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Abstract: The well known Chinese Postman Problem has many applications, and this problem has been proved to be 
NP-hard in graphs where directed and non-directed edges are mixed. In this paper, in order to investigate the 
salient feature of orthogonal design, we designed a genetic algorithm adopting an orthogonal crossover 
seoperation to solve this (mixed Chinese Postman) problem and evaluate the salient ability.  The results 
indicate that for problems of small sizes, the orthogonal genetic algorithm can find near-optimal solutions 
within a moderate number of generations. We confirmed that the orthogonal design shows better 
performance, even for graph scales where simple genetic algorithms almost never find the solution. 
However, only the introduction of orthogonal design is not yet effective for the Chinese Postman Problem 
of practical size where a solution can be obtained in less than 104 generations. This paper concludes that the 
optimal design scale of orthogonal array to this mixed Chinese Postman Problem does not conform to the 
same scale as the multimedia multicast routing problem. 

1 INTRODUCTION 

The Chinese Postman Problem, as is well known, is 
to find the shortest route in a graph that uses every 
arc (directed or non-directed edge) and gets back to 
where it started. For example in the non Eulerian 
graph shown in Fig.1, since Postman’s route 
traverses every arc at least once, the Postman must 
passes doubly through an arc of weight 6. By 
duplicating some arcs, the non Eulerian graph can 
have at leaset one Postman’s route.  In general, if a 
given graph is a non Eulerian graph, it can be said 
that the optimum solution of the Chinese Postman 
Problem is a route where the total weight of 
duplicated arcs is the minimum. When a given graph 
is an Eulerian graph, the solution is uniquely 
determined. 

Though this problem has many applications, 
including robot exploration and analyzing interactive 
systems and web site usability (Thimbleby, 2003), 
this problem has been proved to be NP-hard. The 

multimedia multicast routing problem is also NP-
hard. Paper (Zhang and Leung, 1999) proposed an 
orthogonal genetic algorithm for this latter problem, 
and concluded on the basis of solving a benchmark 
test problem, that for practical problem sizes the 
orthogonal genetic algorithm can find near-optimal 
solutions within a moderate number of generations. 
Its salient feature is to incorporate an experimental 
design method called orthogonal design into the 
crossover operation.  In order to further investigate 
this salient feature of orthogonal design, which was 
applied to the sampling of genes from the parents for 
crossover, we will design a genetic algorithm 
adopting an orthogonal crossover operation to solve 
the mixed Chinese Postman Problem and evaluate 
the salient ability. 

For the problem which we treat is called the 
Chinese postman problem on mixed networks 
(WCPP), heuristic solution procedures have been 
proposed to solve approximately  (Edmond and 
Johnson, 1979)(Pearn and Liu, 1995)(Frederickson, 
1979).  
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 Figure 2: A basic process of genetic algorithm. 

1. [Start] Generate random population of t  
chromosomes (suitable solutions for the problem). 

2. [Fitness] Evaluate the fitness f(x) of each 
chromosome x in the population. 

3. [New population] Create a new population by 
repeating following steps until the new population 
is complete. 
1. [Selection] Select two parent chromosomes 

from a population according to their fitness 
(the better their fitness, the better their 
chance of being selected). 

2. [Crossover] Use crossover probability to 
cross over the parents and form a new 
offspring (children). If no crossover was 
performed, the offspring would be an exact 
copy of the parents. 

3. [Mutation] Use mutation probability to 
mutate new offspring at each locus (position 
in the chromosome). 

4. [Accepting] Place new offspring in a new 
population. 

4. [Replace] Use newly generated population to 
continue the algorithm. 

5. [Test] If the end condition is satisfied, stop, and 
return the best solution in the current population. 

6. [Loop] Go to step 2. 

Figure 1: An example of route in Chinese postman 
problem. 

2 GENETIC ALGORITHM AND 
ORTHOGONAL ARRAY 
REPRESENTATION 

A genetic algorithm (GA) is a heuristic approach 
used to find approximate solutions to knotty 
problems through application of the principles of 
biological evolution. Genetic algorithms make the 
best of biologically derived approaches such as 
inheritance, mutation, natural selection, and 
recombination (or crossover). Genetic algorithms are 
a particular class of evolutionary algorithms where a 
population of abstract representations (called 
chromosomes) of candidate solutions (called 
individuals) evolve into better solutions. That is, 
information treated in GA can be classified into two 
structures: phenotype and genotype. Phenotype 
represents information in the biological world, and 
genotype represents information in a population of 
chromosomes. By encoding, the information in a 
phenotype can be transferred into a genotype, and by 
decoding the opposite occurs.  We will chiefly 
consider that in a genotype. Even though some 

different encodings are possible, in general the 
solutions are represented in binary strings of 0s and 
1s.  

In this mixed Chinese postman problem, we will 
treat a given graph G whose every arc is a directed 
edge or a non-directed edge.  We will consider a 
directed graph G’ where every non-directed edge in 
the given graph is changed into two directed edges 
with different directions each other.  Then, we can 
make our chromosome type as an integer string 
whose element means the number of times that the 
postman passes the arc. The length of a string is the 
number of edges of G’. Therefore, in this mixed 
Chinese postman problem, the solutions are 
represented in strings of integer. The evolution starts 
from a population of completely random individuals 
and goes on in generations. In each generation, the 
fitness of the whole population is evaluated, and 
multiple individuals are stochastically selected from 
the current population (by judging their fitness) and 
modified (so called by mutation or recombination) to 
form a new population, which becomes current in 
the next iteration of the algorithm. The general 
process of GA is known, and is shown in Fig.2. 

Orthogonal array was developed to find the 
smallest, yet most cost effective, and therefore best, 
combination by which many and consumptive 
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combinations can be avoided (Fang and Wang, 
1994). An orthogonal array is represented in 
Table.1-1 by L9(34), where 3, 4, and 9 mean the 
number of kinds of entries, columns, and rows, 
respectively. In general, we let Lm(nk) denote an 
orthogonal array for k factors, n levels, and m 
combinations of level to be tested. Orthogonal arrays 
can be systematically built.  Label L comes 
originally from a “Latin” square, which is defined as 
a matrix where no two entries in a row (or a column) 
have the same value. It has been proved that the 
orthogonal design is optimal for use as an additive 
model and a quadratic model, and that the selected 
combinations are good representatives for all the 
possible combinations (Wu, 1978). The problem of 
building an orthogonal array is the same as the 
problem of finding m nodes which are at the 
maximum distance between any pair in the (k )-
dimensional hypercube. Table 1-2 shows 9 nodes 
corresponding to 9 combinations (on an 8-
dimensional hypercube) in Table 1-1. 

nlog

Table 1-1: A representation of orthogonal array L9(34). 

Table1-2: 9 nodes corresponding to 9 combinations on a 
(k log n)-dimensional hypercube. 

Combination Factor1 Factor2 Factor3 Factor4 
1st 0 1 0 1 0 1 0 1 
2nd 0 1 1 0 1 0 1 0 
3rd 0 1 1 1 1 1 1 1 
4th 1 0 0 1 1 0 1 1 
5th 1 0 1 0 1 1 0 1 
6th 1 0 1 1 0 1 1 0 
7th 1 1 0 1 1 1 1 0 
8th 1 1 1 0 0 1 1 1 
9th 1 1 1 1 1 0 0 1 

 

3  EXPERIMENTAL DESIGN 
METHODS 

In this section, we introduce the concept of 
experimental design methods for our experiment 
mentioned later. 

3.1 Phenotype  

Roads are modeled as a graph G = (V,E), where V is 
a set of nodes and E is a set of arcs. By making 
every non-directed arc express as two directed arcs, 
change a given graph G into a directed graph G’. As 
mentioned before, the optimum solution is a route 
where the total weight of duplicated arcs is the 
minimum.  We number the edges in G’ from 1 to t. 
We can then represent any route R of the graph G’ 
as an t-tuple (e1, e2, …, et), where any element 
(which means a gene) ei is defined as follows: 

ei = The number of times that the postman passes 
arc i 

From the above definition, ei is a non negative 
integer and can become 0 if ei is represented for one 
of two directed edges changed from non-directed 
edge in G. For example, assuming that edge with 
weight 4 is r4, R in Fig.1(b) can be represented as 
(er4, er8, er5, er9, er3, er3, er2, er6) =( 1, 1, 1, 1, 1, 0, 1, 
2). Since R in Fig.1(b) is a Postman’s route, then this 
phenotype ( 1, 1, 1, 1, 1, 0, 1, 2) is a solution.  

3.2 Fitness 

The Postman can return to the starting point if G is 
an Eulerian graph. If G is a non Eulerian graph, in 
order to return to the starting point the postman must 
traverse some arcs more than once. In general, if G 
is a non Eulerian graph, it can be said that the 
optimum solution of the mixed Chinese Postman 
Problem is a route where the total weight of 
duplicated arcs is the minimum. When G is an 
Eulerian graph, the solution is uniquely determined. 

In order to set the fitness of the optimum solution 
to maximum, we will prepare the following function 
f of fitness. 

⎩
⎨
⎧

=
                                                                         otherwise ;0

route sPostman' hasG  if arcs);  gduplicatin of weight (total / 1
f

 

3.3 Orthogonal Crossover 

In order to fit the mixed Chinese postman problem, 
we interpret orthogonal array Lm(nk) to be an 
orthogonal array for k factors divided from n levels 
(parent chromosomes), and m combinations of levels 
(samplings at the time of crossover). Let orthogonal 

Combination Factor1 Factor2 Factor3 Factor4 
1st X X X X 
2nd X Y Y Y 
3rd X Z Z Z 
4th Y X Y Z 
5th Y Y Z X 
6th Y Z X Y 
7th Z X Z Y 
8th Z Y X Z 
9th Z Z Y X 
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array L4(23) be shown in Table 2. Obeying the above 
interpretation of L4(23), 2 parent chromosomes are 
divided into 3 factors each, and we obtain 4 new 
chromosomes as shown in Fig.3  In the case of 
L9(34) , we obtain 9 new chromosomes from 4 parent 
chromosomes as shown in  Fig.4. 

Table 2: Orthogonal array L4(23). 

Combination Factor1 Factor2 Factor3 
1st X X X 
2nd X Y Y 
3rd Y X Y 
4th Y Y X 

 
 

Orthogonal crossover

X 

) 11    213     201 ( )         ( 
) 21    211     201 ( )         ( 
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Figure 3: Orthogonal crossover for L4(23). 

 
Figure 4: Orthogonal crossover for L9(34). 

3.4 Creation of the Initial 
Population of Chromosomes 
using an Orthogonal Array 

In order to create the initial population of 
chromosomes which resemble closely as possible as 
they can, we will present a method to use an 

orthogonal array in the creation of the initial 
population of chromosomes. 

A chromosome is an t-tuple whose the i-th 
element is the number of times passing through the 
i-th arc by the Postman’ route. Let divide a 
chromosome into the number of factors. The range 
of the random numbers is divided into the number of 
levels of orthogonal array. In addition, for each one 
of the same levels in orthogonal array select, let 
randomly correspond to a random number in the 
same range of the random numbers.  

Let us take L4(23)  shown in table 3  and t=12 as 
an example.  Since a t-tuple is divided  into 3 factors, 
then we can represent 4 chromosomes based on 
L4(23) as follows: 
 

X    X    X    X       X    X    X    X       X    X    X    X 
X    X    X    X       Y    Y    Y    Y       Y    Y    Y    Y 
Y    Y    Y    Y       X    X    X    X       Y    Y    Y    Y 
Y    Y    Y    Y       Y    Y    Y    Y       X    X    X    X 

 
Each X and Y are corresponded to a random 

number in the ranges 0~6 and 7~12, respectively. 
Then, we obtain the following initial population of 
chromosomes (4 chromosomes) as an example.  
 

1     3    5      3        5    4     2     4          5     5     4       6 
5     6    4      2        7    9     8     9        10     7     9      11 
8   10    9      7        2     5     1     4        11     8     9     10 
7   11    8      9      10     7     8   12         2      5     1       3 

11)     11     02     (11     
                     1 

X 
x x x x 4 3 2     21)     13    12    (20     

                   4 1 
Y 

y y y y 3 2     22)   11   01     (12     
                   432 1 

Z 
zzz z 

 

) 11    13    01    12 ( )         ( 
) 22    11    12    12 ( )         ( 

21)    11    02    12 ( )         ( 
21)    11    01    20 ( )         ( 
11)    11    12    20 ( )         ( 
22)    13    02    20 ( )         ( 
) 22    11    01    11 ( )         ( 
) 21    13    12    11 ( )         ( 

) 11    11    02    11 ( )         ( 

43 2 1 9 
43 2 1 8 
43 2 1 7 
43 2 1 6 
43 2 1 5 
43 2 1 4 

4 3 2 1 3 
43 2 1 2 

43 2 1 1 

== 
== 
== 
== 
== 
== 
== 
= = 
== 

x y z z O 
z x y z O 
y z x z O 
y x z y O 
x z y y O 
z y x y O 

z z z x O 
y y y x O 

x x x x O 

  

Orthogonal crossoverParents:  X , Y , Z 
Children: O1, O2, O3,… , O9

4 EXPERIMENT 

In this section, we will explain the experiments we 
performed. 

4.1 Graphs 

We used random graphs shown in Table 4. We 
applied the Genetic algorithm 30 times to each graph 
and evaluated the mean values. 

Table 4: Experimental graphs. 

|V| |E| Total weight 
5 7 44 

4.2 Orthogonal Genetic Algorithm 
(OGA) 

We developed the following algorithm, as shown in 
Fig.5, where an initial group starts from a population 
of completely randomly generated individuals, and 
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the probabilities of crossover and mutation are 1.0 
and 0.5, respectively. Inputs: Graph G=(V,E), edge cost C(e) and node 

degree deg(v) 
Output: binary strings representing the Euler route 
 
Step1)  Initialization 

Randomly create an initial generation of N 
binary string P0 = { X1, X2,…, XN }, X = { 
x1, x2,…, xk }  
and initialize the generation number gen  
to 0. 
* X is a chromosome, k = |V| 

Step 2) Population Evolution 
WHILE ( gen < MAX_GEN ) 
BEGIN 

4.3 Simple Genetic Algorithm (SGA) 

The simple genetic algorithm adopts a one-point 
crossover in Step 2.1 instead of orthogonal 
crossover. 

4.4 Another Orthogonal Genetic 
Algorithm using Orthogonal 
Array in the Creation of the 
Initial Population of 
Chromosomes (OGA2) 

This algorithm uses an orthogonal array also in Step 
1 in Fig.5 instead of random number, and the 
utilization method is shown in 3.4. 

4.5 Results 

Fig.6-1 shows the relationship between the number 
of obtained Eulerian graphs and the number of 
generations. On the other hand, Fig.7-1 shows the 
relationship in the case where orthogonal array is 
used in the creation of initial population of 
chromosomes. Fig.6-2 shows the relationship 
between the obtained minimum weight of the 
Postman route and the number of generations.  
Fig.7-2 shows the relationship in the case where 
orthogonal array is used in the creation of initial 
population of chromosomes. These results mean that 
our orthogonal genetic algorithm shows better 
performance, especially in L9(34). SGA almost 
never finds the solutions for Problem 3 where the 
number of edges is 7. 

For reader’s information, we show the 
relationship between the number of generations and 
the computation time required in 3 algorithms ( SGA, 
OGA, and OGA2) in Tables 5 and 6.  

In this mixed Chinese postman problem we 
treated, in less than 104 generations we can obtain a 
solution in graphs with nodes of less than 11. 
However, we can’t obtain a solution in 2 or 3 days 
for the larger sizes.  

For reference we will show the data in the case of 
non directed graphs G’’=(V’’, E’’), where |V’’|= 20, 
|E’’|=30, total weight=178.  The Chinese Postman 
problem for non directed graphs belongs in Class P. 
Figs.8-1 and 8-2 show the relationship between two 
numbers of obtained Eulerian graphs and 
generations, and the relationship between the 
obtained minimum weight of the Postman route and 
the number of generations, respectively. 

Figure 5: A orthogonal genetic algorithm. 

5 CONCLUSION 

In order to investigate the salient feature of 
orthogonal design, we designed a genetic algorithm 
adopting an orthogonal crossover operation in the 
mixed Chinese Postman Problem and evaluated the 
salient ability.  The orthogonal design shows better 
performance, even for graph scales where simple 
genetic algorithms almost never find the solution. 
The experimental results show that, for problems of 
non practical sizes, the orthogonal genetic algorithm 
using the orthogonal array L9(34) can find close-to- 
optimal solutions within a moderate number of 
generations. This optimal scale of orthogonal array 
was confirmed for the multimedia multicast routing 
problem of practical size (Zhang and Leung, 1999). 
However, this orthogonal design is not yet effective 
for the mixed Chinese Postman Problem of practical 
sizes. For more effective computation, our one 
possible extension of this research can be considered 
as to incorporate the orthogonal array into the 

DO N/2 times 
BEGIN 

Step 2.1)   Orthogonal Crossover 
Randomly select n parents strings from 
Pgem and perform orthogonal crossover 
on them to generate m offspring o1, 
o2,…, om. 

Step 2.2)  Mutation 
To perform mutation of offspring, flip 
every bit in this string with a small 
probability p. 

Step 2.3)  Select 
Calculate the offspring fitness f, and 
sort them by f, and choose n for the 
next generation. 

    END 
Step 3)    Increment the generation number gem by 1. 

END 
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Figure 6-1: Relationship between two numbers of
obtained Eulerian graphs and generations. 
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Figure 6-2: Relationship between the obtained minimum 
weight of the Postman route and the number of 
generations. 
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Figure 7-1: Relationship between two numbers of
obtained Eulerian graphs and of generations in the case 
where orthogonal array is used in the creation of initial 
population of chromosomes. 
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Figure 7-2: Relationship between the obtained minimum 
weight of the Postman route and the number of 
generations in the case where orthogonal array is used in 
the creation of initial population of chromosomes. 

 SGA 
OGA 
using 
L4(23) 

OGA 
using 
L9(34) 

generation time 
(sec) 

time 
(sec) 

time 
(sec) 

1000 247.1 279.8 437 
2000 252.5 286.4 447 
3000 257.8 292.6 456.6 
4000 263.3 298.4 465.8 
5000 268.3 304.4 475 
6000 273.8 310.3 484.4 
7000 279.1 316.2 493.6 
8000 284.5 322.1 502.9 
9000 289.9 328.1 512.5 
10000 295.3 333.9 521.7 

Table 5: Computation time required at 1000~10000
generations. 

Table 6: Computation time required at 1000~10000 
generations. 

 
OGA 
using 
L9(34) 

OGA2 
using 
L4(23) 

OGA2 

using 
L9(34) 

generation time 
(sec) 

time 
(sec) 

time 
(sec) 

1000 437 428.3 433.4 
2000 447 437.7 443.2 
3000 456.6 447.3 452.7 
4000 465.8 456.4 462.3 
5000 475 465.7 471.6 
6000 484.4 474.7 480.9 
7000 493.6 483.9 490.3 
8000 502.9 493.1 499.5 
9000 512.5 502.2 508.6 
10000 521.7 511.4 517.9 
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experimental design methods of setting an initial 
group of populations. We performed this extension. 
The experiment results show no innovative 
improvement. 
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Figure 8-1: Relationship between two numbers of obtained 
Eulerian graphs and generations. 

 
Figure 8-2: Relationship between the obtained minimum 
weight of the Postman route and the number of 
generations. 
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