− − + + =
− − + + =
− − + + =

. (10) 

It is obvious that the optimal solution is 
uniformly sampled. To interpolate the BRDF for any 
unmeasured pair of incident and outdoing directions, 
we just need to follow Eq. (5). 

4 REPRESENTATION METHOD 

Our representation method consists of two stages. In 
the first, we represent the spectral BRDF in the 
spectral domain. In the second, we represent the 
Fourier coefficients in spatial domain. 

4.1 Spectral Domain  

For each pair of incident and outgoing directions, a 
spectral BRDF is a spectrum. Therefore, we perform 
Fourier transformation to it and represent it with 
Fourier coefficients. The expression is given as 

0
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 (12) 

4.2 Spatial Domain  

For all the outgoing directions of a given incident 
direction, we represent the same-order Fourier 
coefficients. If these coefficients have insensitive 
angular dependencies on the outgoing directions, we 
represent them directly using a linear combination of 
spherical harmonics. Otherwise, we decompose 
them into a smooth background and a sharp lobe. 
Since the smooth background is dominated by the 
low-frequency components, we can represent them 
efficiently using a linear combination of low-level 
spherical harmonics. The sharp lobe is dominated by 
the high-frequency components, so we represent it 
using a Gaussian. The decomposition is shown in 
Figure 6. For the kth Fourier coefficients, the 
representation is given as 

,, ( , )
0

( ) ( , ) ( , , )
L l

i l m o o k i o ok l m
l m l

A Y Gθ θ ϕ θ θ ϕ
= =−

+∑ ∑ . (13) 

Here the first term represents the smooth 
background, , ( , )l m o oY θ ϕ  is the spherical harmonic 
with the level ( l , m ), L  the maximum level, and 
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, ( , ) ( )ik l mA θ  the coefficients. The second term 
( , , )k i o oG θ θ ϕ  represents the sharp lobe, and it is a 

Gaussian.  

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 6: Decomposition of the same-order Fourier 
coefficients (a) into a smooth background (b) and a sharp 
lobe (c). 
 

In this paper, we tried three Gaussians for the 
representation of the sharp lobe. The first is given as 

2( , , ) exp[ ( , , ) ]k i o o k k i o o kG p bθ θ ϕ α θ θ ϕ= − ,  (14) 
where kp  and kb  specify the height and width of the 
sharp lobe, and ( , , )k i o oα θ θ ϕ  is the angle between the 
outgoing direction ( , )o oθ ϕ  and the direction of the 
peak of sharp lobe. For the isotropic spectral BRDF, 
the direction of the peak of sharp lobe is a function 

of iθ . The second is generated from the empirical 
model (Ward, 1992) 

2( , , ) exp[ tan ( , , ) ]k i o o k k i o o kG p bθ θ ϕ α θ θ ϕ= − ,  (15) 
and the third from the physically based model (Sun, 
2004) 

( , , ) exp[ tan ( , , ) ]k i o o k k i o o kG p bθ θ ϕ α θ θ ϕ= − . (16) 
The decomposition of Fourier coefficients into a 

smooth background and a sharp lobe is a key point 
for this representation method. To achieve this, we 
need to obtain the critical angle first. Then, for all 
the outgoing directions with the angles from the 
peak of the sharp lobe are larger than the critical 
angle, we treat the Fourier coefficients as the smooth 
background. We can use the regression analysis (or 
linear least squares) to determine the coefficients 

, ( , )
( )ik l m

A θ . Finally, we extract the smooth 
background from the Fourier coefficients, and use 
the regression analysis (or linear least squares) to 
determine the coefficients kp  and kb .  

Finding the critical angle is a little tricky since 
we cannot directly obtain it from the raw data. In 
this paper, we first evaluate the range of critical 
angle from the raw data. Then we uniformly sample 
the range with a reasonable interval. For each 
sampled angle, we take it as the critical angle and 
use it for the decomposition. Correspondently we 
calculate the relative error between the raw data and 
the representation. Finally we select the sampled 
angle with the least relative error as the real critical 
angle. 

5 NUMERICAL STUDIES 

In this paper, the raw data of spectral BRDF is 
measured from a sample “ME01_AmberGlass”. The 
data is non-uniformly sampled for the incident and 
outgoing directions in terms of the geometry of 
BRDF, and has the noises involved. Furthermore, 
the data is sparsely distributed around some pairs of 
incident and outgoing directions, while it is densely 
distributed around some other directions. 

5.1 Data Processing  

Following Eqs. (5-10), we obtain the uniformly 
sampled and noises-filtered spectral BRDF data. For 
different incident angle iθ , the spectral BRDF at 

550nmλ =  for different outgoing directions is 
shown in Figure 7. In this paper, θ φ= −  stands for 
the outgoing direction ( ,0 )φ ° , and θ φ=  for 
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( ,180 )φ ° . We can see that the BRDF shows apparent 
off-specular reflection for 15 ,45iθ = ° ° . Moreover, 
the BRDF shows higher peak for normal incidence, 
and for the incidence close to the grazing direction. 
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Figure 7: Spectral BRDF at 550nmλ =  for 0iθ = °  (line 1), 

15iθ = °  (line 2), and 45iθ = °  (line 3). 
 
Following Eq. (5), we interpolate the spectral 

BRDF for the unmeasured pairs of incident and 
outgoing directions. By converting the spectra into 
the RGB color components, the BRDF for normal 
incidence is shown in Figure 8.  
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Figure 8: Interpolated BRDF for normal incidence. 
 
From Figure 8, we can see some oscillations for 

10 60θ° < < ° . This phenomenon is commonly called 
the ring effect. It may come from two reasons. One 
is caused from the introduction of linear relations, as 
shown in Eq. (10), and another from the inherit ring 
effect of Eq. (5) (Glassner, 1995). To remove the 
ring effect, we multiply a window function ( , , )w m n l  
to the right term of Eq. (5), 

1

2 3

( , , ) cos[2( )]

cos[2( )]cos[2( )]
i

o o

w m n l mT

nT lT

θ

θ ϕ

= −

⋅ − −
. (17) 

In calculation, we always take ( , , ) 0w m n l =  if 
( , , ) 0w m n l <  for some cases. The interpolated BRDF 

with the ring effect removed is shown in Figure 9.  
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Figure 9: Interpolated BRDF with the ring effect removed 
for normal incidence. 

5.2 Representation  

The accuracy of a representation method can be 
evaluated in terms of the relative error between the 
reconstructed spectral BRDF and the original one 

 

2

2

( , , ) ( , , )

( , , )
o o

o o

reconstr i o o orig i o o

orig i o o

λ θ ϕ

λ θ ϕ

ρ θ θ ϕ ρ θ θ ϕ
η

ρ θ θ ϕ

⎡ ⎤−⎣ ⎦
=

⎡ ⎤⎣ ⎦

∑∑∑

∑∑∑
,(18) 

where ( , , )reconstr i o oρ θ θ ϕ  and ( , , )orig i o oρ θ θ ϕ  are the 
reconstructed and original spectral BRDFs, 
respectively. 

For the re-sampled and noises-filtered data, we 
represent the spectral BRDF for each pair of incident 
and outgoing directions with 19 Fourier coefficients, 
while the original data size is 101. Since the spectral 
BRDF is sensitively angular dependent, the same-
order Fourier coefficients of each sampled incident 
direction is also highly angular dependent. We have 
to decompose the Fourier coefficients into a smooth 
background and a sharp lobe, and represent them 
respectively. For normal incidence, Figure 9 shows 
the comparisons between the original data and the 
ones reconstructed from the representations at 

550nmλ = . Here, the line “orig” stands for the 
original data, the line “rep 1” for the representation 
using Eq. (14), the line “rep 2” for that using Eq. 
(15), and the line “rep 3” for that using Eq. (16).  

For 1L = , as shown in Figure 9(a), the 
representation error for the representation using 
either Eq. (14) or Eq. (15) is 14.3%, and that using 
Eq. (16) is 11.5%. From Figure 9(a), we can see that 
the representation error mainly comes from the 
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representation for the smooth background; this is 
due to the fact that the low-level spherical harmonics 
cannot represent the high-frequency components 
completely. Moreover, we can see that the 
representation using Eq. (16) matches the sharp lobe 
of the original data better than the representations 
using Eq. (14) and Eq. (15). This fact indicates that 
the physical model (Sun, 2004) might match the 
original data better than the empirical model (Ward, 
1992). 
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                                                    (b) 
 
Figure 10: Comparisons between the original data and the 
representations for normal incidence. 

 
For 4L = , as shown in Figure 9(b), the 

representation error for using each of Eqs. (14-16) is 
lower than 4.5%. Here, the total number of 
coefficients used for representation is (25 2) 19+ × . 
Consider the size of the original data size 
13 49 101× ×  for each incident direction, in which the 
sample interval for all the angles is 7.5  degrees, the 
compression ratio is 125 :1.  

To understand how well the representations 
match the original data for full range of wavelength, 
we compare the original data with the 
representations for the normal incidence and the 

outgoing direction (0 ,0 )° ° , as shown in Figure 10. 
We can see that the representation error mainly 
comes from the two bottoms of full range of 
wavelength. This is due to the property of Fourier 
transformation; the representation always starts and 
ends with the same value. 
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Figure 11: Comparisons between the original data and the 
representations for full range of wavelength. 

6 CONCLUSIONS AND FURTHER 
WORK 

In this paper, we present the methods for both data 
processing and compact representation of the 
measured isotropic spectral BRDF. For the data 
processing, we develop a numerical method to filter 
the noises and resample the raw data by solving a 
constrained linear least squares problem, and 
interpolate the processed data for the unmeasured 
pair of incident and outgoing directions from the 
measured pairs. Numerical results show that the 
interpolated spectral BRDF has the ring effect, 
which might cause from the introduction of linear 
relations into the matrix for linear least squares 
analysis and the inherit ring effect. By introducing a 
window function into the interpolation, the ring 
effect is remarkably reduced.  

For the compact representation of processed 
data, we develop a method to represent the data in 
both the spectral and spatial domains. In the spectral 
domain, for each pair of the incident and outgoing 
directions, we consider it as a spectrum, and 
represent it with the Fourier coefficients by 
performing the Fourier transformation to it. For all 
the outgoing directions of a given direction, we 
consider the same-order Fourier coefficients. If these 
coefficients are insensitively angular dependent, we 
represent them directly using a linear combination of 
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spherical harmonics. Otherwise, we decompose 
them into a smooth background and a sharp lobe; we 
represent the smooth background using a linear 
combination of spherical harmonics, and the sharp 
lobe using a Gaussian. Numerical studies show that, 
for the measured isotropic spectral BRDF of a 
sample, the representation error can be lower than 
4.5% by using 4L =  and the number of Fourier 
coefficients 19. The compression ratio is achieved as 
125:1.  

In further work, we will continue to work on 
representing the processed data for an arbitrary 
incident direction. We will use both the processed 
data and represented data for the spectral imaging 
and give the comparisons. Furthermore, we will 
measure the spectral BRDFs for different surfaces, 
and use these methods for data processing and 
representation. Once the data is processed, we will 
compare it with the current analytic models for the 
full range of wavelength, and find the hiding 
problems with them. Based on the comparisons, we 
can work on developing the new analytic models.  
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