

A SCENARIO GENERATION METHOD USING A
DIFFERENTIAL SCENARIO

Masayuki Makino, Atsushi Ohnishi
Department of Computer Science, Ristumeikan University, Kusatsu, Shiga 525-8577, Japan

Keywords: Scenario analysis, Scenario generation, Requirements elicitation, Requirements definition.

Abstract: A generation method of scenarios using differential information between normal scenarios is presented.
Behaviours of normal scenarios belonging to the same problem domain are quite similar. We derive the
differential information between them and apply the information to generate new scenarios. Our method
will be illustrated with an example.

1 INTRODUCTION

Scenarios are important in software development,
particularly in requirements engineering, by
providing concrete system description
(Weidenhaupt et al., 1998). Especially, scenarios are
useful in defining system behaviors by system
developers and validating the requirements by
customers. In scenario-based software development,
incorrect scenarios will have a negative impact on
the overall system development process. However
scenarios are usually informal and it is difficult to
verify the correctness of scenarios.

The authors have developed a scenario language
for describing scenarios in which simple action
traces are embellished to include typed frames
based on a simple case grammar of actions and for
describing the sequence among events (Zhang et al.,
2004). Since this language is a controlled language,
the vagueness of the scenario written with this
language can be reduced. Furthermore, the scenario
with this language can be transformed into internal
representation. In the transformation, both the lack
of cases and the illegal usage of noun types can be
detected (Ohnishi, 1996).

Scenarios can be classified into 1) normal
scenario, 2) alternative scenario, and 3) exceptional
scenario. A normal scenario represents the normal
and typical behavior of the target system, while an
alternative scenario represents normal but untypical
behavior of the system and an exceptional scenario
represents abnormal behavior of the system. In
order to grasp whole behaviors of the system, not
only normal scenarios, but also alternative/
exceptional scenarios should be specified. However

it is difficult to hit upon most of alternative
scenarios and exceptional scenarios, whereas it is
easy to think of normal scenarios.

2 SCENARIO LANGUAGE

2.1 Outline

The scenario language named SLAF has already
been introduced (Zhang, 2004, Toyama 2005). In
this paper, a brief description of this language will
be given for convenience.

A scenario can be regarded as a sequence of
events. Events are behaviors employed by users or
the system for accomplishing their goals. We
assume that each event has just one verb, and that
each verb has its own case structure (Fillmore,
1968). The scenario language has been developed
based on this concept. Verbs and their own case
structures depend on problem domains, but the roles
of cases are independent of problem domains. The
roles include agent, object, recipient, instrument,
source, etc.

We provide requirements frames (Ohnishi, 1996)
in which verbs and their own case structures are
specified. The requirements frame depends on
problem domains. Each action has its case structure,
and each event can be automatically transformed
into internal representation based on the frame. In
the transformation, concrete words will be assigned
to pronouns and omitted indispensable cases. With
Requirements Frame, we can detect both the lack of
cases and the illegal usage of noun types.

We assume four kinds of time sequences among

 279

Makino M. and Ohnishi A. (2006).
A SCENARIO GENERATION METHOD USING A DIFFERENTIAL SCENARIO.
In Proceedings of the First International Conference on Software and Data Technologies, pages 279-282
Copyright c© SciTePress

events: 1) sequential, 2) selective, 3) iterative, and
4) parallel. Actually most events are sequential
events.

2.2 Scenario Example

We consider a scenario of train ticket reservation of
a railway company. Figure 1 shows a scenario of
customer’s purchasing a ticket of express train at a
service center of a railway company. This scenario
is written with our scenario language based on
videoized behaviors of both a user and a staff at a
service center of a railway company (Railway
Information System, 2001).

[Title: A customer purchases a train ticket of reservation seat]
[Viewpoints: Staff, customer]
1. A staff asks a customer about leaving station, destination and
traveling date as customer’s request.
2. The staff sends the customer’s request to reservation center via
private line.
3. He retrieves available trains with the request.
4. He informs the customer of a list of available trains.
5. The customer selects a train that he/she will get.
6. The staff retrieves available seats of the train.
7. He shows a list of available seats of the train.
8. The customer selects a seat of the train.
9. If (there exists a seat selected by the customer) then the staff
reserves the seat with the terminal.
10. The staff gets a permission to issue a ticket of the seat from the
center.
11. The customer pays for the ticket by cash.
12. The staff gives the ticket to the customer.
13. If (changes exist) then the staff gives changes.

Figure 1: Scenario example.

A title of the scenario is given at the first line of
the scenario in Fig.1. Viewpoints of the scenario are
specified at the third line. In this paper, viewpoints
mean active objects such as human and system
appearing in the scenario. There exist two
viewpoints, namely staff and customer. The order of
the specified viewpoints means the priority.

In this scenario, almost all events are sequential,
except for just two selective events (the 9th event
and the 13th event). Selection can be expressed with
if-then syntax like program languages. Actually,
event number is for reader’s convenience and not
necessary.

2.3 Analysis of Events

Each of events is automatically transformed into
internal representation. For example, the 2nd event
“The staff sends the customer’s request to
reservation center via private line” can be
transformed into internal representation shown in
Table 1.

In this event, the verb “send” corresponds to the
concept “data flow.” The data flow concept has its

own case structure with four cases, namely to say,
source case, goal case, object case and instrument
case. Sender corresponds to the source case and
receiver corresponds to the goal case. Data
transferred from source case to goal case
corresponds to the object case. Device for sending
data corresponds to the instrument case. In this
event, “customer’s request” corresponds to the
object case and “the staff” corresponds to the source
case.

Table 1: Internal representation of the 2nd event.

Concept: Data Flow
source goal object instrument
Staff Reservation

center
Customer’s
request

Private line

The internal representation is independent of

surface representation of the event. Suppose other
representations of event, “Customer’s request is
sent from staff to reservation center via private line”
and “reservation center receives customer’s request
from staff via private line.” These events are
syntactically different but semantically same as the
2nd event. These two events can be automatically
transformed into the same internal representations.

3 DIFFERENTIAL SCENARIO

Systems belonging to the same domain similarly
behave each other. In other words, normal scenarios
belonging to the same domain resemble each other.
Since our scenario language provides limited
vocabulary and limited grammar, the abstraction
level of any scenarios becomes almost same.

For one system, there exist several normal
scenarios. In case of ticket reservation, reservation
can be written as a normal scenario and cancellation
can be written as another normal scenario. To make
a differential scenario, we select two normal
scenarios of two different systems. Each of the two
scenarios represents almost same behavior, such as
reservation of a ticket.

The differential scenario consists of 1) a list of
corresponding words, 2) deleted events which
appear in one scenario (say, scenario A) and do not
appear in the other (say, scenario B), and 3) added
events which do not appear in scenario A and
appear in scenario B.

Fig. 2 shows a scenario of flight ticket
reservation using credit card. By comparing two
scenarios, we can get the differential scenario. The
first four events of the scenario in Fig. 1 can be
transformed as shown in Table 2. In fact, data flow

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

280

concept has four cases, that is, source, goal, object,
and instrument cases as shown in Table 1, but the
instrument cases are omitted in Table 2 and 3 for the
space limitation.

Since the sequence of the concepts of the first
four events of the scenario in Fig. 1 is same as that
of the scenario in Fig. 2, we can regard these events
are corresponding each other. Then, the difference
between cases of the corresponding events will be
checked. In the case of the first event of the two
scenarios, object cases of the events are different
each other.

[Title: A customer purchases a flight ticket]
[Viewpoints: Staff, customer]
1. A staff asks a customer about leaving airport, destination, and
departure date as customer’s request.
2. The staff sends the customer’s request to reservation center via
private line.
3. He retrieves available flights with the request.
4. He informs the customer of a list of available flights.
5. The customer selects a flight that he/she will get.
6. The staff retrieves available seats of the flight.
7. He shows a list of available seats of the flight.
8. The customer selects a seat of the flight.
9. If (there exists a seat selected by the customer) then the staff
reserves the seat with the terminal.
10. The staff gets a permission to issue a ticket of the seat from the
center.
11. The customer pays for the ticket by credit card.
12. The staff checks the credit card.
13. The staff charges the ticket fee to the card.
14. The staff gives the ticket to the customer.

Figure 2: Normal scenario of flight reservation.

Table 2: The internal representation of the first four events
of the scenario in Fig.1.

concept agent/
source

goal objects

query staff customer leaving station,
destination,
traveling date

data flow staff reservation
center

customer’s
request

retrieve staff available
trains

request

data flow staff customer list of available
trains

Table 3: The internal representation of the first four events
of the scenario in Fig.2.

concept agent/
source

goal objects

query staff customer leaving airport,
destination,
departure date

data
flow

staff reservation
center

customer’s
request

retrieve staff available
flights

request

data
flow

staff customer list of available
flights

The difference between corresponding events will
be stored as corresponding words in Table 4. The

12th and the 13th events of Fig. 2 are not-
corresponding events and will be stored as added
events, while the 12th event of Fig. 1 and the 14th
event of Fig. 2 are corresponding events. The 13th
event of Fig. 1 is a not-corresponding event and will
be stored as a deleted event.

Finally, we can get the differential scenario
between train ticket reservation and flight ticket
reservation shown in Table 4, 5, and 6.

Table 4: A list of corresponding words between scenarios
of Figure 1 and 2.

Fig.1 Fig.2 Fig.1 Fig.2
station airport trains flights
traveling departure cash credit card
train flight

Table 5: Added events.

The staff checks the credit card.
The staff charges the ticket fee to the card

Table 6: Deleted events.

If (changes exist) then the staff gives changes.

4 SCENARIO GENERATION

Once differential scenario between system A and B
given, we can apply it to another scenario of system
A and get a new scenario of system B by changing
corresponding words and by deleting or adding not-
corresponding events.

Fig. 3 shows an exceptional scenario of ticket
reservation. In this scenario, the customer cannot
get any available trains with respect to the first
request. So, the customer changes the traveling date
and then gets available trains.

By applying the differential scenario in Table 4,
5, and 6, we can get a new exceptional scenario of
flight ticket reservation as shown in Fig. 4.

[Title: A customer purchases a train ticket of reservation seat, but
cannot find available train, so he gives the second choice.]
[Viewpoints: Staff, customer]
1. A staff asks a customer about leaving station, destination and
traveling date as customer’s request.
2. The staff sends the customer’s request to reservation center via
private line.
3. He cannot find available trains with the request.
4. He informs the customer of no available trains and asks the customer
about another traveling date.
5. The customer gives another traveling date.
6. The staff sends the customer’s request to reservation center via
private line.
7. He retrieves available trains with the new request.
8. He informs the customer of a list of available trains.
9. The customer selects a train that he/she will get.
10. The staff retrieves available seats of the train.
11. He shows a list of available seats of the train.
12. The customer selects a seat of the train.
13. …

Figure 3: An exceptional scenario.

A SCENARIO GENERATION METHOD USING A DIFFERENTIAL SCENARIO

281

[Title: A customer purchases a flight ticket of reservation seat,
but cannot find available flight, so he gives the second choice.]
[Viewpoints: Staff, customer]
1. A staff asks a customer about leaving airport, destination and
departure date as customer’s request.
2. The staff sends the customer’s request to reservation center
via private line.
3. He cannot find available flights with the request.
4. He informs the customer of no available flights and asks the
customer about another departure date.
5. The customer gives another departure date.
6. The staff sends the customer’s request to reservation center
via private line.
7. He retrieves available flights with the new request.
8. He informs the customer of a list of available flights.
9. The customer selects a flight that he/she will get.
10. The staff retrieves available seats of the flight.
11. He shows a list of available seats of the flight.
12. The customer selects a seat of the flight.
13. …

Figure 4: Generated a new exceptional scenario.

5 RELATED WORKS

Ben Achour proposed guidance for correcting
scenarios, based on a set of rules (Achour, 1998).
These rules aim at the clarification, completion and
conceptualization of scenarios, and help the
scenario author to improve the scenarios until an
acceptable level in terms of the scenario models.
Ben Achour's rules can only check whether the
scenarios are well written according to the scenario
models. We propose generation methods of
exceptional scenarios and alternative scenarios from
a normal scenario.

Derek Cramp claimed the importance of
alternative scenarios. He proposed a model to create
alternative scenarios (Cramp et al., 1995). However,
his model strongly depends on a specific domain.

Ian Alexander proposed a scenario-driven search
method to find more exceptions (Alexander, 2000).
In his approach, a model answer was prepared with
knowledge of all exception cases identified by
stakeholders. For each event, related exceptions are
listed as a model answer. His model answer,
however, strongly depends on a specific domain.

Neil Maiden et al. proposed classes of exceptions
for use cases (Maiden et al, 1998). These classes are
generic exceptions, permutations exceptions,
permutation options, and problem exceptions. With
these classes, alternative courses are generated.
They proposed a generation method of alternative
paths for each normal sequence from exception
types for events and generic requirements with
abnormal patterns (Sutcliff et al., 1998).

Our approach for generating scenarios with a
differential scenario is independent of problem
domains.

6 CONCLUSION
We have developed a generation method of
scenarios using a differential scenario. Because of
the space limitation, we showed just one example,
but we confirmed that alternative scenarios and
different normal scenarios can be generated with
our method.

We have to validate the ideas more thoroughly
by applying to several different problem domains.
We have been developing a prototype system based
on the method. The evaluation of our method
through the use of the prototype system is another
future work.

REFERENCES

Achour, C. B., 1998: Guiding Scenario Authoring, Proc. of
the Eight European-Japanese Conference on
Information Modeling and Knowledge Bases, pp.181-
200.

Alexander, I., 2000: Scenario-Driven Search Finds More
Exceptions, Proc. 11th International Workshop on
Database and Expert Systems Applications, pp.991-
994.

Cramp, D.G., Carson E.R., 1995: Assessing Health Policy
Strategies: A Model-Based Approach to Decision
Support, Proc. International Conference on System,
Man and Cybernetics, Vol.3, pp.69-73.

Fillmore, C.J., 1968: The Case for Case, in Universals in
Linguistic Theory, Holt, Rinehart and Winston.

Maiden, N.A.M., Manning’ M.K., Ryan M., 1998:
CREWS-SAVRE: Systematic Scenarios Generation
and Use, Proc. IEEE 3rd ICRE’98, pp.148-155.

Ohnishi, A., 1996: Software Requirements Specification
Database on Requirements Frame Model, Proc. IEEE
2nd ICRE’96, pp.221-228.

Railway Information System Co., Ltd., 2001: JR System,
http://www.jrs.co.jp/keiki/en/index_main.html.

Sutcliffe, A. G., Maiden, N. A. M., Minocha S., Manuel D.,
1998: Supporting Scenario-Based Requirements
Engineering, IEEE Trans. Software Engineering,
Vol.24, No.12, pp.1072-1088.

Toyama, T., Ohnishi, A., 2005: Rule-based Verification of
Scenarios with Pre-conditions and Post-conditions,
Proc. 13th IEEE RE2005, pp. 319-328.

Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P., 1998:
Scenarios in System Development: Current Practice,
IEEE Software, March, pp.34-45.

Zhang H., Ohnishi, A., 2004: Transformation between
Scenarios from Different Viewpoints, IEICE Trans.
Information and Systems, Vol.E87-D, No.4, pp.801-
810.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

282

