PARALLEL PROCESSING OF "GROUP-BY JOIN” QUERIES ON
SHARED NOTHING MACHINES

M. Al Hajj Hassan and M. Bamha
LIFO, Universie d’'Orléans
B.P. 6759, 45067 Odlans Cedex 2, France

Keywords: PDBMS,Parallel joins, Data skew, Join product skew, GroupBy-Join queries, BSP cost model.

Abstract: SQL queries involving join and group-by operations are frequently used in many decision support applications.
In these applications, the size of the input relations is usually very large, so the parallelization of these queries
is highly recommended in order to obtain a desirable response time. The main drawbacks of the presented
parallel algorithms that treat this kind of queries are that they are very sensitive to data skew and involve
expansive communication and Input/Output costs in the evaluation of the join operation. In this paper, we
present an algorithm that minimizes the communication cost by performing the group-by operation before
redistribution where only tuples that will be present in the join result are redistributed. In addition, it evaluates
the query without the need of materializing the result of the join operation and thus reducing the Input/Output
cost of join intermediate results. The performance of this algorithm is analyzed using the scalable and portable
BSP (Bulk Synchronous Parallel) cost model which predicts a near-linear speed-up even for highly skewed
data.

1 INTRODUCTION and Hains, 1999; Bamha and Hains, 2000; Seetha and
Yu, 1990; Hua and Lee, 1991; Wolf et al., 1994; De-
Witt et al., 1992). Thus, effective parallel algorithms
Data warehousing, On-Line Analytical Processing that evenly distribute the load among processors and
(OLAP) and other multidimensional analysis tech- minimizes the inter-site communication must be em-
nologies have been employed by data analysts to ex-ployed in parallel and distributed systems in order to
tract interesting information from large database sys- obtain acceptable performance.
tems in order to improve the business performance |n traditional algorithms that treat "GroupBy-Join”
and help the organisations in decision making. In querie$, join operations are performed in the first
these applications, aggregate queries are widely usedstep and then the group-by operation (Chaudhuri
to summarize large volume of data which may be the and Shim, 1994; Yan and Larson, 1994). But the
result of the join of several tables containing billions response time of these queries is significantly reduced
of records (Datta et al., 1998; Chaudhuri and Shim, if the group-by operation is performed before the
1994). The main difficulty in such applications is join (Chaudhuri and Shim, 1994), because group-by
that the result of these analytical queries must be ob-reduces the size of the relations thus minimizing the
tained interactively (Datta et al., 1998; Tsois and Sel- join and data redistribution costs. Several algorithms
lis, 2003) despite the huge volume of data in ware- that perform the group-by operation before the join
houses and their rapid growth especially in OLAP operation were presented in the literature (Shatdal
systems (Datta et al., 1998). For this reason, paral-and Naughton, 1995; Taniar et al., 2000; Taniar and
lel processing of these queries is highly recommended Rahayu, 2001; Yan and Larson, 1994).
in order to obtain acceptable response time (Bamha,In the "Early Distribution Schema” algorithm pre-
2005). Research has shown that join, which is one sented in (Taniar and Rahayu, 2001), all the tuples of
of the most expansive operations in DBMS, is paral- the tables are redistributed before applying the join
lelizable with near-linear speed-up only in ideal cases
(Bamha and Hains, 2000). However, data skew de- 'GroupBy-Join queries are queries involving group-by
grades the performance of parallel systems (Bamhaand join operations.

. 301
Al Hajj Hassan M. and Bamha M. (2006).
PARALLEL PROCESSING OF "GROUP-BY JOIN” QUERIES ON SHARED NOTHING MACHINES.
In Proceedings of the First International Conference on Software and Data Technologies, pages 301-307
DOI: 10.5220/0001316003010307
Copyright © SciTePress

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

or the group-by operations, thus the communication algorithm. In section 3, we give an overview of differ-

cost in this algorithm is very high. However, the cost ent computation methods of "GroupBy-Join” queries.
of its join operation is reduced because the group-by In section 4, we describe our algorithm. We then con-
is performed before the expansive join operation. clude in section 5.

In the second algorithm, "Early GroupBy Scheme”

(Taniar and Rahayu, 2001), the group-by operation
is performed before the distribution and the join

operations thus reducing the volume of data. But in
this algorithm, all the tuples of the group-by results)
are redistributed even if they do not contribute in Bulk-Synchronous ParallgBSP) cost model is a pro-

the join result. This is a drawback, because in some gramming model introduced by L. Valiant (Valiant,
cases only few tuples of relations formed of million 1990) to offer a high degree of abstraction like PRAM

of tuples contribute in the join operation, thus the models and yet allow portable and predictable perfor-
distribution of all these tuples is useless. mance on a wide variety of multi-processor architec-

tures (Bisseling, 2004, Skillicorn et al., 1997). A BSP
These algorithms fully materialize the intermediate COMPputer contains a set of processor-memory pairs, a
results of the join operations. This is a significant communication network allowing inter-processor de-
drawback because the size of the result of this livery of messages and a global synchronization unit
operation is generally large with respect to the size of Which executes collective requests for a synchroniza-
the input relations. In addition, the Input/Output cost tion barrier. Its performance is characterized by 3 pa-
in these algorithms is very high where it is reasonable rameters expressed as multiples of the local process-

2 THE BSP COST MODEL

to assume that the output relation cannot fit in the
main memory of each processor, so it must be reread
in order to evaluate the aggregate function.

In this paper, we present a new parallel algorithm
used to evaluate "GroupBy-Join” queries on Shared
Nothing machines (a multiprocessors machine where
each processor has its own memory and disks (DeWitt
and Gray, 1992)). In this algorithm, we do not materi-
alize the join operation as in the traditional algorithms
where the join operation is evaluated first and then the
group-by and aggregate functions (Yan and Larson,
1994). So the Input/Output cost is minimal because
we do not need to save the huge volume of data that
results from the join operation.

We also use the histograms of both relations in order
to find the tuples which will be present in the join re-
sult. After finding these tuples, we apply on them the
grouping and aggregate function, in each processor,
before performing the join. Using our approach, we
reduce the size of data and communication costs to
minimum. It is proved in (Bamha and Hains, 2000;
Bamha and Hains, 1999), using the BSP model, that
histogram management has a negligible cost when
compared to the gain it provides in reducing the com-
munication cost. In addition, Our algorithm avoids
the problem of data skew because the hashing func-
tions are only applied on histograms and not on input
relations.

The performance of this algorithm is analyzed using
the scalable and portable BSP cost model (Skillicorn
et al., 1997) which predicts for our algorithm a near-
linear speed-up even for highly skewed data.

The rest of the paper is organized as follows. In

ing speed:
e the number of processor-memory pairs
¢ the timel required for a global synchronization,

e the timeg for collectively delivering a 1-relation
(communication phase where each processor re-
ceives/sends at most one word). The network is
assumed to deliver alrrelation in timeg * h for
any arityh.

P1 P2 P3

Pp

global synchronisation

M

global synchronisation

Jnil

Figure 1: A BSP superstep.

A BSP program is executed as a sequenciper-
steps each one divided into (at most) three successive
and logically disjoint phases. In the first phase each
processor uses only its local data to perform sequen-
tial computations and to request data transfers to/from
other nodes. In the second phase the network deliv-
ers the requested data transfers and in the third phase
a global synchronization barrier occurs, making the
transferred data available for the next superstep. The

section 2, we present the BSP cost model used to eval-execution time of a superstaegs thus the sum of the

uate the processing time of the different phases of the

302

maximal local processing time, of the data delivery

PARALLEL PROCESSING OF ” GROUP-BY JOIN” QUERIES ON SHARED NOTHING MACHINES

time and of the global synchronization time: are the same. In this case, it is preferable to carry
)) %) out the group-by operation first and then the join
Time(s) = max w;” 4 max = h;" g+l operation (Taniar et al., 2000; Taniar and Rahayu,

2001), because the group-by operation reduces the
wherewl(s) is the local processing time on proces- size of the relations to be joined. As a consequence,
sori during superstep andhl(s) _ max{hgf,hgi)} applylng t_he group-by operation before. the join

(s) () : operation in PDBMS results in a huge gain in the
whereh, - (resp.h;_) is the number of words trans- - communication cost and the execution time of the
mitted (resp. received) by processoduring super- »GroupBy-Join” queries.
steps. The execution timey_ Time(s), of a BSP | the contrary, this can not be applied on Query 2,
program composed df supersteps is therefore a sum pecayse the join attributeP(d) is different from the
of 3terms:W + H*g+ S+l whereW = " _max; w!® group-by attributedategory).
andH = Y, max; h{”. In generalW, H and S are In this paper, we focus on "GroupBy-Join”
functions ofp and of the size of data, or (as inthe queries when the join attributes are part of the
present application) of more complex parameters like group-by attributes. In our algorithm, we succeeded
data skew and histogram sizes. To minimize execu- to redistribute only tuples that will be present in
tion time of a BSP algorithm, design must jointly min- the join result after applying the aggregate function.
imize the numbef of supersteps and the total volume Therefore, the communication cost is reduced to
h (resp.W) and imbalancé(®) (resp.W(*)) of com- ~ minimum.
munication (resp. local computation).

4 PRESENTED ALGORITHM
3 COMPUTATION OF

"GROUP-BY JOIN” QUERIES In this section, we present a detailed description of
our parallel algorithm used to evaluate "GroupBy-
In DBMS, the aggregate functions can be applied on J0In” queries when the join attributes are part of
the tuples of a single table, but in most SQL queries, the group-by attributes. We assume that the relation
they are applied on the output of the join of multiple R (resp. S) is partitioned among processors by
relations. In the later case, we can distinguish two horizontal fragmentation and the fragmemis for
types of "GroupBy-Join” queries. We will illustrate § = 1,...,p are almost of the same size on each

these two types using the following example. processor, i.e|R;| ~ £l wherep is the number of
In this example, we have three relations that represemprocessorys ' P

respectively Suppliers, Products and the quantity of a

product shipped by a supplier in a specific date. For simplicity of description and without loss of
generality, we consider that the query has only one
SUPPLI ER (Sid, Snane, City) join attribute z and that the group-by attribute set
PRODUCT (Pid, Pnane, Category) consists ofz, an attributey of R and another attribute
SHI PMENT (Sid, Pid, Date, Quantity) z of S. We also assume that the aggregate function
f is applied on the values of the attributeof S. So
Query 1 the treated query is the following:

Sel ect p.Pid, SUM (Quantity)
From PRODUCT as p, SHI PMENT as s
Wher e p.Pid =s.Pid

Group By p.Pid

Sel ect R.z,R.y,S.z, f(S.u)
From R, S

Wiere Rx =Sz

Goup By Rz, Ry,S.z

Query 2
Sel ect p.Category, SUM antit . .
Frem PRpGDUCT gs)Fli SHI PI(VSIiJT as Z) In the rest of this paper, we use the following
Wher e p.Pid = s.Pid ’ notation for each relatio’ € {R, S} :
G oup By p.Category e T; denotes the fragment of relatich placed on

processot,

e Hist”(T) denotes the histograihof relation T
with respect to the attribute, i.e. a list of pairs

The purpose ofueryl is to find the total quantity
of every product shipped by all the suppliers, while
that of Query?2 is to find the total amount of every

category of product shipped by all the suppliers. 2PDBMS : Parallel DataBase Management Systems.
The difference betweeueryl and Query2 lies ®Histograms are implemented as a balanced tree (B-
in the group-by and join attributes. |Queryl, tree): a data structure that maintains an ordered set of data

the join attribute Pid) and the group-by attribute to allow efficient search and insert operations.

303

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

(v, n,) wheren,, # 0is the number of tuples of re- of blocksS; are created on the fly while scanning re-

lation 7" having the value for the attributew. The lation S; in parallel, on each processigry applying
histogram is often much smaller and never larger the aggregate functiorf on every group of tuples
than the relation it describes, having identical values of the couple of attributes

. (z,2). At the same time, the local histograms
e Hist™(T;) denotes the histogram of fragmen Hist™¥(R:)i=1.., are also created.

o : ; '« (In this algorithm the aggregate function may be
o Hist(T) is processor’s fragment of the his MAX, MIN, SUM or COUNT. For the aggregate

togram ofT, AV G a similar algorithm that merges teOU NT
e Hist”(T)(v) is the frequency(,) of valuev in and theSU M algorithms is applied).
relationT,

o Hist™(T;)(v) is the frequency of value in sub-
relationT}, Timepnaser = O(cij0 * Jmax (|Rs] + 1Si])).

o AGGRY (T) *is the result of applying the ag-
gregate functionf on the values of the aggregate Phase 2: Creating the histogram of? x S
attribute u of every group of tuples off’ hav- Th.e flArst step in thls,phase is to create the histograms
ing identical values of the group-by attribute ~ ésti (17) and Hist7(S) by a parallel hashing of

AGGRY,(T) is formed of a list of tuples having the histogramsHist”(R;) and Hist"(S;). After
o hashing, each processormerges the messages it

the form(v, f,) wheref, is the result of applying eceived to constitutélist?(R) and Hist* (S).

the aggregate function on the group of tuples hav- \ypjje merging, processaralso retains a trace of the

ing valuev for the attributew (w may be formed of network layout of the valued of the attributez in

more than one attribute), its Histi(R) (resp. Hist{(S)): this is nothing but
o AGGRY (T;) denotes the result of applying the the collection of messages it has just received. This

: . information will help in forming the communication
aggregate function on the attributeof the frag- templates in phasep3. g

mentT;,

o AGGRY .(T)is processof's fragment of the re- 1he cost of redistribution and merging step is
sult of agblly(/in)g th% aggregate fugnction o (cf. to proposition 1 in (Bamha and Hains, 2005)):

In principle, this phase costs:

e AGGRY ,(T)(v) is the resultf, of the aggregate ~ T'imephasez.a =
function of the group of tuples having valwefor
the group-by attributev in relationT’,

O(mz’n(g x |Hist” (R)|+||Hist" (R)||, g * % + Hp%”)

o AGGRY,(T;)(v) is the resultf, of the aggregate min(g + | Hist®(S)| + || Hist™(S)||, g » 181, M)
function of the group of tuples having valwefor P p
the group-by attributev in sub-relation;, n l)

e ||T'|| denotes the number of tuples of relatiBnand

e |T| denotes the size (expressed in bytes or number
of pages) of relatiofT".

The algorithm proceeds in four phases. We will We recall that, in the above equation, for a rela-

give an upper bound of the execution time of each tion T € {R,S}, the termmin(g = |Hist*(T)| +

superstep using BSP cost model. The notafign.) |Hist®(T)||,g = L. + UZ) is the necessary time
’ P P

hides only small constant factorshey depend only 1, compute Hist?, () starting from the local
on the program implementation but neither on data histogramst‘st””Eij'rn’f
1)i=1,..., P

nor on the BSP machine parameters

whereg is the BSP communication parameter dand
the cost of a barrier of synchronisation.

The histogram Hist?(R = S) is then computed
on each processar by intersectingHist? (R) and
Histi(S) in time:

Phase 1: Creating local histograms

In this phase, the local histogrami&st*(R;)i=1,... »
(resp. Hist™(S;)i=1,...») Of blocks R; (resp. S;) are
created in parallel by a scan of the fragméntresp.
Si), on processof, in time c;,, * max;—1,....p | Rs
(resp.c;/o * maxi=1,.., |Si|) Wherec; , is the cost of O(‘max (min(||Hist? (R)||, I\Histf(s)ll)))
writing/reading a page of data from disk. =L

TimephaseQ.b =

In addition, the local fragment8GG R (S:)i=1,...» SThe size ofHist(R » S) = Hist(R) N Hist(S) is
J— generally very small compared tH ist(R)| and|Hist(S)|

*AGGRY ,(T) is implemented as a balanced tree (B- becauséist(R x S) contains only values that appears in
tree). both relationsk and S.

304

PARALLEL PROCESSING OF ” GROUP-BY JOIN” QUERIES ON SHARED NOTHING MACHINES

The total cost of this phase is: Hence Hist (R;) is only the restriction of the
fragment ofHist” (R;) to values which will be present

Time ase = Time ase .a+Time ase
phase? phase? phase2.b in the join of the relations? and S. (this also applies

O(min(g*\Histz(R)\—i—HHist (R)||, g * lpl ||1;H) to Hist" (S:)).
+ min(g + |Hist™(8)| + || Hist®(S)]], g 2 1 151y
p p Now, each processor obeys all the distribut-
+ max (min(HHistf(R)H,HHistf(S)H))+l)~ ing orders it has received, so only tuples of
b Hist""(R;) = Hist®¥(R;) N Hist (R;) and
Phase 3: Data redistribution AGGRy.(S) = AGGRYL(Si) N Hist"(S;) are

In order to reduce the communication cost, only tu- redistributed.
ples of Hist™(R) and AGGR}(S) that will be

present in the join result will be redistributed. To this end, we first evaluatédist™”(R;) and
To this end, we first compute on each processor AGGR;.(S:). The cost of this step is of order:

j the intersectionsfist”" (R;) = HistD*(R;) N
Hist;(R w S) and Hist”""(8;) = HistD=(S;) n

Timephasefﬂ.c =

Hist;(R x S) for i = 1,..,p where Hist")*(R;) O(,max (|[Hist™ (Rs)|| + ||AGGR}C‘Z(S¢)||)),
(resp. Hist¥*(S,)) is the fragment ofHist™(R;) mhee? .
(resp. Hist®(S;)) which was sent by processorto which is the necessary time to traverse all the
processoy in the second phase. tuples of Hist™¥(R;) and AGGR%%(S;) and access
The cost of this step is: Hist"(R;) and Hist" (S;) respectively on each pro-
O [[HistV* (Ry)[| + > || Hist D (S)|]). COSgt.

' ' Now, each processoi distributes the tuples of
We recall that, o Hist Y(R;) and AGGR;.(S;). After distribution,
SN HistD" R = || U HistP"(R)]| < i

all the tuples of Hist *(R;) and AGGR;,(S;)

min(||Hist"(R)||, 211 : . .
and D ot B tiaame prooator. S0, each processor
(e L ()x S . ,
2 HH”?(]: (Si)HHSH: IV Hist?*(S)Il < "merges the blocks of data received from all the
min(||Hist®(S)||,), » other processors in order to credilist; ’(R) and
thus the total cost of this step is: AGGR A Z(S)
. o . . IR The cost of distributing and merging the tuples is
Timephases.a = O(mm(”stt (@l p) of order (cf. to proposition 1 in (Bamha and Hains,
2005)):

) oz S
+ min(||Hist™ (S]], M))
P Timephaseii.d =

Now h pr r n h fragmen S— —
ow each processorj sends eac agment O(min(g*|Hist YR + [HGE (R,

Hist?” (R:) (resp. Hist"(8;)) to pro-

Cessor i. Thus, each processok receives g*@+ ||R|\)

¥, [Hist"(R))| + X, |Hist”*(S:)| pages of p P

data from the other processors. + min(g * [AGGR},(S)| + |[AGGR; . (9)||,
In fact, Hist*(R;) = U_sz’st(j)‘”(Ri) Ell ||S||

and |Hist"(R)| = X, |HistD*(R)] > gx T)“)

> |HistP*(R)) N Hist"(R x 8)|, thus

A) where the terms:
|Hist™(R:))| > X, [Hist V" (R;)| (this also ap-

plies to Hist”(S;)). _ . min (g * [Hist"" (R)| + |[Hist"" (R)||, g » |R| n ||R||)
Therefore, the total cost of this stage of communica- P P
tion is at most:
and
Timephases.b = O(g « (|Hz'stz(Ri)|+|Histz(5’i)|)+l). _—
S min (g AGGR}u(S)+[AGGR L (S)]], 9+ +10)

Remark 1 u;Hist """ (R;) is simply the intersection
of Hist™(R;) and the histogrant:st” (R x S) which
will be noted: and AGGRy;,, ;(S) starting from Hist"*(R;) and
Hist (R;) = U;jHist " (R;) AGGR7,,(S;) respectively.
= Hist"(R;) N Hist"(R x S).

represent the necessary time to compiiet; "’ (R)

)=

305

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

The total time of the redistribution phase is:

TimephaseB =
O (min(g « [Hist™" (R)| + | Hist™ (R)|],
R IR . R
g * 15| + Lp”) +mm(||stt (R, LpH)

+ min(g * [AGGR},(S)| + |[AGGR;.(9)||,
5]

11511 , o 1Sl
+ —) + min(||Hist™ (9)||, —

») (Il S »)
([1Hist™" (R:)|| + [[AGG R (S)ll) + l).
P

We mention that we only redistribut&ist”" (R;)
andAGGR/ ,(S;) and their sizes are generally very
small compared tdR;| and |S;| respectively. In
addition, the size ofHist” (R x S)| is generally very
small compared toHist” (R)| and|Hist"(S)|. Thus,
we reduce the communication cost to minimum.

Phase 4:
gate function
In this phase, we compute the global aggregate
function on each processor. We use the following
algorithm where AGGR})'7(R x S) holds the
final result on each processer The tuples of
AGGRYY7 (R x S) have the form(z, y, z,v) wherev

is the result of the aggregate function.

Global computation of the aggre-

Par (on each node in parallel) i=1,..
AGGR7Y (R w S) = NULL °
For every tuple ¢ of relation Hist; ’(R) do
freq = Hist; Y (R)(t.z, t.y)
For every entry v1 = AGG Ry, .(S)(t.x, z) do
Insert a new tuple (t.z,ty,z, f(v1, freq))

P

into AGGRY (R x S);
EndFor
EndFor
EndPar
The time of this phase is:
O(max;=,..., [|[AGGRY V(R » S)|[), because

the combination of the tuples offist;’’(R) and
AGGRY ., ;(S) is performed to generate all the tuples
of AGGR}Y7(R x S).

Remark 2 In practice, the imbalance of the data re-
lated to the use of the hash functions can be due to:

e a bad choice of the hash function used. This im-

balance can be avoided by using the hashing tech-

nigues presented in the literature making it possible
to distribute evenly the values of the join attribute
with a very high probability (Carter and Wegman,

1979),

This instruction creates a B-tree to store histogram’s
entries.

306

e an intrinsic data imbalance which appears when
some values of the join attribute appear more fre-
qguently than others. By definition a hash function
maps tuples having the same join attribute values
to the same processor. These is nho way for a clever
hash function to avoid load imbalance that result
from these repeated values (DeWitt et al., 1992).
But this case cannot arise he@wing to the fact
that histograms contains only distinct values of the
join attribute and the hashing functions we use are
always applied to histograms.

The global cost of evaluating the "GroupBy-Join”
queries is of order:

Timerorar = O(cio x max ([Ri| + i)
+ max |\AGGR?’§’§(R x S|
i=1,..., P (s
. . . R R
+ min(g * |Hist” (R)| + ||Hist" (R)||, g * 1E| + pr”)
. . B o ST, 1Sl
+ min(g * |Hist™ (S)| + ||Hist™ (S)]|, g * +)
+ min(g * [Hist”(R)| + ||Hist"* (R)|],
R R
I, Rl
p
+ min(g + [AGGR;4(S) + |[AGCRL (),
S S
Isl, sl
p

(1Hist™ (R)|| + [|AGG R 5 (S0)ll) +1)
P

Remark 3 In the traditional algorithms, the aggre-
gate function is applied on the output of the join op-
eration. The sequential evaluation of the "groupBy-
Join” queries requires at least the following lower
bound:bound;, s, = Q(c;ox(IR|+|S|+|R x S])).
Parallel processing withp processors requires there-
fore: bound;, s, = % * bound;n 1, -

Using our approach in the evaluation of the
"GroupBy-Join” queries, we only redistribute tuples
that will be effectively present in the "groupBy-Join”
result, which reduces the communication cost to
minimum. This algorithm has an asymptotic optimal
complexity because all the terms Time; ;. are
bounded by those dbund;,, .

5 CONCLUSION

The algorithm presented in this paper is used to eval-
uate the "GroupBy-Join” queries on Shared Noth-
ing machines when the join attributes are part of the
group-by attributes. Our main contribution in this

algorithm is that we do not need to materialize the

PARALLEL PROCESSING OF ” GROUP-BY JOIN” QUERIES ON SHARED NOTHING MACHINES

costly join operation which is necessary in all the International Conference on Very Large Databases
other algorithms presented in the literature, thus we pages 354-366, Santiago, Chile.

reduce its Input/Output cost. It also helps us to avoid patta, A., Moon, B., and Thomas, H. (1998). A case for
the effect of data skew which may result from com- parallelism in datawarehousing and OLAP. Ninth
puting the intermediate join results and from redis- International Workshop on Database and Expert Sys-
tributing all the tuples if AVS (Attribute Value Skew) tems Applications, DEXA 9&EE Computer Society,
exists in the relation. In addition, we partially eval- pages 226-231, Vienna.

uate the aggregate function before redistributing the Dewitt, D. J. and Gray, J. (1992). Parallel database systems
data between processors or evaluating the join oper- : The future of high performance database systems.
ation, because group-by and aggregate functions re- Communications of the ACN35(6):85-98.

duce the volume of data. To reduce the communica- pewitt, D. J., Naughton, J. F., Schneider, D. A., and Se-
tion cost to minimum, we use the histograms to dis- shadri, S. (1992). Practical Skew Handling in Parallel
tribute only the tuples of the grouping result that will Joins. InProceedings of the 18th VLDB Conference
effectively be present in the output of the join oper- pages 27-40, Vancouver, British Columbia, Canada.
ation. This algorithm is proved to have a near-linear Hua, K. A. and Lee, C. (1991). Handling data skew in mul-
speed-up, using the BSP cost model, even for highly tiprocessor database computers using partition tuning.
skewed data. Our experience with the join operation In Lohman, G. M., Sernadas, A., and Camps, R., ed-
(Bamha and Hains, 2000; Bamha and Hains, 1999; itors, Proc. of the 17th International Conference on
Bamha and Hains, 2005) is evidence that the above Very Large Data Basegpages 525-535, Barcelona,
theoretical analysis is accurate in practice. Catalonia, Spain. Morgan Kaufmann.

Seetha, M. and Yu, P. S. (December 1990). Effectiveness of
parallel joins.|IEEE, Transactions on Knowledge and
Data Enginneerings2(4):410-424.

Shatdal, A. and Naughton, J. F. (1995). Adaptive paral-
lel aggregation algorithmsSIGMOD Record (ACM

REFERENCES

Bamha, M. (2005). An optimal and skew-insensitive Special Interest Group on Management of Data)
join and multi-join algorithm for ditributed architec- P P 9 a

tures. InProceedings of the International Confer- 22):104-14&
ence on Database and Expert Systems Applications Skillicorn, D. B., Hill, J. M. D., and McColl, W. F. (1997).

(DEXA'2005). 22-26 August, Copenhagen, Dane- Questions and Answers about BSRcientific Pro-
mark volume 3588 of_ecture Notes in Computer Sci- gramming 6(3):249-274.
ence pages 616-625. Springer-Verlag. Taniar, D., Jiang, Y., Liu, K., and Leung, C. (2000).
Bamha, M. and Hains, G. (2000). A skew insensitive al- Aggregate-join query processing in parallel database
gorithm for join and multi-join operation on Shared systems,. IProceedings of The Fourth International
Nothing machines. Ithe 11th International Confer- Conference/Exhibition on High Performance Comput-
ence on Database and Expert Systems Applications ing in Asia-Pacific Region HPC-Asia200@lume 2,
DEXA'200Q volume 1873 of_ecture Notes in Com- pages 824-829. IEEE Computer Society Press.
puter ScienceLondon, United Kingdom. Springer- raniar p. and Rahayu, J. W. (2001). Parallel processing of
Verlag. 'groupby-before-join’ queries in cluster architecture.
Bamha, M. and Hains, G. (2005). An efficient equi-semi- In Proceedings of the 1st International Symposium on
join algorithm for distributed architectures. Fro- Cluster Computing and the Grid, Brisbane, Qld, Aus-
ceedings of the 5th International Conference on Com- tralia, pages 178-185. IEEE Computer Society.

putatigahScience (ICCSEU03) 22425 May, Atlanta, Tsois, A. and Sellis, T. K. (2003). The generalized pre-

USA volume 3515 of_ecture Notes in Computer Sci- - : o
encg \;;agl;es 755763 SpL:inger-Ver:ag pu : grouping transformation: Aggregate-query optimiza-
) : tion in the presence of dependenciesVItDB, pages
Bamha, M. and Hains, G. (September 1999). A frequency 644—655.

adaptive join algorithm for Shared Nothing machines. Valiant, L. G. (August 1990). A bridging model for par-

Journal of Parallel and Distributed Computing Prac- allel computation. Communications of the ACM
tices (PDCP), Volume 3, Number 3, pages 333-345 33(8):103-111.

Appears also in Progress in Computer Research, F.
Columbus Ed. Vol. Il, Nova Science Publishers, 2001. Wolf, J. L., Dias, D. M., Yu, P. S., and Turek, J. (1994).
Bisseling, R. H. (2004).Parallel Scientific Computation : New _algorithms for parallelizing relational dat_abase
A Structured Approach using BSP and MRDxford joins in the presence of data ;kel\E.EE Transactions
University Press, USA. on Knowledge and Data Engineering(6):990-997.
Carter, J. L. and Wegman, M. N. (April 1979). Universal Yan, W. P. and Larson, P.-k. (1994). Performing group-by
classes of hash functionslournal of Computer and before join. InProceedings of the 10th IEEE Inter-
System Sciences8(2):143-154. national Conference on D_ata Engineerimgages 89—
) .)) 100. IEEE Computer Society Press.
Chaudhuri, S. and Shim, K. (1994). Including Group-By in
Query Optimization. IrfProceedings of the Twentieth

307

