
A SYSTEMATIC REVIEW MEASUREMENT IN SOFTWARE
ENGINEERING

State-of-the-art in Measures

Oswaldo Gómez, Hanna Oktaba
Institute of Investigations in Applied Mathematics and Systems, Autonomous National University of Mexico UNAM

Scholar Circuit University City, Coyoacán 04510, Mexico City, Mexico

Mario Piattini, Félix García
Alarcos Research Group, Department of Computer Science, University of Castilla-La Mancha

Paseo de la Universidad/4,13071,Ciudad Real, Spain

Keywords: Software Measurement, Measure, Systematic Review.

Abstract: The present work provides a summary of the state of art in software measures by means of a systematic
review on the current literature. Nowadays, many companies need to answer the following questions: How
to measure?, When to measure and What to measure?. There have been a lot of efforts made to attempt to
answer these questions, and this has resulted in a large amount of data what is sometimes confusing and
unclear information. This needs to be properly processed and classified in order to provide a better overview
of the current situation. We have used a Measurement Software Ontology to classify and put the amount of
data in this field in order. We have also analyzed the results of the systematic review, to show the trends in
the software measurement field and the software process on which the measurement efforts have focused. It
has allowed us to discover what parts of the process are not supported enough by measurements, to thus
motivate future research in those areas.

1 INTRODUCTION

It is a well-known fact nowadays that software
measurement helps us to better understand, evaluate,
and control the products, processes, and software
projects from the perspective of evaluating, tracking,
forecasting, controlling and understanding (Ebert et
al., 2004). On the one hand, software measurement
allows organizations to know, compare and improve
their software quality, performance, and processes.
On the other hand, software measurement helps
organizations to estimate and predict software
characteristics to support better decisions (Pfleeger,
1997; Florac et al., 1999). As a consequence,
software measures are proving to be very effective
for understanding and improving software
development and maintenance projects (Briand et
al., 1996), showing problematic areas in system
quality and institutionalizing software process
improvement.

It should also be noted that there is a large amount of
studies in software measurement, which makes it
very easy to lose information and to get confused.
For this reason, it is important to follow a specific,
strict, and very well defined method for searching in
the current literature. If we take a look at software
measurement, we realize that it is considered to be
among the youngest disciplines, and it is currently in
the phase in which terminology, principles, and
methods are still being defined and consolidated
(Briand, 2002). This means that there is not a
general agreement about the exact definitions of the
main concepts related to measurement. In addition,
no single standard contains a complete vision of
software measurements (García et al., 2004).

With respect to the issues identified above, this
article carries out a systematic review with a
predefined search strategy, in order to summarize
and classify the current and ongoing efforts in this
field. The systematic review has been conducted
according to the (Kitchenham et al 2004) proposal,
which is very suitable for looking for information

224
Gómez O., Oktaba H., Piattini M. and García F. (2006).
A SYSTEMATIC REVIEW MEASUREMENT IN SOFTWARE ENGINEERING - State-of-the-art in Measures.
In Proceedings of the First International Conference on Software and Data Technologies, pages 224-231
DOI: 10.5220/0001317102240231
Copyright c© SciTePress

about measures on different sources in a disciplined
and systematic way. Hence, Systematic review
allows us to recognize, evaluate and do even more; it
helps us to identify issues for planning future
investigation and provides us with information about
the consistency of our results (Travassos et al.,
2005). We chose systematic review because of its
scientific methodology that goes one step further
than a simple overview.

The goal of this work is to find and clarify the
answers to three different questions: What to
measure, when to measure and how to measure. This
is achieved by analyzing from the results of the
literature review, the following issues: proportion of
measured entities; measured attributes; validated
measurement; measurement focus; and measurement
in life cycle software process.

This paper is organized as follows. After this
introduction; an overview of the systematic review
process is given. In the third section, the way in
which the systematic review has been carried out on
the software measurement field is explained. Then,
an analysis of the results is provided. Finally, the
conclusions and future work are dealt with.

2 SYSTEMATIC REVIEWS

It is often recognized in Software Engineering that
different research studies are generally fragmented
and limited, not properly integrated, and without
agreed standards (Kitcheham et al., 2004). In order
to avoid those problems we chose the systematic
review to carry out this investigation on software
measures. Systematic review aims to present a fair
evaluation of a research topic by using trustworthy,
rigorous and auditable methodology, along with a
very well defined strategy that allows the
completeness of the research to be executed (in this
case on software measures). Furthermore, systematic
literature review is a formal and methodological
process that allows us to identify, evaluate, and
interpret all existing studies that are related to our
investigation on software measures based in this
case on a research question, but it could be also
based on topic area, or phenomenon of interest. This
is done in such a way that it helps us to summarize
the evidence that is currently available concerning a
treatment or technology. It also serves to identify
any gaps in the current research, and thus suggest
areas for further investigations, and finally provide a
framework/background to position new research
activities appropriately.

The review provides us with the necessary
information to properly address the software
measures, by mapping the measure field, finding the
relevant data, ideas, techniques and their correlation
with our investigation. Besides, it can support the
planning for a new piece of research. Moreover,
with this systematic literature review we can
integrate empirical investigation, in order to find out
generalizations. We do this by establishing specific
objectives to create critical analysis. An overview of
the systematic review is provided in the next
subsection.

2.1 The Systematic Review Process

In order to address and present a fair evaluation of a
research topic, the systematic review is composed of
the following phases:

Review Planning Phase: Here the investigation’s
goals are established. The Review Protocol, which is
the most important item in this phase, is generated.
First and foremost, this protocol defines the research
question and the methods that will be executed in the
review. In a broad manner, this phase involves the
following, summarized, activities, defined by
(Travassos et al., 2005):

Question Formulization: This activity is
considered to be among the most important in the
systematic review process. Here the investigation
targets must be defined by focusing the question and
by establishing its Quality and Amplitude.

Source Selection: Primary studies from sources
are selected here, by defining a source selection
criterion, setting the studies’ languages, identifying
and selecting the sources after an assessment of
them and checking references.

Study Selection: It describes the process and
criteria for the evaluation and selection of studies.
 Review Execution phase: This phase involves
identification, selection and evaluation of primary
studies, based on the inclusion and exclusion criteria
defined in the Review Protocol. It is composed of
the following steps, in summary form:

Selection Execution: This section aims to register
the selection process for primary studies by
evaluating them with quality criteria.

Information Extraction: Once primary studies are
selected, the relevant data must be extracted by
following an Information Inclusion and Exclusion
Criteria Definition, by defining Data Extraction
Forms, and by resolving divergences among
reviewers.

Result Analysis: In this phase all the information
from the different studies is analyzed. This phase

A SYSTEMATIC REVIEW MEASUREMENT IN SOFTWARE ENGINEERING - State-of-the-art in Measures

225

involves the next step: Result Summarization, which
presents the data resulting from the collected studies
by doing Calculus Statistical, Results Tables,
Sensitivity Analysis, Plotting, which will lead to the
Conclusion and Final Comments.

The whole process must be stored and the
planning and the execution have to guarantee that
the research can be done. It is worth mentioning here
that the Review Protocol must be evaluated by
experts. Finally, many of the activities of the review
process involve iteration to refine the process, and
therefore they are not necessarily sequential.

In the next section, we describe how the review
process, which was designed as appropriate to our
research goals, was performed

3 SYSTEMATIC REVIEW
ABOUT SOFTWARE
MEASURES

First of all, it must be emphasized that this paper is
an attempt to answer this fundamental question:
What are the most current and useful measures in the
literature? Since our whole protocol was produced
around this question, this is the main step in our
Review Planning Phase. Moreover, we hope that this
work will be useful for project managers and
software developers. The defined strategy was the
following: first and foremost, the large collection of
paper in current literature about software
measurements was examined. Due to the great
diversity of topics in this field, and with the aim of
clarifying and summarizing them in the best way
possible, we used the classifications of concepts
defined in the Software Measurement Ontology
proposed by (García et al., 2004). This ontology
aims at contributing to the harmonization of the
different software measurement proposals and
standards, by providing a coherent set of common
concepts used in software measurement.

In order to do the research we built the following
combinations of search strings:

“(measure OR metric OR quality OR
quantitative) AND (process OR engineering OR
maintenance OR management OR improvement OR
Software testing OR development)”.

All the possible combinations with these words
were tested in the following web search engines:
ACM Digital Library, Search IEEE magazines,
Wiley Interscience, and Science@Direct.

The results obtained on the web engines are
shown in Table 1.

Table 1: Total Search Results.

Sources
Search
Results Reviewed Accepted

Science@Direct 3569 78 10
ACM 950 85 28
IEEE 3740 111 32
Wiley 653 20 8
TOTAL 8912 294 78

As we can see in Table 1, search engines

provided us with 8912 papers. Nevertheless, it
should be pointed out that only 78 were accepted,
which represents about 1 % of the total articles,
hardly even that. It is apparent that many articles
were rejected. This is so because if a more limited
search had been carried out, it would certainly have
been true that we would have started with fewer
results from the search engines, but at the same time
we would have lost important articles. Therefore, a
very less restrictive search was defined: as a result of
this, we obtained too many articles, of which very
few were considered apt. Furthermore, we have
discarded those measures that were outside the scope
of our model. We have also discarded measures that
did not provide any relevant information, as well as
repeated measures proposed by more than one
author so that each measure is included only once.
Hence, our attention focused on papers where
keywords and titles included the research strings.
These strings were also searched for in the whole
document by some search engines.

Regarding the execution phase of the systematic
review, the selection and evaluation of information
was initiated using the terms of the inclusion and
exclusion criteria defined in the review protocol.
These criteria established that selected studies were
in English and that all of them showed current,
useful software measurements, basically only studies
about measures for software development, software
project administration and maintenance were
selected. All papers had to satisfy our quality criteria
and in this sense it is important to point out that all
the searched-for sources are serious and that the
quality of their papers is guaranteed. Moreover the
search engines were validated by experts. For this
reason, our quality criteria also trusted in the quality
of the sources.

Once the papers were selected, the information
was extracted by means of an extraction template for
objective results which includes study name, author,
institution, journal, date, methodology, results,
problems and subjective results which includes
information through authors, general impressions

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

226

and abstractions, according to the proposal provided
by Trassvasos et al., (2005); in particular, the aims
of this template are to store the results of the
execution phase process by extracting, not only the
objective information, but also the subjective
information from each article analyzed.

Finally, in the results analysis phase we analyzed
the measures in order to show, among other aspects,
the information about attributes, the entities
measured and their characteristics, the amount of
measures in a specific attribute or entity, etc. This
phase is described in more detail in the following
section.

4 RESULT ANALYSIS

The measures extracted from the studies were
summarized in terms of the Software Measurement
Ontology, which helped us to find out what kinds of
measures exist. More specifically, this ontology
supported us in defining a template by categorizing
the measures in the following three different ways:
What to measure? How to measure? And When to
measure?

Consequently, in order to summarize the existing
measures, the ISO 15504, CMM, and CMMI
establish a quality background for the improvement
of maturity levels defining the Project, Process and
Product as the kind of entities that can be measured.
That is why we extracted attribute and sub-attributes
(Fenton and Pfleeger, 1997) measured of these
entities, from the articles reviewed and classified
them into internal or external. With this part of the
analysis we try to answer the question: What to
measure? This is the first way in which we
categorized the measurements. Table 3 shows these
attributes.

Table 3: Definition of entities.

What?

Entibies
Type of

Attribute
Project Process Product Attributes

Sub-
attributes Internal External

Once the measurements were collected and

stored in our template table, we analyzed the amount
of measures which have been defined for the
Process, Project and Product kind of entities. As we
can see in Figure 1, the most measured kind of entity
is the product, and the entities whose measurement
has been less supported by the current literature are
the project and process. The reason is that measuring

product is easier than measuring process and project,
in which we usually find ambiguous definition of
attributes. For products, quality and technical
attributes are very well defined because quality has
been strongly focused on product. Finally,
measurements on product entities help to measure
process and project ones.

Figure 1: Proportion of measured entities.

Next, we shall look at another closely-related
issue, which is the amount of measured attributes.
Figure 2 shows the proportion of measure attributes
according to our analysis of the accepted papers. As
Figure 2 shows, size is one of the most measured
attributes. The point is that the size is a base
measure, not only needed in most of the derived
measures, but the size measure is also easier to
obtain because it focuses on one of the most
“tangible” attributes which is the source code.
Moreover, size has very well defined scales, units
and methods of measurement like functions Points
(FP) (IFPUG, 2004); therefore it is very difficult to
get confused with size measurements. Furthermore,
cost estimation is derived from size and the overall
productivity, and finally the schedule is based on the
size and cost estimates (Ebert et al., 2004). Hence
size is used on most of control measures in a
software project. The arguments set out here lead to
an explanation of why size has one of the highest
values in Figure 2.
In order to show in a in a better way the information
displayed in Figure 2, Table 4 show the attributes
order by the most measured.

In connection with the most measured attributes,
the complexity attribute is used in different contexts,
for example: source code complexity, Design
complexity, UML Diagrams complexity,
Architecture complexity, etc. Hence it can be seen
that complexity has gathered many measurements
from its different applications. If we take a look at
Figure 2 in greater detail, it should be pointed out
that attributes like Activity, Role, Work products
and Accuracy are the least measured. That is due to
the fact that these attributes are mostly related with

A SYSTEMATIC REVIEW MEASUREMENT IN SOFTWARE ENGINEERING - State-of-the-art in Measures

227

Figure 2: Measured attributes.

Table 4: Measures attributes.

Complexity 19% Productivity 1%
Size 16% Testability 1%
Inheritance 8% Costumisability 1%
Defect 7% Roles 1%
Structuredness 7% Work Products 1%
Time 5% Dependencies 1%
Others 5% Reusability 1%
Activity 3% Navegation 1%
Accuracy 3% Presentation 1%
Cohesión 3% Centrality 1%
Coupling 3% Stratum 1%
Similarity 3% Links 1%
Changes 2% Search engiens 1%
Effort 2% Interaction 1%
Cost 2% Variation 0%
Relevans 2% Risk 0%

process and project kind of entities, for which there
is not a well defined basic attribute.
Once the “What to Measure?” question was
analyzed. The next step was to tackle the question:
“How to measure?” To answer this question we
gathered how the measurements of attributes in the
selected papers were made and classified them in
terms of the following characteristics:
Representation, Description, Base or Derived
Measurement, Scale (Fenton y Pfleeger, 1997),
Empirically (Wohlin et al., 2000; Juristo and
Moreno, 2001; Basili et al., 1999; Perry et al., 2000)
or Theoretically (Weyuker, 1988; Briand et al.,
1996; Whitmire, 1997; Zuse, 1998; Poels y Dedene,
2000) validated. This analysis is summarized in
Table 5.

Let us have a look at the last characteristic,
which has as its goal to discover if a measure has

been validated empirically and/or theoretically. The
aim of theoretical validation is to check whether the
intuitive idea of the attribute being measured is
considered in the defined measure. The main goal of
empirical validation is to obtain objective
information concerning the usefulness of the
proposed metrics. Theoretical validation by itself is
not enough to guarantee the usefulness of the
measure, because it may occur that a measure is
valid from a theoretical point of view, but it has no
practical relevance in relation to a specific problem.
As a consequence, a measure which has not been
validated is not demonstrated to be useful. We
therefore classified the measures in such a way as to
know how many had been empirically and/or
theoretically validated. This is shown in Figure 3.

As can be observed in Figure 3, about half of the
measures found in the selected papers had been only
empirically validated. This leads us to the
conclusion that there is a great tendency to empirical
validation. Furthermore, we can see that (24%) of
the measurements had been validated only
theoretically, although it was recognized in the
papers that they need empirical validation. Finally
only (20%) of the measurement had been both
empirically and theoretically validated. It should be
pointed out that it is necessary to get a common
agreement to validated measures theoretically.
Moreover empirically validation needs more data
extracted from “real projects” in order to get
practical conclusions.

Regarding the measurement focus found in the
articles analysed, we have discovered the following
approaches: Structured (Briand et al., 1996a),
measurement focussing in Process, Object Oriented
(OO) (Chidamber y Kemerer., 1994; Brito e Abreu y

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

228

Table 5: Definition of measure attributes.

Figure 3: Validated measures.

Carapuca, 1994; Lorenz y Kidd, 1994; Marchesi,
1998; Bansiya et al., 1999; 2002), Quality (Piattini y
García., 2003). Function Points (IFPUG Release 4.2,
2004), UML (Marchesi, 1998), Complexity
(McCabe, 1976; Henry y Kafura, 1981), Project
(Putnam y Myers, 1992) and OCL (Reynoso et al.,
2004).Figure 4 shows the amount of measurement in
each approach. It shows us that the most supported
approaches by measure are Object Oriented (OO)
ones. This is due to this kind of projects are
currently the most popular in software development.
Continue with this part of the analysis, there are
efforts to get a universal WEB measures definition,
with this review we found conceptual models and
frameworks in order to classify WEB measures.

Figure 4: Measure focus.

Finally, we analyzed the third question: When to
measure?, To classify in what parts of the lifecycle
project the measure must be taken for projects and
process entities, the PMBOK guide (ANSI/PMI,
2004) was selected. In order to group when the
measurements are taken for the product entity, the
waterfall lifecycle model was applied. We chose
these two models due to their wide acceptation and
genericity. Figure 5 shows the proportion of product

measurements in the different phases of the software
life cycle:

Figure 5: Measure in life cycle software process.

As we can see in Figure 5, most measurements
are carried out during the Design, Testing and
Development phases of the waterfall lifecycle
software process. In the Design phase, products such
as architecture, system designs, requirements
analysis, etc. are generated. Hence it is necessary to
support this phase with measurements, in order to
know characteristics of these products when
carrying out the design. Moreover, measurement in
the Design phase can support the future products to
be generated, which mean that this phase is one of
the most measured. Continue with this analysis, it
should be pointed out that the Development phase is
one of the most measured, because most of the
software products are created here, such as: manuals,
source code and, among other products, the software
itself. Therefore, it is possible to collect quantity
information about these products here. According to
PSP (Humphrey, 2005), measures about size, effort,
time, faults, defects, LOC, etc. are commonly taken
in this phase. Another factor to take into account is
that once the software system is created, it is
necessary to validate if this system fulfils the quality
requirements. The counting faults and deriving the
reliability is the most widely applied and accepted
method used to validate systems; most of this
information focuses on the product and is commonly
reported in terms of measurements. This is done in
not only in the early phases but also especially in the
testing phase, which is another of the most-measured
phases in lifecycle software process.

 In addition, the PMBOK guide defines the
following general phases for project life: Initial,
intermediate, and final phases. In Figure 6 we show
the distributions of measures through these phases.

HOW?
Measure

Representation Description Based Derived Scale Validation Measure focus

A SYSTEMATIC REVIEW MEASUREMENT IN SOFTWARE ENGINEERING - State-of-the-art in Measures

229

Figure 6: Measure in life cycle projects.

It is worth mentioning here that in the initial
phase there could be sub-phases with one or more
deliverables, according to the kind of project. In
these sub-phases the following are usually
measured: size, complexity, level of risk, cash, etc.
Most measurements concentrate on the Initial phase,
as in this phase the planning for the whole project is
executed- this in turn constitutes the main effort in
project management. In the Intermediate phase,
many control activities are carried out in order to
ensure the success of the project. Periodical reports
are thereby generated with quantity information
about process and project measures and indicators.
For these reasons this phase is also one of the most
measured in project lifecycle for project and process
entities.

5 CONCLUSIONS AND
FURTHER WORK

Software measurements are very important in
software development process, because they help us,
to control, estimate and improve process, projects
and products, among other things.. With that in
mind, this article attempts to provide the state of art
in software measurement, by carrying out a
systematic review whose purpose is to summarize
the most current and useful measures in the
literature.

With this systematic review, we find out the
following results:

(1) Measures are strongly aligned to product
entity. Since this kind of entity has better attribute
definition than project and product entities have,
there are large amount of measures for the product.
This leads to the conclusion that if an entity has a
few measures, it is due to the fact that it doesn’t
have specific attribute.

(2) Complexity gathered a great amount of
measures because this attribute is used in different
contexts. While size is also one of the most

measured attributes since it is used in cost and
development schedule estimation

(3) There is a great tendency to obtain empirical
validation. But it is necessary to get more data
extracted from “real projects”, in order to get
practical conclusions and to improve software
quality.

(4) Development and Design are the most
measured phases in lifecycle software process
because it is in these phases that most software
products are generated.. It should be also noted that
the testing phase is also one of the most measured
phases. This is thanks to the fact that this phase
involves quality activities for evaluating software
quality characteristics, generally reported in terms of
quantity values. But quality measures are
considering in the early software development
phases by counting faults which is the most widely
applied method to determine software quality.

(5) For projects and process entities most
measurements are concentrated in the Initial and
Intermediate phases. That is because it is here that
the project planning and control activities are
developed.

(6) There are a large number of measures for OO
projects. This is because these kinds of projects are
currently the most popular in software development.
Hence a lot of research has been done in this field.

(7) So many efforts had been made to get a
universal WEB measures definition. In this review
we found conceptual models and frameworks in
order to classify WEB measures.

Finally, we need to relate the measurements
found in this article to a specific software
development process. The aim of this is to settle
when a measure must be taken. To reach this goal, in
our specific research, further work will take in the
Process Model for the Software Industry
(MoProSoft), which focuses on small companies and
which is also the Mexican norm.

ACKNOWLEDGEMENTS

This article was supported by the Process
Improvement for Promoting Iberoamerican Software
the Competitiveness of Small and Medium
Enterprises (COMPETISOFT) and Science and
Technology for Development (CYTED).

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

230

REFERENCES

ANSI/PMI (2004), A Guide Project Management Body of
Knowledge (PMBOK Guide) an American National
Standard, ANSI/PMI 99-001-2004, Third Edition,
Project Management Institute, Inc., United Estates of
America.

Basili, V., Shull, F. y Lanubile, F., 1999, Building
knowledge through families of experiments. IEEE
Transactions on Software Engineering, 25(4), pp. 435-
437.

Bansiya J. y Davis C., 2002, A Hierarchical Model for
Object-Oriented Design Quality Assessment. IEEE
Transactions on Software Engineering, 28(1), 4-17.

Briand, L., Morasca, S. y Basili, V., 1996. Property-Based
Software Engineering Measurement. IEEE
Transactions on Software Engineering, 22(1), pp. 68-
86.

Brito e Abreu, F. y Carapuça, R., 1994, Object-Oriented
Software Engineering: Measuring and controlling the
development process. Proceedings of the 4th
International Conference on Software Quality,
McLean (USA).

Calero, C., Ruiz, J., Piattini, M., 2005, Classifying web
metrics using the web quality model. Online
Information Review. Vol 29 No 3, pp. 227-248

Chidamber, S. y Kemerer, C., 1994. A Metrics Suite for
Object Oriented Design. IEEE Transactions on
Software Engineering, 20(6), pp. 476-493.

Ebert, C., Dumke R., Bundschuh, M., Schmietendorf, A.,
2004, Best Practices in Software Measurement. How
to use metrics to improve project and process
performance, 295 Seiten-Springer. Berlin, 1st Edition.

Fenton, N. y Pfleeger, S.L., 1997, Software Metrics: A
Rigorous & Practical Approach, PWS Publishing
Company, Second Edition.

Florac, W. A., Carleton, A. D., 1999. Measuring the
Software Process. Statistical Process Control for
Software Process Improvement, Addison-Wesley.
United States of America, 1st Edition.

García, F., Bertoa, M. F., Calero, C., Vallecillo, A., Ruiz,
F., Piattini, M., Genero, M., 2005. Towards a
consistent terminology for software measurement.
Information and Software Technology. xx (2005), pp.
1-14

Henry, S. y Kafura, S., 1981, Software Structure Metrics
Based on Information Flow. IEEE Transactions on
Software Engineering, 7(5), pp. 510-518.

Humphrey, S.H., 2005, PSP A Self-Improvement Process
for Software Engineers, Addison-Wesley. United
States of America, 1st Edition.

IFPUG, (2004), IFPUG: Function Point Counting
Practices Manual, Release 4.2. International Function
Point Users Group, USA –IFPUG, Mequon,
Wisconsin, USA.

Juristo, N. y Moreno, A. (2001). Basics of Software
Engineering Experimentation. Kluwer Academic
Publishers.

Kitchenham, B., 2004. Procedures for Performing
Systematic Reviews. Joint Technical Report Software

Engineering Group, Department of Computer Science
Keele University, United King and Empirical Software
Engineering, National ICT Australia Ltd, Australia,
pp. 1-28.

Lorenz, M. y Kidd, J., 1994, Object-Oriented Software
Metrics: A Practical Guide. Prentice Hall. Englewood
Cliffs, Nueva Jersey.

McCabe, T., 1976. A Software Complexity Measure.
IEEE Transactions on Software Engineering, 2, pp.
308-320.

Marchesi, M., 1998. OOA Metrics for the Unified
Modeling Language. 2nd Euromicro Conference on
Software Maintenance and Reengineering, 1998, 67-
73

Perry, D., Porte, A. y Votta, L. (2000). Empirical Studies
of Software Engineering: A Roadmap. Future of
Software Engineering, Ed. Anthony Finkelstein,
ACM, pp. 345-355.

Pfleeger, S. L.,1997. Assessing Software Measurement.
IEEE Software. March/April. pp. 25-26.

Piattini, M., García, F. O., 2003. Calidad en el desarrollo
y mantenimiento de software, Ra-Ma. Spain, 1st
Edition.

Poels, G. y Dedene, G. (2000). Distance-based software
measurement: necessary and sufficient properties for
software measures. Information and Software
Technology, 42(1), pp. 35-46.

Putnam, L. H. y Myers, W., 1992. Measures for
Excellence - Reliable software on time, within budget,
Prentice Hall, New Jersey.

Raynus, J., 1999. Software Process Improvement with
CMM, Artech House. United States of America, 1st
Edition.

Reynoso L., Genero M. y Piattini M. Measuring OCL
Expressions: An Approach Based on Cognitive
Techniques, 2004. Chapter 5 in “Metrics for Software
Conceptual Models” (Eds. Genero M., Piattini M. and
Calero C.). Imperial College Press, UK.

Travassos G. H., Boilchi, J., Mian , P. G., Natali, A. C. C.,
2005. Systematic Review in Software Engineering.
Technical Report Programa de Engenharia de Sistemas
e Computaçâo PESC, Systems Engineering and
Computer Science Department COPPE/UFRJ, Rio de
Janerio, pp. 1-30.

Weyuker, E., 1988. Evaluating Software Complexity
Measures. IEEE Transactions on Software
Engineering, 14(9), pp. 1357-1365.

Whitmire, S., 1997. Object Oriented Design
Measurement. John Wiley & Sons, Inc.

Wohlin, C., Runeson, P., Höst, M., Ohlson, M., Regnell,
B. y Wesslén, A.,2000. Experimentation in Software
Engineering: An Introduction. Kluwer Academic
Publishers.

Zuse, H. (1998). A Framework of Software Measurement.
Berlin. Walter de Gruyter.

A SYSTEMATIC REVIEW MEASUREMENT IN SOFTWARE ENGINEERING - State-of-the-art in Measures

231

