
DEVELOPING A FAULT ONTOLOGY ENGINE FOR
EVALUATION OF SERVICE-ORIENTED ARCHITECTURE

USING A CASE STUDY SYSTEM

Binka Gwynne, Jie Xu
School of Computing, University of Leeds, UK

Keywords: Service-Oriented Architecture, Fault Injection Testing, Ontology.

Abstract: This paper reports on the current progress of research into the development and implementation of a Fault
Ontology Engine. The engine was devised to facilitate the testing and evaluation of Service-Oriented
Architecture (SOA), using ontologically supported software fault injection testing mechanisms. The aims of
this research stem from the importance of system evaluation and the notion that testing and evaluation
methods could be better supported for modern distributed systems by autonomous software machines, due
to their potential dynamics, size, and complexity of SOA, and the variety of resources they offer. Fault
injection testing is still generally in the domain of human expertise, experience and intuition, and machines
require knowledge of testing mechanisms to develop testing strategies, with information that is formal,
explicit, and in languages that they can interpret. This paper contains descriptions of experimental work
carried out in order to generate information for modelling the fault and failure domains of a real-world case
study system. Information from this case study system will be used to identify points of interest and target
points for subsequent tests. It is hoped to show that inferences taken from known systems can be used for
intelligent testing of unknown systems.

1 INTRODUCTION

This research brings together the concepts of
ontology, Service-Oriented Architecture (SOA) and
fault injection testing in order to develop a Fault
Ontology Engine (FOE) with information gained
from experiments on real-world case study systems.

Ontologies are formal and logical descriptions of
domains used by software to support intelligent
communication. There is a great diversity in the
design of ontologies and how they represent the real
world (Noy et al. 1997), but from a computing
perspective, ontology is a logical theory which gives
an explicit, partial account of a conceptualisation
(Corcho et al. 2003).

An SOA is a type of software architecture
comprising services, with emphasis on service
interoperability and location transparency, with the
aim of achieving loose coupling among interacting
software resources. SOA middleware obscures the
nature of resources by design, but this can lead to
middleware that may be complex and problematic to
implement, and systems that are difficult to evaluate.

In consequence novel methods are required for
testing and evaluation of SOAs.
 Fault injection is a method of testing and
evaluating computer hardware and software systems
by deliberately inserting them with artificial faults in
order to reveal faults more effectively than through
observation methods.

2 BACKGROUND

2.1 System Boundaries

A system boundary describes a system’s limit of
self-determination and how interactions (inputs and
outputs) occur between that system and the external
side of its boundary. System boundaries are also
concerned with those interactions existing between
adjoining systems and how systems interact with
their environment: the environment may be
considered a system in its own right. System
boundaries are important in testing and evaluation
because boundary conditions are determinable and

353
Gwynne B. and Xu J. (2006).
DEVELOPING A FAULT ONTOLOGY ENGINE FOR EVALUATION OF SERVICE-ORIENTED ARCHITECTURE USING A CASE STUDY SYSTEM.
In Proceedings of the First International Conference on Software and Data Technologies, pages 353-356
DOI: 10.5220/0001318803530356
Copyright c© SciTePress

system failures are deemed to be observable
deviations from a system’s specified behaviour at its
boundary.

2.2 Ontologies

Ontologies are essentially concerned with the nature
of existence. They can vary from simple schema to
controlled vocabularies, thesauri, hierarchies of
terms, taxonomies, to full conceptualisations of
domains. Ontologies are commonly used as
intelligent communication media for machines
(Mizoguchi and Ikeda 1997), and according to
Duineveld et al. (1999), ontologies promise:
 “A shared and common understanding of some
domain that can be communicated across people
and computers.”

2.3 Service-Oriented Architecture

An SOA is a type of software architecture; it is
essentially a collection of services with emphasis on
interoperability and location transparency.

According to the World Wide Web Consortium
(2006), an SOA is

“A set of components which can be invoked, and
whose interface descriptions can be published and
discovered.”

An SOA is effectively a mechanism for

connecting resources on demand by providing a
more flexible, loose coupling of components than
provided by traditional distributed systems
architectures. SOA comprises three basic elements:
service provider, service consumer and service
repository. A service is defined by how it can be
accessed by other components in its system. Access
is achieved though a common interface by an
exchange of messages with the interface hiding the
details of how each service is actually implemented.
Services are expected to be self-contained and not
expected to have knowledge of the context of other
services. Further, the granularity of services is
unspecified and can vary, with a service hosted on a
single machine or distributed over a network.
 SOA middleware is software specifically designed
to support interoperable machine-machine
interactions over networks and provide common
approaches for service definition, publication and
use. SOAs can have problems associated with scale
and dynamics and its middleware may be complex
and difficult to implement (Looker et al. 2005).

2.4 Faults, Errors and Failures

A system failure occurs at a point in time where the
condition of a system is different to its expected
condition. Errors are responsible for causing
failures, and in turn are due to the presence and
activity of faults; a fault is a defect of some kind that
exists within a system and may be active or dormant.
An active fault, or combination of active faults, may
produce an error, or combination of errors, whose
visibility outside a system boundary is manifested as
a failure. This is a well-established, recursive way
to describe the relationship between failures, errors
and faults (Avizienis et al. 2004). However,
although inextricably linked, failures, errors, and
faults are conceptually very different entities. A
failure is a type of event and a fault a type of cause;
both can exist as real-world entities. An error,
however, is a type of state and therefore has a virtual
existence.

2.5 Evaluating SOA Systems

Organisations offering computing resources need
mechanisms to demonstrate the high dependability
of their resources in comparison to rival systems.
This is especially true for SOA based systems,
where the details of service implementations are
architecturally hidden.
 There are a number of ways to evaluate systems
including simulation modelling, stress testing and
observation over time. Fault injection is a method of
testing and evaluation where artificial faults are
deliberately inserted into systems, in order to reveal
faults more effectively than through observation
(Voas and McGraw 1998), producing errors and
observing how they propagate through to failures.
 Fault injection is: 1) a faster and more logical way
to detect faults than observation; 2) able to test
systems at run time; 3) able to test dynamic,
distributed systems; 4) allows the use of non–
invasive methods such as interception of method
calls and data corruption; and 5) able to evaluate
how well different types of systems maintain their
dependability over time (Arlat et al. 2003, Looker et
al. 2005).

3 ONTOLOGICAL SUPPORT

By definition, autonomous software machines are
self-managing and can adapt to changing conditions,
which means they would provide good support in

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

354

evaluation of large or complex distributed systems
such as SOAs as these systems can become
dynamically modified during tasks. Fault injection is
a fast and logical way to detect faults and can be
used to test systems at run time, so is a suitable
method for testing dynamic, distributed systems. It
can also be non–invasive, using mechanisms such as
interception of method calls and data corruption.
However, fault injection is still generally in the
domain of human expertise, experience and
intuition, and machines require knowledge to
develop their own testing strategies, and require
information that is formal, explicit, and in languages
they are able to interpret. By using ontologically
supported fault injection we aim to: 1) make
information on testing and evaluation methods
available in machine readable form; 2) improve fault
representativeness; 3) avoid spurious testing; 4)
lessen the chances of producing undetected spawned
faults; and 5) address problems associated with some
traditional testing methods such as state and timing.

In our experiments fault and failure ontologies
are used to guide more targeted fault injection tests
through the analysis of cause and effect pairs as
experimental data, including provenance, provides
the information for FOE. In addition, is intended
that FOE will be used in future in combination with
other tried and tested software fault injection tools
designed for SOA, such as WS-FIT (Looker et al.
2005).

4 A CASE STUDY

4.1 Secure Power System

A manufacturer of battery based AC and DC secure
power systems was chosen for the case study. The
principal markets for their products are industries
involved in telecommunications, power generation
and distribution, and petrochemicals. Uninterrupted,
secure power units are vitally important to these
industries, for example, the failure of PA systems on
oil rigs was implicated as partially responsible for
the loss of life in the Piper Alpha disaster, 1988 (UK
Health and Safety Executive 2002).
 The case study system is a secure power system
that maintains a power supply for mobile
telecommunications. The control units are mainly
located on roof tops, are subject to sporadic mains
power failures for generally short periods of time,
with unit housing often subject to high ambient
temperatures. The control units are remotely
monitored.

 These secure power systems can be maintained by
one of two types of battery: Valve Regulated Lead
Acid (VRLA) and Nickel-Cadmium (Ni-Cad). The
VRLA battery is the newer technology, comprising a
sealed system which does not require topping up by
hand. However this battery requires more
monitoring than the Ni-Cad battery due to physical
vulnerabilities, although monitoring can be carried
out remotely. In order to take advantage of the low
maintenance required for VRLA, it is necessary for
the system to maintain a high level of reliability
through reliable monitoring.
 Typical information monitored is temperature,
voltage levels in batteries / cells, power input and
power output to load etc., but monitors can also
warn of such things as a door to the unit housing
being open (a potential source of damaging heat
input).

4.2 Fault Model

System fault and failure taxonomies were
heuristically drawn up from known information on
how the case study system behaves. Elements in the
fault model were predicted failure-value pairs. For
example: a voltage “Stuck-at” fault; this could lead
to the alarm not sounding when the condition point
is reached and the switch not closing to load at EOD
and the hardware being damaged. The outcome of
this example may be that the fault is sometime later
observed; the failure could be classified as
“Observed failure, non-recoverable, known cause,
known effect”, and the scenario fault-failure pair
would be “voltmeter stuck-at fault” and “hardware,
cells/battery damaged”.

4.3 Experiments

A faulty voltmeter was simulated in the secure
power system. The simulation involved injecting
faulty values into a data set with the results logged
in XML-based files. Each test carried out was given
a unique ID and information was stored in logs, in
order that information would be available and tests
replicable later.

When fault injection testing is carried out there is
an intention to guarantee that failures occur so that
they can be observed. However, naturally occurring
or programmed fault tolerance in a system can
sometimes make it difficult for failures to occur
where only one fault is present and it may become
necessary to use a combination of faults, or
composite fault, to bring about an observable failure.
Consequently, experiments were also carried out that

DEVELOPING A FAULT ONTOLOGY ENGINE FOR EVALUATION OF SERVICE-ORIENTED ARCHITECTURE
USING A CASE STUDY SYSTEM

355

simulate this situation, with each composite fault
paired with its respective outcome.

Effect of Faulty Sensor On System

1.2

1.4

1.6

1.8

2

2.2

2.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

time

Vo
lts

Correctly Functioning Sensor EOD Faulty Sensor

Figure 1: Injected Fault - Voltmeter Data.

In the next experiment the sensor tested was the
thermometer for the unit housing, which is
monitored in order to prevent damage to battery
cells from high temperatures. An alarm fires when
the temperature approaches 20 deg. Celsius, caused
by a hardware fault in the unit housing, which leads
to a temperature increase in the system. In this
scenario the assumptions are that the sensor
(thermometer), alarm and housing are all functioning
correctly. The fault is in the refrigeration unit and
for a short period of time the temperature exceeded
20 degrees C, the consequence is that there is slight
hardware damage sustained before the fault is
rectified externally (by human intervention). The
fault is recovered, due to the correct function of the
alarm and monitor, and some external action
occurring to rectify the problem when the alarm
sounds.

5 FUTURE STUDY

Information from these experiments is being
analysed and stored in machine readable form, so
that FOE can use it to predict future points of
interest in the system fault domain. These points of
interest will form the target points for further tests as
FOE uses its information to make decisions on the
next phase of testing and evaluation.

The information obtained from injecting faults
with predictive outcomes into this known system is
leading on to the design of further test scenarios to
discover more of this system’s fault and failure
domains. It is hoped to build on to this information
to develop new testing strategies for unknown
systems and a new mechanism to glean information
about their fault and failure domains.
 Further experiments will be carried out that
continue with the case study, and a new case study
will be introduced, to determine where inferences
from the first case study are useful to discovering
information about other systems. This should

demonstrate that experiments on known systems can
be used investigate the fault and failure domains of
unknown systems. The next progression in this
research is to use this information to test and
evaluate the reliability of SOA-based systems.

REFERENCES

Arlat, J., Crouzet, Y., Karlsonn, J., Folkesson, P., Fuchs,
E., and Leber, G. H. (2003). Comparison of Physical
and Software-Implemented Fault Injection
Techniques. IEEE Transactions on Computers 52(9)

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
(2004). Basic Concepts and Taxonomy of Dependable
and Secure Computing IEEE Dependable and Secure
Computing, vol. 1, pp. 11-33, 2004

Corcho, O., Fernandez-Lopez, M., and Gomez-Perez, A.
(2003). Ontologies for Conceptual Modelling: Their
Creation, Use, and Management. Data and Knowledge
Engineering 46: 41 – 64

Duineveld, A. J., Stoter, R., Weiden, M. R., Kenepa, B.,
and Benjamins, V. R. (1999). Wondertools? A
Comparative Study of Ontological Engineering Tools.
In Proceedings of Knowledge Acquisition, Modelling
and Management (KAW99)

Looker, N., Gwynne, B., Xu, J., and Munro, M. (2005).
An Ontology-Based Approach for Determining the
Dependability of Service-Oriented Architectures. In
Proceedings of the 10th IEEE International Workshop
on Object-Oriented Real-time Dependable Systems

Looker, N., Munro, M., and Xu, J. (2005). Simulating
Errors in Web Services. International Journal of
Simulation: Systems, Science & Technology

Mizoguchi, R. and Ikeda, M. (1997) Towards Ontology
Engineering. In: Proceedings PACES/ SPICIS
International Conference on Intelligent Systems

Noy, N. F., and Hafner, C. D. (1997). The State of the Art
in Ontology Design. American Association for

Artificial Intelligence (Fall): 53 - 74
UK Health and Safety Executive, Link Associates

International Limited for UK HSE. (2002). Inspecting
and Auditing the Management of Emergency
Response. Norwich, UK: Crown Copyright

Voas, J. M. and McGraw, G. (1998). Software Fault
Injection New York, USA: John Wiley

World Wide Web Consortium (2004). Web Services
Glossary [online]. Available from:
http://www.w3.org/TR/ws-gloss/ [Accessed: 7
February 2006]

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

356

