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Abstract: In this paper, we introduce a new non-uniform Loop scheme. It refines selected areas which are chosen 
manually or automatically according to the precision of the control mesh compared to the limit surface. Our 
algorithm avoids cracks and generates a progressive mesh with a difference of at most one subdivision level 
between two adjacent faces. As adaptive subdivision is repeated, subdivision depth changes gradually from 
one area of the surface to another area. Moreover generated meshes remain a regular valence. Results 
obtained from our scheme are compared to those of the T-algorithm and the incremental algorithm. 

1 INTRODUCTION 

Subdivision surfaces were introduced in 1978 by 
Catmull-Clark (Catmull et al., 1978) and Doo-Sabin 
(Doo et al., 1978) as an extension of the Chaikin 
algorithm (Chaikin, 1974)]. These surfaces are 
widely used in character animation (such as Geri's 
Game © or Finding Nemo ©) to smooth models. 
Indeed, from a coarse mesh, successive refinements 
give finer meshes. A sequence of subdivided meshes 
converges towards a smooth surface called limit 
surface. Since the beginning of subdivision surfaces 
in 1978, many subdivision schemes were proposed. 
Some are approximating and others are interpolating 
(i.e. control vertices of successive meshes belong to 
the limit surface). We focus on Loop subdivision 
(Loop, 1987) for this research. This scheme is 
approximating and can only be applied on triangular 
meshes. 
Most of schemes were first uniform. In uniform 
schemes, the subdivision rules are the same for the 
whole input model. For example, the Loop scheme 
splits each face of the input mesh into four. The 
number of faces quickly increases whereas there is 
generally no need to smooth the model everywhere. 
Indeed, subdivisions do not bring much geometric 
modification into flat areas; faces which are not 
visible do not need many subdivisions. Other 
geometric criteria can be used such as accuracy or 
curvature. Or more simply, users can manually 
choose faces or vertices to be subdivided. 

Non uniform subdivision (also called adaptive 
subdivision) can be decomposed into two parts. 
First, an area to be subdivided has to be chosen by 
different ways such as in (Amresh et al., 2003), 
(Dyn et al., 1990), (Meyer et al., 2002), (Zorin et al., 
1998). Secondly, topological rules have to be 
determined such as in (Amresh et al., 2003), (Pakdel 
et al., 2004), (Seeger et al., 2001), (Zorin et al., 
1998). These rules aim to generate a new mesh 
without the cracks that can be caused by a difference 
between the subdivision levels of two adjacent faces. 
In the case of Loop’s triangular scheme, rules have 
to preserve triangular faces. 
In this paper, we focus on the topological problem. 
Some algorithms already deal with this subject. 
Thus, the algorithm of Seeger et al. splits adjacent 
faces into two if they present a crack and into four 
otherwise (Seeger et al., 2001). Amresh et al. 
similarly propose to split faces into two, three or 
four faces according to the number of cracks created 
by the face subdivision (Amresh et al., 2003). From 
these algorithms, Pakdel and Samavati extend the 
rules to produce a smooth surface with visually 
pleasing connectivity (Pakdel et al., 2004). 
Our contribution consists in new topological rules 
for non-uniform Loop subdivision. The algorithm 
we propose takes advantages of the above mentioned 
algorithms. Indeed, our algorithm produces meshes 
with progressive changes between faces of different 
subdivision level but without subdividing a too large 

134
Lanquetin S. and Neveu M. (2006).
A NEW NON-UNIFORM LOOP SCHEME.
In Proceedings of the First International Conference on Computer Graphics Theory and Applications, pages 134-141
DOI: 10.5220/0001350301340141
Copyright c© SciTePress



 

surrounding area. Obviously, the more extended the 
area is, the higher the number of generated faces is. 
The paper is organized as follows. Section 2 is an 
overview of uniform and non-uniform Loop 
schemes. In section 3, we explain disadvantages and 
advantages of existing adaptive schemes and how 
our algorithm works. Finally, we compare our 
algorithm with the others on some examples in 
section 4.  

2 BACKGROUND 

2.1 Loop Scheme 

   
Figure 1: From left to right: the initial penguin mesh and 
two successive levels of Loop subdivision. 
 
Subdivision surfaces are defined by an initial control 
mesh and a set of refinement rules. The application 
of refinement rules generates a sequence of 
increasingly fine control meshes. Control meshes are 
often referred to as polygonal meshes or 
polyhedrons. The sequence of control meshes 
converges to a smooth surface called the limit 
surface. There are two sorts of subdivision schemes: 
schemes which rely on interpolation (e.g. Butterfly 
scheme (Dyn et al., 1990)) or approximation (e.g. 
Catmull-Clark (Catmull et al., 1978), Doo-Sabin 
(Doo et al., 1978), Loop (Loop, 1987) schemes…).  
 

 
Figure 2: Left, an initial face. Right, the 4 new faces. 

 
A particularity of approximation schemes is that 
control meshes approach the limit surface at each 
step of refinement. Figure 1 shows three successive 
meshes obtained by applying Loop scheme.  
The Loop scheme generalizes quadratic triangular 
B-splines and the obtained limit surface is a quartic 
Box-spline. This scheme is based on face splitting: 

each face of the control mesh at refinement level k  
is subdivided into four new triangular faces at level 

1k + . This first step is illustrated in Figure 2. 
Consider a face: new vertices -named odd vertices- 
are inserted in the middle of each edge, and those of 
the initial face are named even vertices. In the 
second step, all vertices are displaced by computing 
a weighted average of the vertex and its 
neighbouring vertices. These averages can be 
substituted by applying different masks according to 
vertex properties: even/odd, interior/boundary  

2.2 Adaptive Subdivision 

When the same rules are applied on the whole input 
mesh, the number of faces quickly increases. Indeed, 
for Loop scheme, a face produces four faces after 
one subdivision, 24 after 2 subdivisions and 4n  after 
n  subdivisions. Thus, the cat model introduced in 
Figure 3 has 224 faces at the initial level (Figure 3, 
left) and 3584 after two subdivisions (Figure 3, 
right). 
 

    
Figure 3: Left: the initial cat model. Right: the cat mesh 
after two subdivisions. 
 

However, there is often no need to smooth the 
model in the same way everywhere according to 
surface properties or specific applications. For 
example, if a surface is flat, there is no need to 
subdivide it anymore. Indeed, in this case, new 
generated faces do not improve quality of the mesh. 
In a similar way, an area of the mesh which already 
looks smooth will not change anymore after new 
subdivision levels. Another idea is to smooth only 
visible parts of the mesh. The mesh can also be 
subdivided only where the mesh does not 
approximate the limit surface with enough precision. 
Thus, only some areas of the input mesh can be 
subdivided to generate an optimal mesh with a 
smaller number of faces. 

When the surface is not entirely subdivided, 
cracks appear between faces with different 
subdivision levels as shown in Figure 4. 
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Figure 4: Left: two adjacent faces of the mesh. Right: one 
face is subdivided and not the other, the crack between the 
faces is represented in grey. 
 
To avoid cracks, topological rules have to be 
modified. As rules are different according to 
subdivision areas, this kind of scheme is called non-
uniform or adaptive. 

Selection criteria. The area to be subdivided can be 
selected by different ways.  

First, users can manually choose faces or vertices 
they want to subdivide. This choice can be done 
arbitrarily or according to the required details in a 
specific area. Figure 5 illustrates a mesh with 
selected vertices to be subdivided in dark grey. 

 

  
Figure 5: Example of manual selection. 

 
Another criterion for adaptive subdivision, which 

is often used, is the surface curvature. In this case, 
the model is refined where the model has high 
curvatures. Thus, Dyn et al. (Dyn et al., 2000) 
automatically determine the area to subdivide 
according to the discrete curvature and apply it on 
the butterfly scheme. Meyer et al. compute Gaussian 
curvature from its sums of Voronoi area (Meyer et 
al., 2002). Others works are based on 
approximations of the surface curvatures which are 
easier to compute. Xu and Kondo (Xu et al., 1999) 
and Amresh et al. (Amresh et al., 2003) use the 
dihedral angle criterion (the angle between normals 
of adjacent faces). Müller and Havemann (Müller et 
al., 2000) propose another approximation of the 
surface curvature by computing, for each vertex of 
the mesh, the normal cone (the angle between 
normals of adjacent faces to a vertex). Another 
criterion can be the accuracy of the control mesh 
compared to the limit surface (Lanquetin, 2004). In 
(Isenberg et al., 2003), Isenberg et al. generalizes 
adaptive subdivision algorithms by introducing an 
application-dependent Degree of Interest function. 
 

Topological rules. To avoid cracks which appear 
when the surface is not entirely subdivided, there 
exist different methods. Figure 6 shows these cracks 
on a mesh for which only faces selected in Figure 5 
are subdivided with Loop scheme. 
 

 
Figure 6: Example of cracks. 

 
Various topological rules were already proposed in 
(Amresh et al., 2003), (Lanquetin, 2004), (Pakdel et 
al., 2004), (Seeger et al., 2001) and (Zorin et al., 
1998). We will describe them in section 3. 

3 TOPOLOGICAL RULES 

3.1 Existing Topological Rules 

A simple method presented in (Lanquetin, 2004) and 
used in (Lanquetin et al., 2004) generates a 
minimum number of faces. The surface is only 
subdivided where the distance is greater than a given 
threshold. 

 

 
Figure 7: Different cases of subdivision in the simple 
adaptive subdivision. 
 

Let us first define the terms used to explain how 
faces are subdivided in this adaptive subdivision: a 
vertex which is not displaced is called static and a 
vertex which is displaced is called mobile. Faces are 
classified into 4 categories according to the number 
of mobile vertices. Mobile vertices are depicted by 
circles in Figure 7. When all vertices are static, the 
face is not subdivided (Figure 7.a.). Figure 7.b. 
illustrates the case where only one vertex is mobile; 
only two among the three new vertices are then 
mobile in order to avoid cracks. When there are two 
mobile vertices, face subdivision is almost normal 
except for the fact that one of the old vertices is 
static (Figure 7.c.). Finally when all vertices are 
mobile, subdivision is carried out in a normal way 
(Figure 7.d.).  

a. c. d. b. 
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This scheme generates a minimum number of 
faces because faces which have 3 static points are no 
more subdivided. This adaptive subdivision scheme 
avoids cracks but the resulting mesh is not 
conformal (Figure 9). Indeed, the case shown in 
Figure 8 appears between subdivided faces and not. 
The edge of the face which is not subdivided 
corresponds to two edges of subdivided faces. In 
Figure 8, vertices represented by crosses are no more 
subdivided and those represented by circles are still 
subdivided. 
 

 
Figure 8: New neighbourhood. 

 

 

 
Figure 9: Successive mesh subdivisions with without 
proper neighbourhood. 
 

Following methods reconstruct a proper mesh 
after successive subdivisions. 

 

    
Figure 10: Left: one face is subdivided and not the other, 
the crack between faces is represents in grey. Right: 
bisection of adjacent faces by an edge to avoid cracks. 
 

Zorin et al. (Zorin et al., 1998) and Amresh et al. 
(Amresh et al., 2003) remove cracks in subdividing 
chosen faces and bisecting adjacent faces by an 
edge. The bisection is done in connecting the vertex 
with the incomplete structure to the opposite vertex 
of the adjacent face as shown in Figure 10. 

 
In Figure 11, mobile vertices are denoted by 

circles and others by crosses. In the following, this 
scheme will be called T-algorithm.  
 

 
Figure 11: Topological rules for the T-algorithm. 

 
Seeger et al. (Seeger et al., 2001) focus on the 

butterfly scheme. Their algorithm, called red-green 
triangulation, splits faces into two, three or four 
faces as illustrated in Figure 12. 
 

 
Figure 12: Different cases of face splitting used in the red-
green algorithm. 
 

Pakdel and Samavati (Pakdel et al., 2004) extend 
the method introduced in (Amresh et al., 2003) to 
remove cracks after adaptative subdivision. To 
maintain a restricted mesh (Zorin et al., 1998) during 
subdivision, they select a larger subdivision area 
than the specified one. They call their algorithm 
incremental algorithm. They introduce progressive 
vertices, denoted by squares in Figure 13.  

 

 
 

 
Figure 13: Topological rules for the incremental 
algorithm. 

 
Each vertex in the 1-neighbourhood of the 

selected area is tagged as progressive. Then, 
according to the vertex tag: mobile (circle), 
progressive (square) or static (cross), faces are 
subdivided as illustrated in Figure 13. 
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3.2 Our Topological Rules 

Our algorithm takes advantages of both T-algorithm 
and incremental algorithm. In the following this 
scheme will be called diagonal algorithm. It selects a 
larger subdivision area than the T-algorithm but a 
smaller one than the incremental algorithm. Faces 
selected are normally subdivided. Then, adjacent 
faces by an edge are split into four and adjacent 
faces by a vertex are split into three as shown in 
Figure 14. Vertices to be subdivided are denoted by 
circles and others by crosses. 

 

 
Figure 14: Topological rules for the diagonal algorithm. 

 
In contrast with the T-algorithm, the diagonal 

algorithm removes cracks outside the selected area 
so that the subdivision is progressive and new 
valences are not too high. Indeed, adjacent faces are 
at most one subdivision depth apart, so the 
connectivity between faces does not abruptly 
change. As vertices where trisection is applied once 
are no more subdivided, the valence of this vertex no 
more increases. This avoids generating too high 
valences.  

 
Figure 15: Subdivision of the cat and the bunny models 
with the diagonal adaptive algorithm. 
 

Moreover, contrary to incremental algorithm, the 
additional selected area is smaller so that the final 
mesh has less faces. Indeed the goal of adaptive 
subdivision is to generate meshes with less faces. 
Meshes obtained on the cat and the bunny models 
are shown in Figure 15. 

3.3 Successive Subdivisions 

Differences between the T-algorithm, the 
incremental algorithm and the diagonal algorithm 
are now shown on an example. Let the initial mesh 

be the mesh drawn in Figure 16 and the selected area 
be the face in grey. 

 

 
Figure 16: The selected face to subdivide is in grey. 

 
The three algorithms will now be applied on the 

mesh in Figure 16. Figure 17 shows two subdivision 
levels obtained with the T-algorithm.  The number 
of faces is 43 after one subdivision and 61 after two. 
So there are few generated faces. However, at the 
second subdivision level, some introduced valences 
are extraordinary and become higher and higher with 
successive subdivisions.  

 

 
Figure 17: Two subdivisions of the grey face with the T-
algorithm. 
 

To avoid this problem of high valences, the 
incremental algorithm takes a larger area around the 
selected faces. Results of one and two subdivisions 
are illustrated in Figure 18. 

The number of faces is very high from the first 
subdivision: 85 at the first subdivision and 159 at the 
second. Nevertheless valences are almost regular as 
vertex valences are five, six or seven. 

 
Figure 18: Two subdivisions of the grey face with the 
incremental algorithm. 
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The diagonal algorithm gives an intermediate 
number of faces: 67 at the first level and 121 at the 
second level as shown in Figure 19. 

 

 
Figure 19: Twice subdivision of the grey face with the 
diagonal algorithm. 
 

Like incremental algorithm, valences are almost 
regular: six or seven. Moreover the subdivision 
depth between faces is progressive. However, the 
diagonal of the trapezium (during trisection) gives a 
spiral appearance. To improve this, we can take one 
diagonal of the trapezium at a subdivision level and 
the other at the next subdivision level as shown in 
Figure 20.  

 

 
Figure 20: Two subdivisions of the grey face with a 
variant of the diagonal algorithm. 

4 RESULTS AND COMPARISON 

In Figure 21, the selected area is the fin of the 
dolphin model. Vertices from the faces to subdivide 
are tagged by black squares (top). Then, the diagonal 
algorithm is applied three times and resulting 
meshes are represented in Figure 21. 

 

 

 
Figure 21: From top to bottom, three adaptive subdivisions 
of the selected dolphin fin. 
 

The cat model automatically subdivided 
according to the accuracy of the mesh approximation 
in relation to the limit surface with the three 
algorithms is shown in Figure 22. The initial cat 
model consists in 224 faces (Figure 3). In Figure 22, 
the left mesh obtain with the T-algorithm has 898 
faces, the incremental algorithm generates 1444 
faces (center) and the diagonal algorithm produces 
1226 faces (right).  

On the left mesh in Figure 22, two extraordinary 
valences appear but the result is correct. Moreover 
incremental algorithm and the diagonal algorithm 
give similar results in number of faces. 
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Figure 22: Meshes obtained respectively with the T-algorithm, the incremental algorithm and the diagonal algorithm. 

 
We now compare results of the three algorithms 

on a bigger mesh. The initial bunny mesh has 592 
faces and we choose a smaller accuracy. In Figure 23, 
meshes are represented as follows. From top to 
bottom and from left to right: the initial mesh, the T-
algorithm mesh, the incremental algorithm mesh and 
the mesh generated by the diagonal algorithm. The 
T-algorithm still gives the smaller mesh with 3094 
faces but degenerated valences appear. For the 
second time, incremental algorithm and the diagonal 
algorithm give correct meshes but this time, the 
incremental algorithm creates 5426 faces whereas 
the diagonal algorithm generates 4282 faces. 

 

 
Figure 23: Initial mesh and meshes obtained respectively 
with the T-algorithm, the incremental algorithm and the 
diagonal algorithm. 

5 CONCLUSION 

In uniform schemes, the subdivision rules are the 
same for the whole input model. As there is often no 
need to subdivide the whole mesh, non-uniform 
subdivision is used such as the T-algorithm or the 
incremental algorithm. The algorithm we introduced 
in this paper takes advantages of both the T-
algorithm and the incremental algorithm. It refines 
selected areas which are chosen manually or 
automatically according to the accuracy of the 
control mesh compared to the limit surface. 
Subdivision rules avoid cracks and generate a 
progressive mesh with at most one subdivision level 
between two adjacent faces and proper connectivity. 
Moreover valences remain regular on most of the 
vertices. 
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