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Abstract: Common Intrusion Detection Systems are susceptible to encrypted attacks, i.e. attacks that employ security
protocols to conceal malign data. In this work, we introduce a software sensor, called Transport Layer Security
Sensor (TLSS), providing detection engines access to network data encrypted at Transport Layer. Transport
Layer Encryption, such as SSL, is typically implemented by a local application and not the OS. TLSS resides
on the monitored host and executes cryptographic functions on behalf of local applications. TLSS decrypts
incoming encrypted network packets and passes the data to the application, e.g., a Web server software. In
addition, cleartext data is also passed to a detection engine for analysis. We present an implementation of
TLSS designed for Web servers providing SSL-secured HTTP access and evaluate sensor’s performance.

1 INTRODUCTION

Till this day, the transaction volume of online shop-
ping on the Internet grows. One major finding for
this growth is that online merchants provided apro-
priate mechanism to protect transactions (boede +
partners integrated marketing, 2004). For instance,
a favored technique is the use of Secure Socket
Layer (SSL), which emerged to the de-facto stan-
dard in protecting web applications. SSL estab-
lishes a confidential and integer communication be-
tween client and server making wiretapping infeasi-
ble. Vice versa, adversaries can deploy these cryp-
tographic secured channels to conceal attacks inside
encrypted data. Intrusion Detection Systems (IDS)
depend upon the availability of unencrypted data. In
particular, Network based Intrusion Detection Sys-
tems (NIDS) are blind to attacks encapsulated in en-
crypted network traffic. Thus, related works pro-
pose the use of Host based Intrusion Detection Sys-
tems (HIDS) to monitor servers accessible via en-
crypted tunnels. Though hooking into the operating
system (OS), HIDS are blind to attacks inside pro-
tocols which encrypt the Transport Layer payload,
such as SSL. For instance, web servers and browsers
perform cryptographic functions by themselves. The
OS passes incoming encrypted SSL data to the corre-

sponding application, which decrypts and processes
it. Though, data captured by a HIDS sensor is en-
crypted.

A standard solution to provide analysis of data en-
capsulated in encrypted connections is to end the en-
crypted tunnel at a web proxy, which does not guaran-
tee the non-repudiation assurance. This is crucial in
particular for financial transactions. Non repudiation
ensures that neither of two business partners is able to
dispute his commitment to the transaction afterwards.
To bypass this drawback, another common approach
decrypts traffic without truncating the tunnel (Breach
Security Inc., 2004). For doing so, an intermediary
hardware device is equipped with the private key of
every original end point. However, export of private
keys from the host is a perilous process and should be
omitted whenever possible; both, attackers and legit-
imated insiders (e.g., administrators) which have ac-
cess to private keys can impersonate the correspond-
ing hosts.

In this work we introduce the Transport Layer Se-
curity Sensor (TLSS), which is a special data captur-
ing tool, as part of an IDS. The goal of TLSS is to fea-
ture analysis of network traffic encrypted at the Trans-
port Layer, as with SSL. TLSS is a two part software
sensor installed on the host to be monitored. Using
the sensor it is feasible to capture and block incoming
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network data after it has been decrypted, and outgoing
traffic before it will be encrypted. TLSS is capable to
forward gathered data to available local (or remote)
detection engines. A main benefit is that TLSS nei-
ther harms non-repudiation assurances nor does it re-
quire export of private keys from the monitored host.
Furthermore, we discuss the practicability of TLSS.
In a proof-of-concept implementation, we prove evi-
dence that a standard detection engine in combination
with TLSS is able to detect attacks encapsulated in
encrypted SSL data. In addition, we give a detailed
analysis of TLSS’s performance.

This paper is structured as follows: In Section 2, we
review related works and introduce, elaborate and de-
tail our Transport Layer Security Sensor in Section 3.
Afterwards, we describe in Section 4 the proof-of-
concept, and summarize and discuss the measured
performance results in Section 5. Finally, we con-
clude our work with a summary of our major results
and outlook on future work in Section 6.

2 RELATED WORKS

Ristic (Ristic, 2005) introduces an approach to defend
Web servers from malicious data inside encrypted
SSL connections. He proposes the integration of an
IDS inside the Web server software as loadable mod-
ule. The basic idea is to hook in the unencrypted
web server application’s internal information flow. He
presents a module for the Apache httpd Web server
consisting of a proprietary intrusion detection and
prevention engine as proof-of-concept. The idea is a
straightforward solution for standalone Web servers
but prevents integration into existing IDS used to
monitor several servers or entire networks. Further,
the idea is limited to open source or extendable server
software.

Almgren and Lindqvist (Almgren and Lindqvist,
2001) introduce an application-integrated approach to
collect data aimed at a server. The authors propose
the use of corresponding APIs to hook in the server
application, and to take control of data flows inside
the application. Gathered data is sent to a detection
engine. Further, data flows can be suspended until the
detection engine evaluates data, though providing pre-
vention functionality. In addition, the authors provide
an implementation for a web server. The basic idea
is similar to the one proposed in (Ristic, 2005) but
provides cooperation with existing detection engines.
Still, the solution is limited to open source server soft-
ware or software that enables external modules to take
over process control. In addition, there is a high de-
velopment effort, as every monitored application re-
quires a special sensor.

3 TRANSPORT LAYER
SECURITY SENSOR (TLSS)

The efficiency of Intrusion Detection Systems highly
depends upon the data they analyze, hence encrypted
data poses a serious threat. We propose a new sensor,
providing detection engines access to data encapsu-
lated in encrypted tunnels. In this context, sensor in-
dicates a data capturing software tool installed on the
monitored host, gathering network packets’ headers
and payload.

3.1 Rationale

Transport Layer Security Protocols, (e.g. SSL, Se-
cure Shell (SSH)), are a favored technique to secure
transported data on public networks. Those protocols
encrypt Application Layer headers and payload, but
do not change headers of protocols on the Internet-
or Transport Layer, (e.g., IP and TCP). Cryptographic
functions for Transport Layer Security Protocols are
generally implemented by an application and not the
OS. For instance, common web servers and browsers
include cryptographic functions for SSL connections
and do not rely on the OS to offer these capabili-
ties. The OS passes incoming encrypted data to the
corresponding application which decrypts and pro-
cesses it. Hence, capturing local data flows between
OS and application, e.g. with a HIDS sensor, results
in encrypted Application Layer headers and appli-
cation payload, valueless for common detection en-
gines. Hooking up applications and analyzing unen-
crypted internal data flows is costly and not feasible
for closed source software. Therefore, we propose to
outsource the cryptographic functions from the appli-
cation to a software security module, residing on the
same host as the application, and to capture the un-
encrypted local traffic between this module and the
application. Transport Layer Security Sensor (TLSS)
integrates both a module providing security functions
and a data capturing sensor.

3.2 Design of TLSS

TLSS consists of two parts, the Local Application
Proxy (LAP) performing cryptographic functions and
a software sensor to capture data. The basic idea of
TLSS is to outsource cryptographic functions from
the application to LAP, thus, enabling the software
sensor to capture unencrypted data exchanged be-
tween LAP and application. Incoming encrypted net-
work packets aimed at the application first pass the
network stack implemented by the OS. Subsequently,
the OS hands the packets to LAP which decrypts and
forwards them to the application. On the other hand,
the application passes outgoing packets to the LAP
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which applies cryptographic mechanisms and hands
on secured data to the OS. Local communication be-
tween LAP and application is not encrypted, thus we
use the software sensor to capture Application Layer
headers and payload. In addition, the software sensor
captures Internet- and Transport Layer headers from
the OS to detect low-level attacks, e.g. illegal combi-
nations of TCP-flags (Daniels and Spafford, 1999).

3.3 Discussion

In contrast to existing solutions, TLSS does not re-
quire export of secret keys from the monitored host.
In the last resort, private keys are locally migrated
from the application to LAP. Typically, keys are
stored on the host’s hard disc and can be accessed
by the local TLSS, rendering migration unnecessary.
Use of special cryptographic hardware to store pri-
vate keys, (e.g. Smart cards), or to accelerate cryp-
tographic computations does not foreclose the use of
TLSS. LAP has to be adapted to interact with the
hardware using corresponding drivers.

Compared to a web proxy, (also known as SSL ter-
minator), TLSS does not affect non-repudiation as-
surances as it does not truncate secure connections.
For instance, SSL allows a client to establish a se-
cured connection to a server, i.e. between the SSL
Layers of the two hosts 1. A web proxy, which is
a dedicated host, implements the SSL layer, hence
ends the secured connection. The non-repudiation as-
surance holds between client host and web proxy but
not between client and server host. As TLSS resides
on the server host, the secure connection terminates
at the server, thus ensuring non-repudiation between
client and server host.

One limit of TLSS is its boundary to applications
that allow outsourcing of cryptographic functions.
This does not necessitate open source software, but
the possibility to shutdown or bypass the application’s
internal cryptographic functions. We argue that this
assumption holds for most server software used on
the Web, as web services usually implement security
as optional add on. With TLSS, the server applica-
tion offers the unsecured service and LAP appends
security functions. To do so, the server’s OS passes
incoming encrypted data, (e.g. according to the TCP-
/UDP-port number it is aimed at), to LAP. LAP com-
municates with the server application either via API
function calls or via a virtual local network interface.
Using a virtual network interface, TLSS is indepen-
dent of the server application’s API, which is a con-
trast to application-based IDS, which rely upon the
availability of the API. Another advantage is that one
TLSS can serve multiple applications. For instance,

1In the TCP/IP network model, the SSL Layer is located
between the Transport Layer and the Application Layer

one LAP can offer SSL-functions to several applica-
tions on the same host.

4 PROOF-OF-CONCEPT

We implemented the Transport Layer Security Sensor
for a Web server, offering HTTP over SSL access to
resources. Local Application Proxy acts as SSL proxy
for the server, performing all SSL related functions,
(e.g., authentication, key exchange, encryption).

4.1 Implementation

LAP uses the Stunnel 4.11 application (Trojnara,
2004) in addition with the OpenSSL software li-
braries (OpenSSL Development Team, 2005) to serve
as local SSL proxy for an Apache httpd Web server
2.0.52-3.1 (Apache Software Foundation, 2005a) on
a Fedora Core 3 Gnu/Linux system.

Figure 1 illustrates the communication between a
client and a server equipped with TLSS. In the first
phase of communication, client and server establish
a SSL connection. Subsequently, the client initiates
SSL encrypted HTTP requests via his web browser.
The server receives packets, containing requests, on
the eth0 network interface card (NIC). Packets tra-
verse the network stack and are passed to Stunnel,
which decrypts SSL data and sends the encapsulated
HTTP request to httpd, using the loopback device lo.
lo is a virtual network interface used for local inter-
application communication on Linux systems. Out-
going HTTP responses from httpd to the client pass
the same way reversely.

Figure 1: Communication flow between a server equipped
with TLSS and a client host.

The software sensor captures both the communica-
tion on the eth0 and the lo interface. It captures only
IP- and TCP-headers from eth0 and TCP-payload on
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lo, i.e. the decrypted HTTP-headers and -payload.
The sensor hands captured packet data to a local de-
tection engine which analyzes packets captured on
eth0 to detect attacks on the Internet and Transport
Layer and packets from lo to detect attacks inside
the encrypted SSL payload, e.g., attacks using hostile
HTTP-header and -payload data.

Packets captured on the lo interface do not include
the correct attacker’s IP address and port number, but
instead always the IP address 127.0.0.1 in combina-
tion with apparent random port numbers. LAP uses
those alternative addresses to communicate with the
local httpd server software. We adapted Stunnel to
generate a list of mappings:

(Stunnel’s port number on loopback interface) �→
(client’s IP address, port number)

The list enables an administrator to link the alterna-
tive addresses to the attackers original ones. We plan
to adopt LAP to automatically change IP address and
port number to the correct values, before sending data
to a detection engine.

4.2 Function Test

The focal point of implementation is to demonstrate
the functionality of our idea, i.e. making possible
the detection of attacks encrypted at Transport Layer.
Test cases consist of a client establishing a SSL con-
nection to the server and consequently sending pack-
ets with malicious HTTP-requests through the en-
crypted tunnel. A local Snort-Inline IPS (Syngress
Author Team, 2004) detection engine on the server
host analyzes captured data.

In the first test case, the server is equipped with a
TLSS, forwarding traffic captured on the lo device to
the detection engine. Captured traffic on lo is unen-
crypted, therefore the detection engine traces attacks
and generates alarms. TLSS achieves the same re-
sults, as well with malicious HTTP-headers, as with
malicious HTTP-payload.

The second test case consists of a system equipped
with a local sensor but no LAP. The sensor captures
packets including TCP payload directly from the NIC,
alike HIDS sensors, and passes them to the detection
engine. The packet’s payload contains malicious data,
but as it is nested inside encrypted SSL packets, the
detection engine does not observe the attacks.

Results indicate, that TLSS enables IDS to detect
attacks inside network traffic encrypted at Transport
Layer.

5 PERFORMANCE

TLSS’s performance is an important criterion to eval-
uate the applicability of our idea. Therefore we mea-

sured the performance of a Web server equipped with
a TLSS. In particular, we want to evaluate LAP’s in-
fluence on the server’s performance, as it executes all
SSL functions in lieu of the Web server application.
Evaluating software sensor’s performance is secon-
darily, therefore we deactivate data capturing. Per-
formance of data analysis is ignored, as it is not part
of TLSS.

As a benchmark, we compare the results to the
ones of a reference system which employs the mod ssl
2.0.52-3.1 SSL-module.

5.1 Metric and Experimental Setup

The metric average latency and packet loss ratio in-
dicates system’s performance. In this context, latency
is defined as the time delay between the moment the
client initiates a HTTPS-request and the moment he
receives the proper HTTPS-response including all re-
quested objects. Latency is a standard criterion for
evaluation of web server performance (Iyengar et al.,
1997), while the packet loss ratio indicates server’s
congestion.

The testbed consists of two HTTPS-server, i.e.,
the reference system and one equipped with TLSS,
three clients 2 and one management station, all inter-
connected over a switch. Clients, management sta-
tion and HTTPS-servers have AMD Athlon 64 3000+
CPUs, 512 MByte RAM and Broadcom NetXtreme
Ethernet adapters applicable on 100 MBit/s and 1
GBit/s networks. The operating system of all hosts
is Fedora Linux Core 3.

Both servers host an identical HTML-page of size
836 Byte, including references to four jpg-pictures 3.
Clients are equipped with the Apache Web testing tool
JMeter (Apache Software Foundation, 2005b) to sim-
ulate Web users’ accessing the server, and to obtain
values for latency and packet loss ratio. A JMeter
instance on the management station coordinates the
clients.

In a first test case we vary the encryption algorithm
and the duration of HTTP Keep Alive. Encryption al-
gorithm and corresponding key length have direct in-
fluence on the performance of SSL sessions (Apos-
tolopoulos et al., 1999), while HTTP Keep Alive in-
fluences the HTTP transfer encapsulated in a SSL
session, therefore also SSL latency. In addition, we
compare results for a 100 MBit/s and 1 GBit/s net-
work. We perform each measurement with 150, 300,
600 and 900 simultaneous user sessions respectively
to simulate increasing workload.

2In this context, client indicates a host sending HTTPS-
requests to the server.

3The picture’s size is 91.3, 23.5, 14.5 and 3.96 kByte
respectively
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To do a detailed analysis of system’s behavior close
to satiation, we employ a second test case, with a 100
MBit/s network connection, no HTTP Keep Alive and
3-DES with 168 Bit key length. The number of paral-
lel user sessions is raised with high granularity (15,
30, 75, 150, 300, 450, 600 parallel sessions). We
measure the performance of TLSS with an activated
software sensor to evaluate our assumption, that LAP
and not the software sensor dominates TLSS’s perfor-
mance. The sensor captures data but does not save it
on hard disk.

5.2 Results

Figure 2 represents average latencies of LAP and the
reference system using the RC4 encryption algorithm,
on both 100 MBit/s and 1 GBit/s network. Laten-
cies for more than 600 user sessions on a 1 GBit/s
network are not printed because LAP gets overloaded
and starts dropping requests.
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Figure 2: Average Latency for RC4 128 Bit, no HTTP Keep
Alive (Test case 1).

It is remarkable, that 100 MBit/s network offers
better performance, i.e. minor latency, than 1 GBit/s,
both for LAP as for the reference system. One pos-
sible reason is that higher number of parallel requests
reaches the server on a 1 GBit/s network than on 100
MBit/s. This leads to an increased number of par-
allel processes initiated by httpd 4. As mentioned
in (Iyengar et al., 1997), we assume that, provoked
by Web server’s internal procedures, the CPU wastes
time switching between httpd processes which leads
to an increased latency .

On a 1 GBit/s network, LAP outperforms the refer-
ence system for 600 simultaneous user sessions. This
is due to limitations of the Web server software in
conjunction with standard settings, allowing a max-
imum of 256 parallel client sessions. The increased

4The Web server is operated in prefork mode, i.e. using
one process per client request

latency of the reference system is caused by requests
waiting to be processed by httpd. Increasing the num-
ber of maximum client sessions results in minor la-
tency.

Figure 3 indicates latencies for AES in combina-
tion with varying HTTP Keep Alive Time. Using
HTTP Keep Alive decreases the latency for the ref-
erence system but not for LAP. We’ll discuss this in
the next section.
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Figure 3: Average Latency for AES 128 Bit, 100 MBit/s
(Test case 1).

Figure 4 presents the average latencies of the refer-
ence system and TLSS, with activated data capturing.
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Figure 4: Average Latency for 3DES 168 Bit, no HTTP
Keep Alive, 100 MBit/s (Test case 2).

5.3 Analysis of Results

The results indicate that the reference system per-
forms slightly better than LAP, i.e. the reference
system has a minor latency. The reference system’s
performance advantages are due to the fast internal
communication between the SSL module, perform-
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ing cryptographic functions, and the Web server soft-
ware. While the reference system employs API func-
tion calls, the communication between LAP and Web
server software utilizes the virtual lo device. For a
small number of parallel sessions, the internal com-
munication takes up most part of the server’s com-
puting time, resulting in a high relative performance
advantage, (i.e. performance advantage / total la-
tency), for the reference system. For an increasing
sessions’ quantity, execution of cryptographic algo-
rithms consumes the major part of CPU time. Cryp-
tographic computation’s performance 5 is similar for
both systems, therefore an increasing number of par-
allel user sessions diminishes the reference system’s
relative performance advantage.

As mentioned in the previous section, Figure 3 in-
dicates that activating HTTP Keep Alive does not lead
to a decreased latency for LAP. In contrast to LAP,
the reference system’s SSL module is integrated in
the Web server software. Hence, if HTTP Keep Alive
is activated on the reference system, the SSL module
automatically caches the corresponding SSL sessions
which leads to decreased latency. We plan to integrate
this feature in an improved version of LAP.

Results presented in Figure 4 indicate that activa-
tion of packet capturing has no negative impact on
sensor’s performance. The maximum capacity han-
dled by LAP is 600 simultaneous user sessions, while
reference system handles up to 750 sessions.

Overall results indicate that TLSS slightly de-
creases the performance of the monitored server and
can lead to a decreased availability in case of high
workload. This is due to the low performance of the
loopback interface used for local communication be-
tween LAP and server application, because data tra-
verses the network stack of the virtual device. We
argue that our implementation of TLSS is suitable for
Web servers that do not operate in the range of maxi-
mum workload.

6 CONCLUSION AND FUTURE
WORKS

In this paper we introduced Transport Layer Secu-
rity Sensor (TLSS) as part of an Intrusion Detection
System. TLSS facilitates detection engines to ana-
lyze network traffic encrypted at the Transport Layer,
such as SSL. We designed TLSS to cooperate with
third-party detection engines, though enabling the in-
tegration into existing IDS. In contrast to existing so-
lutions, TLSS neither denies the non-repudiation as-
surance, nor exports fundamental secrets (e.g. private

5Both Stunnel and mod ssl use the OpenSSL (OpenSSL
Development Team, 2005) libraries

keys) to other hosts.
Our implementation of TLSS for a SSL-enabled

Web server indicates the viability of our idea, but re-
quires further improvements in terms of performance.
The focal point is to increase the maximum number
of parallel user sessions handled by TLSS.

In addition, we plan to extend TLSS to provide pre-
analysis and anonymization of data before sending it
to a detection engine. While the first will decrease de-
tection engine’s workload, latter will prevent that an
attacker, wiretapping the communication between en-
gine and sensor, gathers sensitive informations from
the transmitted data stream.
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