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Abstract: The IEEE Standard 754-1985 for Binary Floating-Point Arithmetic (IEEE Std. 754, 1985) is being revised 
(IEEE Std. 754R Draft, 2006), and an important addition to the current text is the definition of decimal 
floating-point arithmetic (Cowlishaw, 2003). This is aimed mainly to provide a robust, reliable framework 
for financial applications that are often subject to legal requirements concerning rounding and precision of 
the results in the areas of banking, telephone billing, tax calculation, currency conversion, insurance, or 
accounting in general. Using binary floating-point calculations to approximate decimal calculations has led 
in the past to the existence of numerous proprietary software packages, each with its own characteristics and 
capabilities. New algorithms are presented in this paper which were used for a generic implementation in 
software of the IEEE 754R decimal floating-point arithmetic, but may also be suitable for a hardware 
implementation. In the absence of hardware to perform IEEE 754R decimal floating-point operations, this 
new software package that will be fully compliant with the standard proposal should be an attractive option 
for various financial computations. The library presented in this paper uses the binary encoding method 
from (IEEE Std. 754R Draft, 2006) for decimal floating-point values.  Preliminary performance results 
show one to two orders of magnitude improvement over a software package currently incorporated in GCC, 
which operates on values encoded using the decimal method from (IEEE Std. 754R Draft, 2006). 

1 INTRODUCTION 

Binary floating-point arithmetic can be used in most 
cases to approximate decimal calculations. However 
errors may occur when converting numerical values 
between their binary and decimal representations, 
and errors can accumulate differently in the course 
of a computation depending on whether it is carried 
out using binary or decimal floating-point 
arithmetic. 
For example, the following simple C program will 
not have in general the expected output b=7.0 for 
a=0.0007. 
 

main () { 
    float a, b; 
    a = 7/10000.0; 
   b = 10000.0 * a; 
   printf ("a = %x = %10.10f\n", 

*(unsigned int *)&a, a); 
   printf ("b = %x = %10.10f\n",  

*(unsigned int *)&b, b); 
} 

 

(The value 7.0 has the binary encoding 
0x40e00000.) The actual output on a system that 
complies with the IEEE Standard 754 will be: 
 

a = 3a378034 = 0.0007000000 
b = 40dfffff = 6.9999997504 

 
Such errors are not acceptable in many cases of 
financial computations, mainly because legal 
requirements mandate how to determine the 
rounding errors - in general following rules that 
humans would use when performing the same 
computations on paper, and in decimal. Several 
software packages exist and have been used for this 
purpose so far, but each one has its own 
characteristics and capabilities such as precision, 
rounding modes, operations, or internal storage 
formats for numerical data. These software packages 
are not compatible with each other in general. The 
IEEE 754R standard proposal attempts to resolve 
these issues by defining all the rules for decimal 
floating-point arithmetic in a way that can be 
adopted and implemented on all computing systems 
in software, in hardware, or in a combination of the 
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two. Using IEEE 754R decimal floating-point 
arithmetic, the previous example could then become: 
 
 

main () { 
    decimal32 a, b; 
    a = 7/10000.0; 
   b = 10000.0 * a; 
   printf ("a = %x = %10.10fd\n",  

*(unsigned int *)&a, a); 
   printf ("b = %x = %10.10fd\n",  

*(unsigned int *)&b, b); 
} 

 
(The hypothetical format descriptor %fd is used for 
printing decimal floating-point values.) The output 
on a system complying with the IEEE Standard 
754R proposal would then represent the result 
without any error: 
 

a = 30800007 = 0.0007000000 
b = 32800007 = 7.0000000000 

 
(The IEEE 754R binary encoding for decimal 
floating-point values was used in this example.) The 
following section summarizes the most important 
aspects of the IEEE 754R decimal floating-point 
arithmetic definition. 

2 IEEE 754R DECIMAL 
FLOATING-POINT 

The IEEE 754R standard proposal defines three 
decimal floating-point formats with sizes of 32, 64, 
and 128 bits. Two encodings for each of these 
formats are specified: a decimal-based encoding 
which is best suited for certain possible hardware 
implementations of the decimal arithmetic (Erle et 
al, 2005), and a binary-based encoding better suited 
for software implementations on systems that 
support the IEEE 754 binary floating-point 
arithmetic in hardware (Tang, 2005). The two 
encoding methods are otherwise equivalent, and a 
simple conversion operation is necessary to switch 
between the two. 
As defined in the IEEE 754R proposal, a decimal 
floating-point number n is represented as 

n = ±C  10e

where C is a positive integer coefficient with at most 
p decimal digits, and e is an integer exponent. A 
precision of p decimal digits will be assumed further 
for the operands and results of decimal floating-
point operations. 
Compared to the binary single, double, and quad 
precision floating-point formats, the decimal 

floating-point formats denoted here by decimal32, 
decimal64, and decimal128 cover different ranges 
and have different precisions, although they have 
similar storage sizes. For decimal, only the wider 
formats are used in actual computations, while 
decimal32 is defined as a storage format only. For 
numerical values that can be represented in these 
binary and decimal formats, the main parameters 
that determine their range and precision are shown 
in Table 1. 

Table 1: IEEE 754 binary and IEEE 754R decimal 
floating-point format parameters. 

 Binary Formats 
 single double quad 

Prec. n=24 n=53 n=113 
Emin –126 –1022 –16382 
Emax +127 +1023 +16383 

 Decimal Formats 
 decimal32 decimal64 decimal128 

Prec. p=7 p=16 p=34 
Emin –101 –398 –6178 
Emax +90 +369 +6111 

 
The following sections will present new algorithms 
that can be used for an efficient implementation in 
software of the decimal floating-point arithmetic as 
defined by the IEEE 754R proposal. Mathematical 
proofs of correctness have been developed, but will 
not be included here for brevity. Compiler and run-
time support libraries could use the implementation 
described here, which addresses the need to have a 
good software solution for the decimal floating-point 
arithmetic. 

3 CONVERSIONS BETWEEN 
DECIMAL AND BINARY 
FORMATS 

In implementing the decimal floating-point 
arithmetic defined in IEEE 754R, conversions 
between decimal and binary formats are necessary in 
many situations.  
For example, if decimal floating-point values are 
encoded in a decimal-based format (string, BCD, 
IEEE 754R decimal encoding, or other) they need to 
be converted to binary before a software 
implementation of the decimal floating-point 
operation can take full advantage of the existing 
hardware for binary operations. This conversion is 
relatively easy to implement, and should exploit any 
available instruction-level parallelism.  
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The opposite conversion, from binary to decimal 
format may have to be performed on results before 
writing them to memory, or for printing in string 
format decimal numbers encoded in binary.  
Another reason for binary-to-decimal conversion 
could be for rounding a decimal floating-point result 
to a pre-determined number of decimal digits, if the 
exact result was calculated first in binary format. 
The straightforward method for this is to convert the 
exact result to decimal, round to the destination 
precision and then, if necessary, convert the 
coefficient of the final result back to binary. This 
step can be avoided completely if the coefficients 
are stored in binary.  
The mathematical property presented next was used 
for this purpose. It gives a precise way to ‘cut off’ x 
decimal digits from the lower part of an integer C 
when its binary representation is available, thus 
avoiding the need to convert C to decimal, remove 
the lower x decimal digits, and then convert the 
result back to binary. This property was applied to 
conversions from binary to decimal format as well 
as in the implementation of the most common 
decimal floating-point operations: addition, 
subtraction, multiplication, fused multiply-add, and 
in part, division. 
For example if the decimal number C = 123456789 
is available in binary and its six most significant 
decimal digits are required, Property 1 specifies 
precisely how to calculate the constant k3 ≈ 10-3 so 
that ⎣C  k3⎦ = 123456, with certainty, while 
using only the binary representation of C. The 
values kx are pre-calculated. (Note: the floor(x), 
ceiling(x), and fraction(x) functions are denoted here 
by ⎣x⎦, ⎡x⎤ , and {x} respectively.) 
 
Property 1.  
Let C  N be a number in base b = 2 and  
C = d0 10q-1 + d1 10q-2 + … + dq-2 101 + dq-1 its 
representation in base B=10, where d0, d1, … dq-1  
{0, 1, … , 9} and d0 ≠ 0.  
Let x  {1, 2, 3, …, q–1} and  = log210.  
If y  N, y   ⎡{   x} +    q⎤  and kx is the 
value of 10-x rounded up to y bits (the subscript RP,y 
indicates rounding up y bits in the significand), i.e.: 
   kx = (10-x)RP,y = 10–x  (1 + ε)  0 < ε < 2–y+1

then ⎣C  kx⎦ = d0 10q-x-1 + d1 10q-x-2 + d2 10q-

x-3 + … + dq-x-2 101 + dq-x-1
 
Given an integer C represented in binary, this 
property specifies a method to remove exactly x 
digits from the lower part of the decimal 
representation of C, without actually converting the 
number to a decimal representation. The property 
specifies the minimum number of bits y that are 
necessary in an approximation of 10-x, so that the 
integer part (or ‘floor’) of C  kx will be precisely 

the desired result. The property states that y   ⎡{  
 x} +    q⎤ . However, in practice it is sufficient 

to take y = ⎡1 +    q⎤ = 1 + ⎡   q⎤ where ⎡   
q⎤ is the ‘ceiling’ of   q (e.g. ⎡33.3⎤ = 34).  Note 
that ρ = log210 ≈ 3.3219… and 2ρ = 10. For example 
if we want to remove the x lower decimal digits of a 
16-digit decimal number, we can multiply the 
number with an approximation of 10-x rounded up to 
y = 1 + ⎡   16⎤ = 55 bits, followed by removal of 
the fractional part in the product. 
The relative error ε associated with the 
approximation of 10–x which was rounded up to y 
bits satisfies 0 < ε < 2–y+1 = 2–⎡ρ·q⎤. 
The values kx for all x of interest are pre-calculated 
and are stored as pairs (Kx, ex), with Kx and ex 
positive integers:  

kx =  Kx · 2–ex  
This allows for implementations exclusively in the 
integer domain of some decimal floating-point 
operations, in particular addition, subtraction, 
multiplication, fused multiply-add, and certain 
conversions. 

4 DECIMAL FLOATING-POINT 
ADDITION 

It will be assumed that  
n1 = C1 · 10e1  C1 ∈ Z, 0 < C1 < 10p

n2 = C2 · 10e2   C2 ∈ Z, 0 < C2 < 10p

are two non-zero decimal floating-point numbers 
with coefficients having at most p decimal digits 
stored as binary integers and that their sum has to be 
calculated, rounded to p decimal digits using the 
current IEEE rounding mode (this is indicated by the 
subscript rnd,p). 

n = (n1 + n2)rnd,p = C · 10e  
The coefficient C needs to be correctly rounded, and 
is stored as a binary integer as well. For simplicity, it 
will be assumed that n1 ≥ 0 and e1 ≥ e2. (The rules 
for other combinations of signs or exponent ordering 
can be derived from here.) 
If the exponent e1 of n1 and the exponent e2 of n2 
differ by a large quantity, the operation is simplified 
and rounding is trivial because n2 represents just a 
rounding error compared to n1. Otherwise if e1 and 
e2 are relatively close the coefficients C1 and C2 
will ‘overlap’, the coefficient of the exact sum may 
have more than p decimal digits, and so rounding 
may be necessary. All the possible cases will be 
quantified next. 
If the exact sum is n’, let C’ be the exact (not yet 
rounded) sum of the coefficients: 

n’ = n1 + n2 = C1 · 10e1 + C2 · 10e2 =  
(C1 · 10e1 – e2 + C2) · 10e2

C’ = C1 · 10e1 – e2 + C2 
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Let q1, q2, and q be the numbers of decimal digits 
needed to represent C1, C2, and C’. If not zero, the 
rounded coefficient C will require between 1 and p 
decimal digits. Rounding is not necessary if C’ 
represented in decimal requires at most p digits, but 
it is necessary otherwise. 
If q ≤ p, then the result is exact: 

n = (n’)rnd,p = (C’ · 10e2)rnd,p =  
(C’)rnd,p · 10e2 = C’ · 10e2

Otherwise, if q > p let x = q – p ≥ 1. Then: 
n = (n’)rnd,p = (C’ · 10e2)rnd,p =  

(C’)rnd,p · 10e2 = C · 10e2+x

If after rounding C = 10p (rounding overflow), then 
n =10p-1 · 10e2+x+1. 
A simple analysis shows that rounding is trivial if q1 
+ e1 – q2 – e2 ≥ p. If this is not the case, i.e. if  

|q1 + e1 – q2 – e2| ≤ p – 1  
then the sum C’ has to be calculated and it has to be 
rounded to p decimal digits. This case can be 
optimized by separating it in sub-cases as shall be 
seen further. 
The algorithm presented next uses Property 1 in 
order to round correctly (to the destination precision) 
the result of a decimal floating-point addition in 
rounding to nearest mode, and also determines 
correctly the exactness of the result by using a 
simple comparison operation. First, an 
approximation of the result’s coefficient is 
calculated using Property 1. This will be either the 
correctly rounded coefficient, or it will be off by one 
ulp (unit-in-the-last-place). The correct result as well 
as its exactness can be determined directly from the 
calculation, without having to compute a remainder 
through a binary multiplication followed by a 
subtraction for this purpose. This makes the 
rounding operation for decimal floating-point 
addition particularly efficient. 
 
Decimal Floating-Point Addition with Rounding 
to Nearest 
The straightforward method to calculate the result is 
to convert both coefficients to a decimal encoding, 
perform a decimal addition, round the exact decimal 
result to nearest to the destination precision, and 
then convert the coefficient of the final result back to 
binary. It would also be possible to store the 
coefficients in decimal all the time, but then neither 
software nor hardware implementations could take 
advantage easily of existing instructions or circuitry 
that operate on binary numbers. The algorithm used 
for decimal floating-point addition in rounding to 
nearest mode is Algorithm 1, shown further. 
If the smaller operand represents more than a 
rounding error in the larger operand, the sum C’ = 
C1 · 10e1–e2 + C2 is calculated. If the number of 
decimal digits q needed to represent this number 
does not exceed the precision p of the destination 

format, then no rounding is necessary and the result 
is exact. If q > p, then x = q – p decimal digits have 
to be removed from the lower part of C’, and C’ has 
to rounded correctly to p decimal digits. For correct 
rounding to nearest, 0.5 ulp is added to C’: C’’ = C’ 
+ 1/2 · 10x. The result is multiplied by kx ≈ 10-x (C* 
= C’’ · kx), where the pre-calculated values kx are 
stored for all x  {1, 2, …, p}. A test for midpoints 
follows (0 < f* < 10–p, where f* is the fractional part 
of C*) and if affirmative, the result is rounded to the 
nearest even integer. (For example if the exact result 
4567.5 has to be rounded to nearest to four decimal 
places, the rounded result will be 4568.) Next the 
algorithm checks for rounding overflow (p+1 
decimal digits are obtained instead of p) and finally 
it checks for exactness. 
Note that the straightforward method for the 
determination of midpoints and exactness is to 
calculate a remainder r = C’ – C  10x ∈[0, 10x). 
Midpoint results could be identified by comparing 
the remainder with 1/2·10x, and exact results by 
comparing the remainder with 0. However, the 
calculation of a remainder – a relatively costly 
operation – was avoided in Algorithm 1 and instead 
a single comparison to a pre-calculated constant was 
used. This simplified method to determine midpoints 
and exactness along with the ability to use Property 
1 make Algorithm 1 more efficient for decimal 
floating-point addition than previously known 
methods. 
 
Algorithm 1. Calculate the sum of two decimal 
floating-point numbers rounded to nearest to p 
decimal digits, and determine its exactness.  
q1, q2 = number of decimal digits needed to  

represent C1, C2 // from table lookup 
if |q1 + e1 – q2 – e2| ≥ p then  

// assuming that e1 ≥ e2 round the result  
// directly as 0 < C2 < 1 ulp (C1 · 10e1–e2);  
the result n = C1 · 10e1 or  
n = C1 · 10e1 ± 10e1+q1–p is inexact 

else // if |q1 + e1 – q2 – e2| ≤ p – 1 
C’ = C1 · 10e1–e2 + C2 // binary integer 

// multiplication and addition; 
// 10e1–e2 from table lookup 

q = number of decimal digits needed to 
represent C’ // from table lookup 

if q ≤ p the result n = C’  10e2 is exact 
else if q ∈ [p+1, 2·p] continue 
x = q – p, number of decimal digits to be  

removed from lower part of C’, x ∈ [1, p] 
C’’ = C’ + 1/2 · 10x // 1/2 · 10x

// pre-calculated, from table lookup 
kx = 10–x  (1 + ε), 0 < ε < 2–⎡2·ρ·p⎤ 

/ / pre-calculated as specified in Property 1 
C* = C’’ · kx = C’’ · Kx · 2–Ex  

// binary integer multiplication with  
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// implied binary point 
f* = the fractional part of C*  

// consists of the lower Ex bits of the  
// product C’’ ·  Kx

if 0 < f* < 10–p then 
if ⎣C*⎦ is even then C = ⎣C*⎦   

// logical shift right;  
// C has p decimal digits,  
// correct by Property 1 

else if ⎣C*⎦ is odd  then C = ⎣C*⎦ – 1 
// logical shift right; C has p dec.  
// digits, correct by Property 1 

else C = ⎣C*⎦ // logical shift right; C has p  
// decimal digits, correct by Property 1 

n = C  10e2+x

if C = 10p then n = 10p–1  10e2+x+1  
// rounding overflow 

if 0 < f* – 1/2 < 10–p then the result is exact  
else it is inexact 

 
Note that conditions 0 < f* < 10–p and 0 < f* – 1/2 < 
10–p from Algorithm 1 for midpoint detection and 
exactness determination hold also if 10–p is replaced 
by 10–x or even by kx = 10–x  (1 + ε). These 
comparisons are fairly easy in practice. For example, 
since C’’·kx = C’’·Kx·2–ex, in f*<10–p the bits shifted 
to the right out of C’’·kx, representing f* can be 
compared with a pre-calculated constant that 
approximates 10–p (or 10–x). 
 
Decimal Floating-Point Addition when Rounding 
to Zero, Down, or Up 
The method to calculate the result when rounding to 
zero or down is similar to that for rounding to 
nearest. The main difference is that the step for 
calculating C’’ = C’ + 1/2 · 10x is not necessary 
anymore, because midpoints between consecutive 
floating-point numbers do not have a special role 
here. For rounding up, the calculation of the result 
and the determination of its exactness are identical 
to those for rounding down. However, when the 
result is inexact then one ulp has to be added to it. 

5 DECIMAL FLOATING-POINT 
MULTIPLICATION 

It will be assumed that the product  
n = (n1 · n2)rnd,p = C · 10e

has to be calculated, where the coefficient C of n is 
correctly rounded to p decimal digits using the 
current IEEE rounding mode, and is stored as a 
binary integer. The operands n1 = C1 · 10e1 and  n2 
= C2 · 10e2 are assumed to be strictly positive (for 
negative numbers the rules can be derived directly 
from here). Their coefficients require at most p 

decimal digits to represent and are stored as binary 
integers, possibly converted from a different 
format/encoding.  
Let q be the number of decimal digits required to 
represent the full integer product C’ = C1 · C2 of the 
coefficients of n1 and n2. Actual rounding to p 
decimal digits will be necessary only if q ∈ [p+1, 
2·p], and will be carried out using Property 1. In all 
rounding modes the constants kx ≈ 10–x used for this 
purpose, where x = q – p, are pre-calculated to y bits 
as specified in Property 1. Since q ∈ [p+1, 2·p] for 
situations where rounding is necessary, all cases are 
covered correctly by choosing y = 1+ ⎡2·ρ·p⎤. 
Similar to the case of the addition operation, the pre-
calculated values kx are stored for all x  {1, 2, …, 
p}. 
 
Decimal Floating-Point Multiplication with 
Rounding to Nearest 
The straightforward method to calculate the result is 
similar to that for addition. A new and better method 
for decimal floating-point multiplication with 
rounding to nearest that uses existing hardware for 
binary computations is presented in Algorithm 2. It 
uses Property 1 to avoid the need to calculate a 
remainder for the determination of midpoints or 
exact floating-point results, as shall be seen further. 
The multiplication algorithm has many similarities 
with the algorithm for addition. 
 
Algorithm 2. Calculate the product of two 
decimal floating-point numbers rounded to 
nearest to p decimal digits, and determine its 
exactness.  
C’ = C1 · C2 // binary integer multiplication 
q = the number of decimal digits required to  

represent C’ // from table lookup 
if q ≤ p then the result n = C’  10e1+e2 is exact else 
if q ∈ [p+1, 2·p] continue 
x = q – p, the number of decimal digits to be 
removed from the lower part of C’, x ∈ [1, p] 
C’’ = C’ + 1/2 · 10x // 1/2 · 10x pre-calculated 
kx = 10–x  (1 + ε), 0 < ε < 2–⎡2·ρ·p⎤  // pre-calculated  

// as specified in Property 1 
C* = C’’ · kx = C’’ · Kx · 2–Ex // binary integer  

// multiplication with implied binary point 
f* = the fractional part of C* // consists of the  

// lower Ex bits of the product C’’ · Kx
if 0 < f* < 10–p then // since C* = C’’· Kx · 2–Ex,  

// compare Ex bits shifted out of C* with 0  
// and with 10–p

if ⎣C*⎦ is even then C = ⎣C*⎦  // logical right  
// shift; C has p decimal digits, correct by  
// Property 1 

else C = ⎣C*⎦ – 1 // if ⎣C*⎦ is odd // logical  
// right shift; C has p decimal digits, correct  
// by Property 1 
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else 
C = ⎣C*⎦ // logical shift right; C has p  

// decimal digits, correct by Property 1 
n = C  10e1+e2+x // rounding overflow 
if 0 < f* – 1/2 < 10–p then the result is exact  
else the result is inexact 

// C* = C’’ · Kx · 2–Ex ⇒ compare Ex bits  
// shifted out of C* with 1/2 and 1/2+10–p 

 

If q ≥ p + 1 the result is inexact unless the x decimal 
digits removed from the lower part of   C’’ · kx were 
all zeros. To determine whether this was the case, 
just as for addition, the straightforward method is to 
calculate a remainder r = C’ – C  10x ∈[0, 10x). 
Midpoint results could be identified by comparing 
the remainder with 1/2·10x, and exact results by 
comparing the remainder with 0. However, the 
calculation of a remainder – a relatively costly 
operation – was avoided in Algorithm 2 and instead 
a single comparison to a pre-calculated constant was 
used.  
The simplified method to determine midpoints and 
exactness along with the ability to use Property 1 
make Algorithm 2 better for decimal floating-point 
multiplication than previously known methods. 
 
Decimal Floating-Point Multiplication when 
Rounding to Zero, Down, or Up 
The method to calculate the result when rounding to 
zero or down is similar to that for rounding to 
nearest. Just as for addition, the step for calculating 
C’’ = C’ + 1/2 · 10x is not necessary anymore. 
Exactness is determined using the same method as in 
Algorithm 2. For rounding up, the calculation of the 
result and the determination of its exactness are 
identical to those for rounding down. However, 
when the result is inexact then one ulp has to be 
added to it. 

6 DECIMAL FLOATING-POINT 
DIVISION 

It will be assumed that the quotient  
n = (n1 / n2)rnd,p = C · 10e

has to be calculated where n1 > 0, n2 > 0, and q1, 
q2, and q are the numbers of decimal digits needed 
to represent C1, C2, and C (the subscript rnd,p 
indicates rounding to p decimal digits, using the 
current rounding mode). Property 1 cannot be 
applied efficiently for the calculation of the result in 
this case because a very accurate approximation of 
the exact quotient is expensive to calculate. Instead, 
a combination of integer operations and floating-
point division allow for the determination of the 
correctly rounded result. Property 1 is used only 

when an underflow is detected and the calculated 
quotient has to be shifted right a given number of 
decimal positions. The decimal floating-point 
division algorithm is based on Property 2 presented 
next. 
 
Property 2.  If a, b are two positive integers and m 
∈ N, m ≥ 1 such that b < 10m, a/b < 10m and n ≥ 
⎣m⋅log210⎦ , then | a/b– ⎣((a)rnd,n/(b)rnd,n)rnd,n⎦ | < 8. 
 
The decimal floating-point division algorithm for 
operands n1 = C1⋅10e1 and n2 = C2⋅10e2 follows. 
While this algorithm may be rather difficult to 
follow without working out an example in parallel, it 
is included here for completeness. Its correctness, as 
well as that of all the other algorithms presented here 
has been verified. 
 
Algorithm 3. Calculate the quotient of two 
decimal floating-point numbers, rounded to p 
decimal digits in any rounding mode, and 
determine its exactness.  
if C1 < C2 
  find the integer d > 0 such that (C1/C2)⋅10d ∈  

[1, 10).  
// compute d based on the number  
// of decimal digits q1, q2 in C1, C2 

   C1’ = C1⋅10d+15, Q = 0 
   e = e1 – e2 – d – 15  // expected res. expon. 
else 
    a = (C1 OR 1)rnd,n, b = (C2)rnd,n // logical OR 
    Q = ⎣((a/b)rnd,n)⎦ 
    R = C1 – Q ⋅ C2 
    if R < 0 
       Q = Q – 1 
       R = R + C2 
    if R = 0 the result n = Q ⋅ 10e1–e2 is exact  
    else continue 
    find the number of decimal digits for Q:  d >  

0 such that Q ∈ [10d–1, 10d) 
    C1’ = R ⋅ 1016–d

    Q = Q ⋅ 1016–d

    e = e1 – e2 – 16 + d 
Q2 = ⎣((C1’)rnd,n/(C2)rnd,n)rnd,n⎦ 
R = C1’ – Q2 ⋅ C2 
Q = Q + Q2 
if R ≥ 4 ⋅ C2 
    Q = Q + 4 
    R = R – 4 ⋅ C2 
if R ≥ 2 ⋅ C2 
    Q = Q + 2 
    R = R – 2 ⋅ C2 
if R ≥ C2 
    Q = Q + 1 
    R = R – C2 
if e ≥ minimum_decimal_exponent 
    apply rounding in desired mode by  
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comparing R and C2 
// e.g. for rounding to nearest add 1 to Q  
// if 5 ⋅ C2 < 10 ⋅ R + (Q AND 1) 

    the result n = Q ⋅10e is inexact 
else 
    result underflows 
    compute the correct result based on Prop. 1 

7 DECIMAL FLOATING-POINT 
SQUARE ROOT 

Assume that the square root  
n = (√n1)rnd,p = C · 10e

has to be calculated (where the subscript rnd,p 
indicates rounding to p decimal digits using the 
current rounding mode). The method used for this 
computation is based on Property 3 and Property 4, 
shown next. A combination of integer and floating-
point operations are used. It will be shown next that 
the minimum precision n of the binary floating-point 
numbers that have to be used in the computation of 
the decimal square root for decimal64 arguments 
(with p = 16) is n = 53, so the double precision 
floating-point format can be used. The minimum 
precision n of the binary floating-point numbers that 
have to be used in the computation of the square root 
for decimal128 arguments (with p = 34) is n = 113, 
so the quad precision floating-point format can be 
used safely.  
Properties 3 and 4 as well as the algorithm for 
square root calculation are included here for 
completeness.  
Property 3.  If x ∈ (1, 4) is a binary floating-point 

number with precision n and s = ( x )RN,n

is its square root rounded to nearest to n bits, then s 
+ 2–n < x. 
Property 4.  Let m be a positive integer and n = 
⎣m⋅log210+0.5⎦. For any integer C∈[102⋅m–2, 102⋅m), 

the inequality | C –⎣√((C)RN,n)⎦ < 3/2 is true. 
 
The round-to-nearest decimal square root algorithm 
can now be summarized as follows: 
Algorithm 4. Calculate the square root of a 
decimal floating-point number n1 = C⋅10e, 
rounded to nearest to p decimal digits, and 
determine its exactness.  
if e is odd then 
   e’ = e – 1 
   C’ = C ⋅ 10  
else 
   e’ = e 
   C’ = C 
let S = ⎣√(( C’)RN,n)⎦ 

if S * S = C’ 
   the result n = S ⋅ 10e’/2 is exact  
else 
   q = number of decimal digits in C 
   C’’ = C’ ⋅ 102⋅p–1–q and Q = ⎣√(( C’’)RN,n)⎦ 
   if (C’’ – Q ⋅ Q < 0)  sign = –1 else sign = 1 
   M = 2⋅Q + sign  // will check against this  

// midpoint for rounding to nearest 
   if (M ⋅ M – 4 ⋅ C’’ < 0) sign_m = –1  
   else  sign_m = 1 
   if sign ≠ sign_m Q’ = Q + sign else Q’ = Q 
   the result n = Q’ ⋅ 10e’/2 is inexact 
 
Decimal Floating-Point Square Root when 
Rounding to Zero, Down, or Up 
The algorithm shown above can be easily adapted 
for other rounding modes.  Once Q is computed such 

that | 'C' – Q| < 1.5, one needs to consider 
rounding the result coefficient to one of the 
following values: Q–2, Q–1, Q, Q+1, Q+2, and only 
two of these values need to be considered after the 

sign of ( 'C' – Q) has been computed. 

8 CONCLUSIONS 

A new generic implementation in C of the basic 
operations for decimal floating-point arithmetic 
specified in the IEEE 754R standard proposal was 
completed, based on new algorithms presented in 
this paper. Several other operations were 
implemented that were not discussed here for 
example remainder, fused multiply-add, comparison, 
and various conversion operations. Performance 
results for all basic operations were in the expected 
range, for example the latency of decimal128 
operations is comparable to that of binary quad 
precision operations implemented in software.  
It was also possible to compare the performance of 
the new software package for basic operations with 
that of the decNumber package contributed to GCC 
(Grimm, 2005). The decNumber package represents 
the only other implementation of the IEEE 754R 
decimal floating-point arithmetic in existence at the 
present time. It should be noted that decNumber is a 
more general decimal arithmetic library in ANSI C, 
suitable for commercial and human-oriented 
applications (decNumber, 2005). It allows for 
integer, fixed-point, and decimal floating-point 
computations, and supports arbitrary precision 
values (up to a billion digits).  
Tests comparing the new decimal floating-point 
library using the algorithms described in this paper 
versus decNumber showed that the new generic C 
implementations for addition, multiplication, 
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division, square root, and other operations were 
faster than the decNumber implementations, in most 
cases by one to two orders of magnitude.  
 
Table 2 shows the results of this comparison for 
basic 64-bit and 128-bit decimal floating-point 
operations measured on a 3.4 GHz Intel® EM64t 
system with 4 GB of RAM, running Microsoft 
Windows Server 2003 Enterprise x64 Edition SP1. 
The code was compiled with the Intel(R) C++ 
Compiler for Intel(R) EM64T-based applications, 
Version 9.0. The three values presented in each case 
represent minimum, median, and maximum values 
for a small data set covering operations from very 
simple (e.g. with operands equal to 0 or 1) to more 
complicated, e.g. on operands with 34 decimal digits 
in the 128-bit cases. For the new library, further 
performance improvements can be attained by fine-
tuning critical code sequences or by optimizing 
simple, common cases. 

Table 2: New Decimal Floating-Point Library 
Performance vs. decNumber on EM64t (3.4 GHz Xeon). 
Minimum-median-maximum values are listed in sequence, 
after subtracting the call overhead. 

Oper- 
ation 

New 
Library  
[clock 
cycles] 

decNumber 
Library  
[clock 
cycles] 

dec 
Number 
/New 
Library 

64-bit 
ADD  

14-140-
241  

99-1400-
1741 

4-10-14 

64-bit 
MUL 

21-120-
215 

190-930-
1824 

6-8-9 

64-bit 
DIV 

172-330-
491  

673-2100-
3590  

4-6-11 

64-bit 
SQRT  

15-288-
289 

82-16700-
18730  

7-58-107 

128-bit 
ADD 

16-170-
379  

97-2300-
3333 

4-13-14 

128-bit 
MUL 

19-300-
758 

95-3000-
4206  

5-10-18 

128-bit 
DIV 

153-250-
1049 

1056-2000-
7340  

4-8-9 

128-bit 
SQRT 

16-700-
753 

61-42000-
51855  

4-60-152 

 
For example for the 64-bit addition operation the 
new implementation, using the 754R binary 
encoding for decimal floating-point,  took between 
14 and 241 clock cycles per operation, with a 
median value around 140 clock cycles. For the same 
operand values decNumber, using the 754R decimal 
encoding, took between 99 and 1741 clock cycles, 
with a median around 1400 clock cycles. The ratio 
shown in the last column was between 4 and 14, 

with a median of around 10 (probably the most 
important of the three values). 
 
It is also likely that properties and algorithms 
presented here for decimal floating-point arithmetic 
can be applied as well for a hardware 
implementation, with re-use of existing circuitry for 
binary operations. It is the authors’ hope that the 
work described here will represent a step forward 
toward reliable and efficient implementations of the 
IEEE 754R decimal floating-point arithmetic. 
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