
AVOIDING TWO-LEVEL SYSTEMS: USING A TEXTUAL
ENVIRONMENT TO ADDRESS CROSS-CUTTING CONCERNS

David Greaves
University of Cambridge, Computer Laboratory

Cambridge, UK

Keywords: Aspect Oriented Programming, Meta-Programming, Textual Environment, Interceptor Function.

Abstract: We believe that, owing to the paucity of textual facilities in contemporary HLLs (high-level languages), large
software systems frequently require an additional level of meta-programming to sufficiently address their
cross-cutting concerns. A programming team can either implement its system by both writing the main ap-
plication in a slightly customised language and the corresponding customised compiler for it, or it can use a
macro pre-processor to provide the remaining cross-cutting requirements not found in the chosen HLL. With
either method, a two-level system arises. This paper argues that textual macro-programming is an important
cross-cutting medium, that existing proposals for sets of pre-defined AOP (aspect-oriented programming) join-
points are overly constrictive and that a generalised meta-programming facility, based on atextual environment
should instead be directly embedded in HLLs. The paper presents the semantics of the main additions required
in an HLL designed with this feature. We recommend that the textual features must be compiled out as the
reference semantics would generally be too inefficient if naively interpreted.

1 INTRODUCTION

Although the term is relatively new,cross-cuttingre-
quirements have always been found in large software
projects, and have been met in various ways, aligned
with various cutting/joining axes that we list in the
next paragraph. This paper emphasises one partic-
ular cutting axis, that of the textual structure of the
source file. We first provide a list of the main cut-
ting axes, then list ways in which the textual axis is
exploited by the C/C++ pre-processor and speak of
alternatives when a pre-processor is not used. Finally
we introduce our own textual-environment concept to
HLL (high-level language) compilation and evaluate
it in terms of how it addresses the facilities otherwise
provided by a pre-processor or customised compiler.

By means of introduction, we list the common
facilities provided for cross-cutting found in HLLs,
starting with the most basic. We define a ‘cross-
cutting’ aspect of a language to be any mechanism
within the language that provides a link from one part
of the program to another. It reduces the effective di-
ameter of the program by increasing the dimensional-
ity of the interconnectivity.

Cross cutting axes we identify are:

ADVANCED IDE PREPROCESSOR

MAIN APPLICATION CODE

CUSTOMISED
INTERPRETER/COMPILER

OR

CROSSCUTTING
CONCERNS

EXECUTING PROGRAM

To Upper
Crust

OR
To Lower

Crust

Figure 1: Cross-cutting aspects feeding either into the upper
or the lower crust of the sandwich that contains the main
application code.

1. Shared Global Variables.Shared variables are the
most ancient and basic cross-cutting facility, ac-
cording to our definition thereof. Although obvi-
ous, we list them for completeness.

2. Thread Dynamics.A thread weaves between sub-
routines, often held in separate textual files1

1Strangely, in the hardware description languages
VHDL and Verilog, threads may not move between mod-
ules. This is one of the most distinguishing features of

71
Greaves D. (2006).
AVOIDING TWO-LEVEL SYSTEMS: USING A TEXTUAL ENVIRONMENT TO ADDRESS CROSS-CUTTING CONCERNS.
In Proceedings of the First International Conference on Software and Data Technologies, pages 71-76
DOI: 10.5220/0001318100710076
Copyright c© SciTePress

3. Static and Dynamic Reference Environments.
Apart from access to global and dynamically allo-
cated local variables, programing languages with
dynamic-free variables, such as Pascal, OCAML
and dialects of Algol, provide function closures
where a function can make direct reference to val-
ues in its closing environment, even when it has
been passed off for remote execution as an upcall
(see following note).

4. Computed Branches and Upcalls. Languages
that enable function pointers to be stored in vari-
ables, which is all modern languages, enable dy-
namic dispatch and remote invocation of these
functions. Where one component stores an entry
in the data-structure of another (often providing a
so-called up-call), this is a cross-cutting feature.

5. Object Static and Dynamic Hierarchy. The static
module inheritance graph of an OO language and
the dynamic, actual instantiation of an object mesh
at run time are both forms of cross-cutting. We note
that Java decided not to provide access to dynamic
function variables that are free in a method be-
cause it instead provides access to the fields in the
surrounding object that may be dynamically allo-
cated almost as easily. Programmers used to SML,
OCAML, Haskell and so on often find this a nui-
sance, but the overhead of providing both a static
chain and an object context, with the former not
likely to be used by contemporary mainstream pro-
grammers, was seen as too great by the Java design-
ers; hence they traded one form of cross-cutting for
another.

6. Long Jumps and Exceptions.Long jumps and ex-
ceptions form another cross-cutting aspect (by our
definition) whose usefulness is well proven.

7. Macro Pre-Processing. The C pre-processor is
used to provide a whole gamet of cross-cutting
facilities, which we list separately below. Pre-
processing is often deprecated because it is crude,
being not type-safe and offering the potential to
make a program unreadable. This paper will hold
that pre-processing should be replaced with a well-
designed, yet simple, ‘meta-programming’ facility
that is a primary part of any compiled HLL.

8. Constructors, Access Functions and Overload-
ing. OO languages allow the user to insert their
own code at points where abstract datatypes are
created, read or otherwise operated on, by writing
constructors and methods bound to overloaded op-
erators. These are useful joinpoints.

9. Templates and Generics.Some would argue that
C++ templates and other similar HLL generics are

these languages that enforces a totally different program-
ming style from that used in all (other) software.

artifacts to overcome antiquated, non-parametric,
type systems, and would suggest using HM (Mil-
ner, 1978) typing instead. However, in whatever
way the type system works, the facility to insert
additional code in the template libraries provides a
form of cross-cutting. Provision of some form of
polymorphism, even just through ‘void * ’ casts,
is a required cross-cutting form for any HLL used
in a large system.

We assert that the tacit motivation for AOP (aspect-
oriented programming) is that those languages that
do not normally use a pre-processor are restricted be-
cause the remaining parts of the above list are insuffi-
ciently expressive. The sandwich diagram, figure 1,
shows that some cross-cutting requirements can be
met by the facilities of the HLLper se, whereas the
remainder are implemented using some form of meta-
programming. Two forms are shown. Either a pre-
processor is used, by which we imply to include the
operations of this nature performed by an IDE (inte-
grated development environment). This is the upper-
crust approach. Otherwise, customisation of the com-
piler/interpreter is needed. This is the lower-crust
approach. We believe that only one crust is needed
to provide sufficient additional cross-cutting. In our
terms, Aspect-J (Kiczales et al., 2001) is a lower-crust
approach, where modification of the compiler serves
this purpose and the modifications are sufficiently
flexible to provide fairly generic meta-programming.
One can also argue that the lower crust represents a
frequent, major motivation for developing specialised
HLL’s, such as database languages. In the author’s
personal experience, where a project team has worked
on an ML program some 100,000 lines long, occa-
sional customisations to the ML compiler have proved
invaluable when certain cross-cutting requirements
have arisen. These all fall into one of the application
categories listed below.

The C/C++ preprocessor embodies many individ-
ual functions and is defined in terms of multiple
passes of the source files. However, a small and well-
known core of operations is all that is commonly re-
quired. Although most readers of this paper will be
well-familiar with the C preprocessor and its typical
uses, it is worth listing those specific uses here, so
that the reader can consider our assertion, in terms of
each use, that AOP has been an attempt to re-provide
these facilities when a pre-processor is not routinely
used or is deprecated, or the run-time system cannot
be customized. The list also serves as the basis for our
evaluation criteria in the results section of this paper.

The C/C++ pre-processor is commonly used for the
following (cross-cutting) functions. We note that the
majority2 of these functions can be provided using the

2When we say the ‘majority’ we could have put ‘all’ be-
cause the residual language is, of course, Turing complete.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

72

other major cross-cutting forms listed above, such as
sending a thread to a method or carrying extra param-
eters into a function, but that the alternative would
be unnecessarily expensive compared with the pre-
processing function.

• Tie-Offs. A tie-off is the permanent setting of a
variable to a constant value. For instance, hard-
wiring the name of a directory path or the IP ad-
dress of a primary server.

• Conditional Compilation. From the point of view
of this paper, conditional compilation is a tie-off to
the guard expression of a conditional construct.

• Textual Inclusion and Access to Textual Con-
text. The C pre-processor allows one file to include
another and enables the name and line number of
the current file to be accessed, usingFILE and

LINE . Newer HLLs, like Python and Java, pro-
vide reflection APIsthat allow much greater infor-
mation about the textual structure of the program
source to be read off. Our textual environment,
introduced later, relies on this information being
available.

• Assertions. Pre-processor assertions generally re-
quire both conditional compilation (for rendering a
speed-enhanced version) and a long jump or excep-
tion mechanism. Provided these two cross-cutting
axes exist, conventional assertions can be imple-
mented. If we have textual inclusion and access
to textual context, they can be placed in their own
library and print the details of their caller.

• Visualisation, Logging, Coverage Monitoring,
etc..The conditional compilation aspect of the pre-
processor enables logging to be turned on and off
with global switches, and access to textual context
enables C/C++ macros to be conditional, as well as
providing vital information to index the recorded
data. There are many variations of logging, includ-
ing visualisation of program resource consumption
and code coverage testing. Logging was the exam-
ple cross-cutting concern addressed in several AOP
papers (Kiczales et al., 2001).

• Memory Allocation and Tracking . The pre-
processor is often used to implement a ‘new’
macro in C, overcoming a historical deficiency3

and the tracking functions just require a cross-
cutting logger.

• Watchpoints. Using the pre-processor, it is easy
to provide breakpointing when a thread reaches a

However, it would be tortuous to achieve the more-textual
forms even using a reflection API.

3Aside: Some might argue it is not a deficiency: they
say the fact that C does not always require a memory man-
ager or any form of run-time system at all is one of its main
strengths for bare-metal programming.

particular line of code; watching for a variable to
attain a certain value requires that all writes are
ensconced inside unpleasant macro calls; check-
ing for the formation of a particular pattern in a
data structure is not at all easy. The customised
compiler approach is perhaps the easiest conven-
tional way to watch for the latter, when available;
otherwise specialist hardware techniques are used,
which are beyond the scope of this paper.

• Accessor Functions for Opaque Data-
Structures. Inter-procedure call optimisation
has replaced the use ofin-lined macros as the best
way to access otherwise opaque data-structures.
This use is obsolescent.

• Inter-language Calls and Miscellaneous
Application-Specific Uses. There are many
other applications for the pre-processor, but we
assert that the remaining uses can be regarded
as application-specific rather than cross-cutting.
These include persistence, scheduling, and a
whole host of library, operating-system and inter-
language calls. The majority of these uses cannot
be coded in the original HLL, or certainly require
deferred linking, and hence are not cross-cutting
aspects of the current application.

A textual (or typographical) technique known to all
mathematicians is the distributive law. We assert it
can be helpful in programming. For instance, ifg()
does not produce side effects referenced byf(), and
vice versa, then

f(if g() then A else B)

can be rewritten as

if g() then f(A) else f(B).

Our assertion is that the process of ‘folding in’ is a
required form of cross-cutting in large software sys-
tems, where the desire is to applyf() at one point
and have it executed at many, textually lower, points.
Our approach is to pass items such asf(), as well as
tie-offs that might effect various functions likeg(),
down through the textual structure of the program to
the leaves where they will act.

2 EMBEDDED PRE-PROCESSOR

In this section we define what is essentially a pow-
erful, embedded pre-processor. This is specifi-
cally designed to serve the cross-cutting aspects that
have been met with a second level, that of macro-
processing, as identified in the previous section.

We assume the abstract syntax tree of our HLL is
very typical, like the following:

AVOIDING TWO-LEVEL SYSTEMS: USING A TEXTUAL ENVIRONMENT TO ADDRESS CROSS-CUTTING
CONCERNS

73

| eval (s, t) (apply(f, args)) =
let val (lambda(bv, body), s’, t’) = eval (s, t) (f)

fun evalargs(nil, nil, s) = s
| evalargs(f::ft, a::at, s) = let val (a’, s’, _) = eval(s, t) a

in (f,a’)::evalargs(ft, at, s’) end
val s2 = evalargs(bv, args, s’)

val (r, s3, _) = eval (s2, t’) body
in (r, s3, t’)
end

| eval (s, t) (apply(Str f, args)) =
let val (lambda(bv, body), s’, t’) = eval (s, t) (Str f)

fun mv n = "_" ˆ (Int.toString n)
val mvl = ref nil
fun evalargs(n, nil, nil, s) = s
| evalargs(n, f::ft, a::at, s) = let val (a’, s’, _) = eval(s, t) a

val _ = mvl := (mv n, a’)::(!mvl) in (f,a’)::evalargs(n+1, ft , at, s’) end
val s2 = evalargs(1, bv, args, s’)
val mf = assoc(f, t’)
fun do_mf (tc_mf(lambda(bv, mb))) (a1, a2) =

eval (!mvl @ ("arg1", a1)::("arg2", a2)::s, t) mb
| do_mf (_) (a1, a2) = (a1, s, t)

val _ = do_mf mf (Int 0, Int 0)
val (r, s3, _) = eval (s2, t’) body
val (r’, _, _) = do_mf mf (Int 0, r)
in (r’, s3, t’)
end

Figure 2: The clause for Function Apply taken from our toy interpeter. For clarity, it is first shown without the entry and
exit calls to themf accessor joinpoint. The triple returned is the result, the modified environment σ′ and the modified textual
environment,Te’.

datatype exp =
Str of string | Int of int | Var of str

| plus of exp * exp | ...
| ... other common expression operators,
| lambda of exp list * exp
| meta of exp * exp
| apply of exp * exp list
| block of exp list
| defun of ...

Rather than presenting only the denotational se-
mantics for the embedded pre-processor, we alter-
nate the presentation by giving fragments of SML
from a toy implementation of the interpreter. Hence,
we write ‘eval(ast, sigma, text) ’, instead
of [[ast]](σ,Te), where ast is a fragment of ab-
stract syntax tree,σ is an association list for the
environment, mapping variables to values, andTe

is our new textual environment. In the com-
piler, as opposed to the interpreter,σ is a sym-
bol table mapping variables to run-time store loca-
tions. Additional arguments would be needed to
support either dynamic free variables and/or the OO
‘ this ’ current object pointer, but these are book-
work and omitted for clarity. The demonstrator in
SML can be downloaded from the following URL
http://www.cl.cam.ac.uk/users/djg/aspectsdemo .

A full implementation of the textual environment,
Te, would be too long to present in this paper, and

its fine detail is not very important. The significant
aspects are:

1. It is initialised as a set of bindings/tie-offs by com-
mand line flags, such as the -D flag used in C/C++,
the source file path, using URI etc. and from other
compile-time environment settings.

2. It is temporarily augmented, in the style of a LIFO
stack, by an explicit ‘meta ’ construct as well as by
entry to each nested block or textual inclusion.

3. A set of access functions and predicates provided
as natives in the HLL are able to extract values and
test properties ofTe.

4. Names of variables and functions appearing else-
where in the source program can be stored inTe to
produce special behaviour where they occur.

The simplest access function would be the direct oc-
currence in an HLL expression of the name of a
textual variable, bound only inTe. Variables are
looked up inTe beforeσ to give precedence to tie-
offs. To avoid over-pollution of the expression names-
pace, specific textual values should be extracted from
Te with an HLL primitive such as ‘T() ’. For exam-
ple, [[T(name)]](σ,Te) = name(Te), wherename
is one of many possible builtin accessor functions
for textual context, e.g. one that retrieves the clos-

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

74

est textually-surrounding basic block name. Others
would access line number and file and directory name.

Conditional compilation is implemented using the
language’s conventional conditional constructs, such
as ‘if ’, ‘ case ’ and ‘?: ’, where the guard expression
makes access toTe.

The sequence rule, typically denoted in the con-
crete syntax with semicolon, is augmented by the
HLL parser to supply additional context information
such as the line number for each sequence operator.
We denote the meta information at the semicolon by
the suffixa;

[[e1;a e2]](σ,t) =

let (, σ′,Te
′) = [[e1]](σ,Te)

in [[e2]](σ′,a@Te′)

The sequence rule evaluatese2 using both environ-
ments returned frome1. Imperative basic blocks
(generally denoted with braces orbegin/end) are
built out of the sequence rule in the normal way, ex-
cept that the finally returned textual environment is
the initial one that acted at the start of the block,
thereby deleting bindings created inside the block.

User tie-offs (bindings) can be locally introduced
into Te with the HLL ‘meta ’ construct that augments
the textual context for the remainder of the current
basic block.

[[meta(v, e)]](σ,Te) = (⊥, σ, (v, [[e]](nil,Te)) :: Te)

Note thatσ is ignored when evaluatinge since it is
not known until runtime in the compiler version.

The basic function application step, when using the
textual environment, is presented in the top part of
figure 2. This implements the procedure and func-
tion call operation, using call-by-value. The actual
parameters are evaluated in order, leading to succes-
sive new bindings inσ, as well as any other side ef-
fects, before the body is evaluated in the finalσ, de-
noteds2 .45 Note that the textual environment for
evaluating the body,t’ , is that from the function
definition, rather that that of the caller. In an inter-
preter, it would be helpful to provide access to aspects
of the caller’s textual environment, but this would
add considerable run-time overheads, if supported for
separately-compiled modules.

4With the given simple code, the binding of the bound
variable is left in the returned environment,s3, but ideally
this would not be the case in reality, such as our own refer-
ence implementation.

5Where dynamic-free variables are used, the eval off
will return a closure to augment sigma during the eval of
the body. This form of cross-cutting should be considered
to be applied to all of our fragments, but we do not show it
for clarity.

To provide logging and accessor functions for for-
mal parameter, variable and field access operations
we allow user-definedinterceptorfunctions to be reg-
istered inTe, associated with any variable, that are
called when that variable is read or written (second
argument is a 1 for a write). The execution seman-
tics for this are wheref : α ∗ int → α is as-
sociated with variableb, then, on a right-hand side,
[[b]](σ,Te) is replaced withf([[b]](σ,Te), 0) and, on
the left-hand side[[b := e]](σ,Te) is replaced with
b := f([[e]](σ,Te), 1). This is a more general form
of the tie-off, but can be defined with the same con-
crete syntax: namelymeta(f, e). Locality of opera-
tion is controlled both by the restricted scope of the
meta construct and the ability of the accessor func-
tions to testTe to gate their behaviour. To achieve
global control, starting values are established inTe on
the compiler command line or via the IDE.

Interceptor functions also serve at the function call
and return join points. They operate before the call,
but after evaluation of the arguments, or at the re-
turn and on the return value. Themeta construct can
again be used to set up the desired action, associating
a number of user constant tie-offs or user interceptor
functions with the locally enclosing function or any
named function called while the subsequent textual
environment holds.

Specifically, ‘meta(af, mf); e2’ causes all calls to
af within e2 and any subsequent sequential com-
mands in the same basic block to have their return
value passed through functionmf , for logging or tie-
off. The second argument tomf is a 1 on the return
stroke. On the before-call stroke, the second argu-
ment is a 0 and its return value is ignored. For callee
side interception,af is replaced in themeta state-
ment with null or some other token to signify the
current function in all functions defined within block
starting withe2.

The implementation of the caller’s side intercep-
tions is illustrated in the lower part of figure 2, al-
though, for brevity, only one interceptor function,mf ,
is retrieved per function call instance. After evalu-
ating the actual arguments,Te is searched by the
caller for a definition pertaining to the called function.
In an efficient interpreter, the search result would be
cached, using whatever technique is already deployed
for optimising branches, whereas for compilation the
search is only made once anyway. Also shown in the
code is a helpful facility to intercept the caller’s ar-
guments in either the pre- or post-call joinpoint. It
would be handy to access these during the execution
of mf using the formal names they are bound to in the
callee, but this cannot be done if the callee is com-
piled separately or a computed branch is used where
different formal identifiers are used in different desti-
nations. Therefore, as a fallback, hardwired, stylised
identifiers are always provided, such as1, 2, to ac-

AVOIDING TWO-LEVEL SYSTEMS: USING A TEXTUAL ENVIRONMENT TO ADDRESS CROSS-CUTTING
CONCERNS

75

cess the actuals by positional index.
The implementation of the callee-side joinpoints is

similar. As mentioned, a special token, such as the
empty string, should be passed as the first argument to
themeta statement to register an interceptor function
for entry and exit to the currently textually enclosing
procedure or function definition.

Another useful feature is forTe to contain a han-
dle on the stack pointer so that calls can be associated
with their returns. The actual stack pointer is easily
mapped to a simple integer on most machines, and
the integer can then be accessed as ‘sp ’. Although it
is intended that only the relative values of the integer
have meaning, bugs that arise from use of the actual
values will tend to be machine-dependent. Compile-
time static analysis can ensure that no reliance of ac-
tual values is used, but we have not implemented that.

Although we have only implemented an interpreter
for the textual environment feature, we have spoken
of the constraints and benefits arising form the com-
piled implementation. Compilation is certainly our
intended medium, not least for efficiency. Standard
techniques for converting an interpreter to a compiler
(Futamura, 1999) are not made less practical by our
approach.

Small-scale trials would be the best form of eval-
uation of the presented work, but we have not had a
chance to start them. Nonetheless, if the reader now
scans again the list of applications addressed by the
two-level system, we believe it is more-or-less ob-
vious that use of our textual environment, which is
automatically augmented with meta-information by
the command line, IDE, textual inclusion and named
block and sequencing operators, can adequately ad-
dress the application list.

3 CONCLUSION

This paper has presented an original and comprehen-
sive definition of weaving and cross-cutting meth-
ods and applications. We asserted that the main
uses are conventionally met using a single level
of meta-programming (not a new assertion (Volder,
1999)). Two possible levels were presented: pre-
processor and customised HLL. We used the C/C++
pre-processor as our main example owing to it be-
ing widely familiar. We then presented the essence of
a general-purpose, single-level compilation technique
that provides all of the methods and applications we
found in the pre-processor. Our solution requires al-
most no additional syntax in a concrete implementa-
tion and is therefore claimed to be superior to other
proposals.

An extension to our system would allow writes as
well as reads to the textual environment. This would

facilitate storage of meta-data needed for emerg-
ing dynamic-binding applications based on reflection
APIs and so on.

Please note that although we have used a functional
language (SML) to express the main evaluation func-
tion, our approach applies equally to imperative and
functional target languages.

REFERENCES

Futamura, Y. (1999). Partial evaluation of computation pro-
cess - an approach to a compiler-compiler.Higher-
Order and Symbolic Computation, 12(4):381–391.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. G. (2001). An overview of As-
pectJ.Lecture Notes in Computer Science, 2072:327–
355.

Milner, R. (1978). A theory of type polymorphism in pro-
gramming.Journal of Computer and System Sciences,
17(3):348–375.

Volder, K. D. (1999). Aspect-oriented logic meta program-
ming.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

76

