
JSR 168 AND WSRP 1.0 – HOW MATURE ARE PORTAL
STANDARDS?

Xiaobo Yang, Xiao Dong Wang, Rob Allan
CCLRC e-Science Centre, Daresbury Laboratory, Warrington WA4 4AD, UK

Keywords: Portal, Portlet, JSR 168, WSRP, Grid, e-Science.

Abstract: The benefits of adopting web portals in different scenarios like e-Learning and e-Research are well
understood now. With built-in single sign-on (SSO), role-based authorisation management and
personalisation, portals provide a uniform interface for seamless access by users to existing or emerging
distributed resources such as the Grid. In this paper, two portal standards – Web Services for Remote
Portlets (WSRP) and Java Specification Request (JSR) 168 will be discussed to reveal how practical they
are in developing real world portals. The discussion is based on our work in portal development for several
UK e-Science projects including the UK NGS (National Grid Services) Portal and the Sakai VRE Portal
Demonstrator project.

1 INTRODUCTION

Web portals can play a prominent role in real world
applications by bridging end-users to resources and
hiding underlying middleware complexity.
Resources could be as simple as some arbitrary data
stored in a database, or as complex as business logic
on the Grid. By aggregating distributed resources
together with built-in SSO, role-based authorisation
and support for personalisation, portals can
streamline the use of distributed resources and
improve the productivity of existing software
systems.

With the widening use of Grid technology,
portals are often used to provide transparent client
access. Prior to the two portal standards - WSRP 1.0
(WSRP1.0) and JSR 168 (JSR168) born in 2003,
portals were developed with a lot of similar code
rewritten in different Grid/e-Science projects.
Toolkits like GPDK (Novotny, 2002), Java CoG
(von Laszewski, 2001) and GridPort (Thomas, 2001)
were developed to simplify the task. This approach
also led to many customised libraries created to meet
the demands of particular projects, such as the Grid
Application Toolkit (GAT). Although these well
defined APIs/libraries can help to simplify portal
development, non-standard based portal applications
(Peltier, 2003, Wu, 2004, Bondarescu, 2005) are not
easy to re-use outside of the original project.

Realising the importance of standards in portal
development for the UK e-Science community, an
international workshop titled Portals and Portlets
was held in July 2003 at the UK National e-Science
Centre. It covered the main portal work of the Grid
community at that time. Work of GridSphere,
NEESgrid, OGCE, uPortal together with IBM
WebSphere Portal, Sun One Portal Framework and
more projects were presented. Shortly after that
workshop, WSRP and JSR 168 were formally
ratified by OASIS (Organisation for the
Advancement of Structured Information Standards)
and JCP (Java Community Process) respectively to
solve the interoperability issues in portal
development. At the beginning of March 2005,
another workshop on GridSphere and Portlets, was
held with discussions focusing on sharing JSR 168
portlets between different frameworks, plus an initial
investigation of WSRP.

WSRP and JSR 168 are slowly becoming
adopted by portal vendors and developers. Today
plenty of open-source and commercial portal
frameworks are available on the market, for
example, eXo platform, Liferay, uPortal, JBoss
Portal and IBM WebSphere Portal. They all claim to
support JSR 168 and many also claim to support
WSRP.

In this paper, we will first give an introduction to
WSRP and JSR 168. Then explain lessons learnt
from development of the NGS Portal. In this section,

393Yang X., Dong Wang X. and Allan R. (2006).
JSR 168 AND WSRP 1.0 – HOW MATURE ARE PORTAL STANDARDS?.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 393-399
DOI: 10.5220/0001252503930399
Copyright c© SciTePress

re-use of the business logic and presentation layer
will be discussed in the context of a test of standard
compliance of selected open-source portal
frameworks. Some related work will be discussed
before giving concluding remarks and an outline of
possible future work.

2 TWO PORTAL STANDARDS

2.1 JSR 168

Many on-line resources such as IBM’s
DeveloperWorks, are available providing
introductory and in-depth discussions of the JSR 168
standard. Here we give a brief introduction for
completeness. JSR 168, also called the Java Portlet
Specification 1.0, is designed to standardise the
interaction between portlet and portlet container
(portal framework) by the Java Community Process.
In JSR 168, portal, portlet and portlet container
are defined as follows.

Portal - “A portal is a web based application
that – commonly – provides personalisation, single
sign on, content aggregation from different sources
and hosts the presentation layer of information
systems.”

Portlet – “A portlet is a Java technology based
web component, managed by a portlet container,
that processes requests and generates dynamic
content.

Portlet Container – “A portlet container
manages portlets and provides them with the
required runtime environment.”

User requests are therefore managed by a portlet
container and transferred to its portlets. A portal is
an aggregated view of the dynamic content
generated by several portlets. Although a portlet
container can be built as a separate component in a
portal application, it is commonly integrated with
the portal to become a fully functional portal
framework. Whilst the portlet container is focussed
on managing the life cycle and request process of
portlets deployed inside it, the portal normally
provides extra functionalities such as SSO, role-
based authorisation support and personalisation in
addition to rendering to provide a consistent “look
and feel”. Because of the prevalent integration of
portlet container and portal, “portlet container” and
“portal framework” are both commonly utilised to
describe the combined functionality.

Fig. 1 illustrates the relationships between end-
user, portal, portlet container and portlets. In Fig. 1,
the indicated business logic could be either inside or
outside the portlet.

JSR 168, as its name implies, only appropriate
for the Java programming language. This brings the
issue – how to re-use web contents published using
languages other than Java, for example, Perl or C
CGI and PHP? Also, a definition for exchanging
information between portal frameworks, e.g., re-use
of remote portlets, is missing in JSR 168. The
WSRP specification was developed to meet these
requirements.

Figure 1: JSR 168 defines standard between portlets and portlet container.

Portlet

Portal

Portlet Container

Portlet Portlet

Web
Service

Business Logic

HTTP(S)

Database

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

394

2.2 WSRP 1.0

WSRP 1.0, an approved OASIS standard, was
defined as “a web services interface for accessing
and interacting with interactive presentation-
oriented web services”. Unlike JSR 168, WSRP is
based on the web service concept; itself is based on
language- and platform-independent technologies
like SOAP, WSDL and UDDI. Therefore in theory,
it is possible to use programming languages other
than Java to provide information (defined as
Producer in WSRP 1.0) which can then be
consumed by any type of clients (defined as
Consumer in WSRP 1.0) although normally a
Consumer is a web portal. Unfortunately until now
there are few implementations of WSRP producers
using languages other than Java. The only one
known to the authors is the Go-Geo! portal from
EDINA (Awre, 2005, Go-Geo!). This is a Perl
application using the SOAP::Lite web services
module.

To explain the lack of other language
implementation of WSRP, we note that the WSRP
1.0 specification (Section 1.2.2 line 25) suggests
“Producers are modelled as containers of Portlets”.
WSRP4J, a well-known WSRP Java implementation
makes use of Pluto, a reference implementation of
JSR 168 as the portlet container. As there is no
portlet standard in other languages, this makes it
much more difficult to implement the WSRP
specification. From this point of view, WSRP 1.0 is
actually highly coupled with the JSR 168.
Alternatives to Java are however available to include
remote web sites into a portal for example through
the “IFRAM” tag. Furthermore, in its SharePoint
Server 2003 (SharePoint), Microsoft announced both
WSRP Producer and Consumer support through
WSRP Web Services Toolkit and WSRP Web Part
Toolkit respectively. This makes it possible for
third-party portals to leverage SharePoint application
functionalities as well as to consume WSRP portlet

services provided by a variety of vendors, regardless
of the business system used.

Fig. 2 illustrates the relationship between a portal
equipped with a WSRP Consumer and some WSRP
Producers. A portal can be constructed using local
and remote portlets.

Figure 3: Portlet contains both business logic and
presentation layer.

As illustrated in Fig. 3, a portlet acts as a web
component which has integrated presentation and
business logic. The latter can be external services
with which the portlet can communicate. The key
idea of WSRP is to re-use both the logic and
presentation layers with the help of the prevalent
web service concept. As mentioned above, WSRP
1.0 defines Producer and Consumer to a simulate
web service and its client. As stated in the
specification, WSRP is a “protocol [which]
describes conversation between Producers and
Consumers on behalf of End-Users (clients of the
Consumer)”. The WSRP Producer also acts as a
portlet container and portlets inside it are only
accessible via the Producer, the portlets are not web
services themselves. The four interfaces defined by
the WSRP 1.0 specification are now described:

1) ServiceDescription interface – this required
interface enables a consumer to discover the services
that a producer provides by defining an operation for
acquiring the producer’s metadata;

2) Markup interface – the second required
interface, is used to define operations for getting the

Portlet

Presentation

Business Logic (can
exist outside of Portlet)

Figure 2: WSRP 1.0 defines contract for portlet containers to exchange information.

Portlet

Portal

Portlet Container

Portle Portle

WSRP

Portlet

WSRP Producer

WSRP Producer

SOAP

Discovery
Plug and Play
Publish

JSR 168 AND WSRP 1.0 – HOW MATURE ARE PORTAL STANDARDS?

395

markup from a portlet and process user interactions
with that markup. It also handles HTTP cookies;

3) Registration interface – an optional interface
which enables a consumer to register at the producer
by defining operations for establishing, updating and
destroying a registration;

4) PortletManagement interface – another
optional interface which covers lifecycle and
properties of portlets. It defines operations for
getting portlet metadata, cloning portlets for further
customisation and interacting with the property
interface.

A WSRP Consumer gives a portal the capability
to render portlets maintained remotely. A portal
page may present both local and remote portlets in a
way transparent to end-users and even portal
administrators (see Fig. 2). For example, in
StringBeans 3.0 the portal will try to create an
instance of a WSRP proxy portlet for each available
remote portlet during its startup phase. All remote
portlets are then treated as if they were local and are
added to the list of those available.

Similar to JSR 168, there are introductory
materials about WSRP 1.0 available online (for
example, Gupta, 2005) but almost all of them are
limited to an overview of the specification itself
without any real programming details. We will
discuss below experiences from our practical work
on WSRP.

3 EXPERIENCES OF PORTAL
DEVELOPMENT

3.1 Re-Use of Business Logic via
JSR 168 Portlets

A web portal for the UK National Grid Services
(NGS), the NGS Portal (Yang, 2005A), was
developed in the Grid Technology Group at the
CCLRC Daresbury Laboratory. As JSR 168 was
chosen as the most appropriate technology for this
work, the NGS Portal release 2.0 is based on a
customised version of StringBeans. A
MyProxyLoginModule using JAAS was added to
StringBeans in order to help authenticating users
through the NGS MyProxy server directly without
needing to have a local account pre-defined in the
portal. A set of JSR 168 portlets has been converted
from the NGS Portal release 1.0 (which used
Jetspeed 1.0 portlets deployed inside CHEF, a
CompreHensive collaborativE Framework now
replaced by the Sakai project (Sakai)). The portlets

listed below use the JavaCoG to manage Globus
Toolkit 2 (GT2) functionality from the web.

- ProxyManager portlet
- JobSubmission portlet
- BatchJobMonitor portlet
- FileTransfer (GridFTP/SRB) portlet
- LDAP/MDSBrowser portlet
These portlets were initially developed under the

eXo platform and then ported to StringBeans for the
production portal. During development, they were
also tested in GridSphere and uPortal to check
interoperability. It was proven that the JSR 168
standard solves the interoperability issues quite well
and portlets can be re-used in different portlet
containers. There is no need to modify the portlet
source code, only some minor modifications of the
configuration file (web.xml) and replacement of tag
libraries. A portal framework like GridSphere needs
more configuration files than the standard
portlet.xml and web.xml. Some of the portlets
designed for the NGS Portal were successfully used
in GridSphere to clone a prototype portal for the
Integrative Biology project (IB Project). Fig. 4 gives
a screenshot of the BatchJobMonitor portlet.

Figure 4: A screenshot of the NGS Portal –
BatchJobMonitor portlet.

Our experience on eXo platform, GridSphere,

StringBeans and uPortal shows that portlets can be
simply re-utilised with only some minor
modifications of several configuration files. The JSR
168 standard is quite mature on the market today.
Obviously, different portal frameworks provide their
own functionalities extending the standard JSR 168
specification, but this is not guaranteed to be
portable. In practice, we therefore recommend to
stay with standard functions provided by JSR 168.

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

396

3.2 Re-Use of Business Logic and
Presentation via WSRP

After the NGS Portal 2.0 was released, we
investigated various more complex aspects of portal/
portlet development. Part of the work involved a test
of WSRP support in selected open-source portal
frameworks. This includes eXo platform, Liferay,
StringBeans, uPortal and WSRP4J. Although re-use
of business logic in our scenario through portlets is
the most common case, a further step can be
achieved by re-using remotely maintained portlets
which also contain a presentation layer. This
approach eliminates portlet re-deployment and
makes it potentially quick and easy to set up a new
portal just by linking to WSRP Producers.

Despite the widespread claims, our tests showed
that WSRP support is however still immature (Yang,
2005B).

Till now, no universal Consumer exists that can
access all types of WSRP Producers. Even though
the WSRP 1.0 specification has been available for
two years, interoperability between portal
frameworks is still poor. Issues for both WSRP
Producer and Consume are listed below:

1) The WSRP 1.0 specification defined four
interfaces but only two of them – ServiceDescription
and Markup interfaces are mandatory. The other two
interfaces – Registration and PortletManagement are
optional, but these two optional interfaces play an
important role in registration and remote portlet
lifecycle management.

2) In the specification, it is mentioned that two
forms of registration are supported:

- In-band registration – this requires that the
Consumer sends a request to register with the
Producer;

- Out-of-band registration – the Producer and
Consumer go through specific business processes to
establish registration.

It is clear that both registration methods require
the optional Registration interface while at the same
time the out-of-band registration requires further
semantics and a process to be agreed for
communications between a Consumer and a
Producer.

3) Three URL types – blockingAction, render
and resource are defined in the WSRP 1.0
specification, but it was observed that this is not well
implemented on either Producer- or Consumer-side.
For instance, under the circumstance of Consumer-
side URL re-writing a Producer should indicate a
static image in the markup as a resource URL type.
Then the corresponding Consumer should re-write

the URL to point to the correct location. But if the
remote portlet does not encode such an image URL,
then none of the WSRP Producers/Consumers we
have tested can display the image correctly while
encoding of such a resource URL is not necessary.

Such statements make it very difficult to write a
universal WSRP Consumer to handle all situations.
For this reason it can be observed that each portal
framework’s Consumer works best with its own
Producer. There are other issues that the WSRP 1.0
specification does not cover. For example, if
registration information of a Producer is changed
there is no mechanism to notify its Consumers. This
may be necessary since the Producer could ask a
registered Consumer to re-register.

Currently we are working on a servlet-based
WSRP Consumer which internally accesses a UDDI
registry. End-users can search the registry to get a
list of available remote portlets that meet their
criteria (currently keyword based). The remote
portlet can then be selected and run on behalf of the
user. Our initial work has shown some promising
results. Fig. 5 gives a screen shot of our WSRP
Consumer servlet running inside uPortal through its
Inline Frame function - a Hello World Portlet is up
and running. The next step will involve some further
work on our WSRP Consumer and it is planned to
port to the Sakai framework as part of a Sakai VRE
Demonstrator project. Third-party remote portlets
such as the portlets developed for the NGS Portal
could then be invoked alongside the Sakai
collaboration and educational tools.

Figure 5: Integrating MyWSRPConsumer servlet inside
uPortal through its Inline Frame function.

Similar to WSRP 1.0, JSR 168 also does not
solve all the issues we identified. Some of them are
listed below:

1) Lack of inter-portlet communication is always
noted by portlet developers (Osmond, 2005). Some
portal framework vendors have their own solutions

JSR 168 AND WSRP 1.0 – HOW MATURE ARE PORTAL STANDARDS?

397

which extend the specification, like IBM in its
WebSphere portal.

2) Support for different web technologies like
Struts and JSF is not always available or complete,
although portlet container providers solve this issue
by providing different bridges. For example, Portals
Bridges used in Jetspeed provides support for JSR
168 compliant development using common web
frameworks like Struts, JSF, PHP, Perl and Velocity.
Some similar bridges have also been integrated by
other portal framework vendors including JBoss
Portal, GridSphere, StringBeans and Vignette Portal.

3) Lack of portlet filter to add processes before
and after accessing portlets. The Apache portals
project provides this kind of function which is
useful, e.g. for validating or modifying requests and
responses.

Issues listed above need to be addressed by
standards to improve the portability of portlets and
avoid the need for framework-specific extensions.
This is the basis of the work now being done by the
portal community to develop JSR 286 (Portlet
Specification 2.0) and WSRP specification 2.0.

4 RELATED WORK

Grid portals first emerged just after the introduction
of the Grid concepts in the mid 1990s. User friendly
interfaces were required for seamlessly accessing
integratied distributed Grid resources. Portals were a
natural choice for this because of the prevalence of
web-based applications and extended the simple use
of a browser to view and download information. As
described earlier, the first-generation portals were
normally project-based, but led to middleware
toolkits like GridPort and JavaCoG. The two portal
standards, WSRP 1.0 and JSR 168, make it easier to
re-use generic functionalities and portals today are
widely adopted by different domains beyond the
Grid, including e-Science, e-Learning and e-
Research. The second-generation web portals are
based on these portal standards particularly on JSR
168. Some of them were based on an underlying
Service-Oriented Architecture (SOA).

NEESgrid links earthquake researchers across
the USA with leading-edge computing resources and
experimental research equipment. Through
NEEScentral, a web-based portal, all NEES
participants and earthquake engineering researchers
can make use of community-wide tools and
resources integrated within NEESgrid in
collaborative project areas.

The GEON (Geoscience Network) cyber-
infrastructure project which involves a number of

institutions and industry partners in USA is based on
SOA. GEON aims at creating an IT infrastructure to
enable interdisciplinary geoscience research. Besides
the web service interface, GEON has a portal for
end-users to access a set of portlets from which
services like the visualisation tool.

The GroupLog and CREE (Contextual Resource
Evaluation Environment) projects investigated
creating web portals as the presentation layer for a
variety of information search tools. Both projects
evaluated JSR 168 and WSRP during their
development. JSR 168 compliant portlets have been
proven to work well within their portal
environments, but for WSRP only CREE (Awre,
2005) has WSRP4J plus uPortal tested and reported
to work well. Within the GroupLog project (Duke,
2005) a JSR 168 portlet has been written to call Perl
CGI scripts as business logic, illustrating a candidate
way to “glue” non-Java legacy applications into
portal technology.

Finally we note the work done by the EDINA
group in developing the Go-Geo! Portal which
featured a WSRP producer written in Perl. Clearly
this could also be done in other languages which
support web services.

5 CONCLUSIONS AND FUTURE
WORK

Web portals today play an important role in real
world applications because they are bridging end
users to resources behind the web. With the help of
portals, distributed resources and data can be
accessed as Grid or web services can be seamlessly
aggregated with built-in SSO and authorisation
support, personalisation support and much more.

JSR 168 and WSRP 1.0 are the two currently
standards used in portal development. Both
standards are designed to enable interoperability and
re-use, with JSR 168 focusing on interoperability
between portlets and portlet containers and WSRP
1.0 between portlet containers. Today all major
portal frameworks claim JSR 168 support and quite
a few of them also claim WSRP support. It has been
observed that JSR 168 is very well supported in all
frameworks tested but WSRP support is still
immature. We currently suggested adopting JSR 168
for portal development and adding WSRP support
later when it becomes more mature – the standards
are essentially independent. Using these standards
should mean that portlet developers do not need to
worry about re-use of their portlets which should be
guaranteed by portal framework vendors. Current

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

398

JSR 168 compliant portlet containers can plug in a
WSRP Producer support module and they can
provide a Consumer like the ProxyPortlet in uPortal
as a generic WSRP Consumer. StringBeans 3.0
adopted this approach for its recently announced
WSRP support.

As described above, both specifications have
their own issues to deal with in the future, for
instance, lack of inter-portlet communication in JSR
168 and some uncertainties (for example,
complexity) in WSRP 1.0. Although still not
available to test, their successors JSR 286 and
WSRP 2.0 are now expected to solve some of these
kinds of issues which will make future portal/ portlet
development much easier.

Finally we note that the Sakai project has
recently been very active in developing its own
kernel WSRP Producer. As it is crucial to our Sakai
VRE Portal Demonstrator project, further
investigation will be carried to study the possibility
of integrating uPortal and Sakai, which will lead to
the maximum re-use of existing resources. In the
further, we will also study security issues around
remote portlets.

REFERENCES

Awre, C., Waller, S., Allen, J., Dovey, M.J., Hunter, J.,
and Dolphin, I. 2005. Putting the library into the
institution: using JSR 168 and WSRP to enable search
within portal frameworks. Ariadne, 45, from
http://www.ariadne.ac.uk/issue45/awre/.

Bondarescu, R., Allen, G., Daues, G., Kelley, I., Russel,
M., Seidel, E., Shalf, J., and Tobias, M. 2005. The
astrophysics simulation collaboratory portal: a
framework for effective distributed research. Future
Generation Computer Systems, 21, 259-270.

Duke, M., and Swift, E. 2005. Portlet Feasibility Study: a
report prepared for the GroupLog project funded by
JISC under the eTools programme. From
http://www.bath.ac.uk/e-learning/grouplog/jisc/
groupLog-portlet-feasibility.pdf.

Gupta, R.K. 2005. WSRP: Dynamic and real-time
integration: an introduction to WSRP, its usage, and
implementation. WebServices Journal, 5(8), 10-19,
from:http://webservices.sys-con.com/read/121937.htm

IB Project. http://www.integrativebiology.ox.ac.uk/.
Go-Geo!. http://hds.essex.ac.uk/Go-Geo/.
JSR168. JSR-168 portlet specification. http://www.jcp.

org/aboutJava/communityprocess/final/jsr168/.
Novotny, J. 2002. The Grid portal development kit.

Concurrency Computat: Pract. Exper., 14, 1129-1144.
Osmond, M., and Guo, Y. 2005. Adopting and extending

portlet technologies for e-Science workflow
deployment. In UK e-Science AHM 2005, Nottingham,
UK, available on CDROM.

Peltier, S.T., Lin, A.W., Lee, D., Mock, S., Lamont, S.,
Molina, T., Wong, M., Dai, L., Martone, M.E., and
Ellisman, M.H. 2003. The telescience portal for
advanced tomography applications. J. Parallel Distrib.
Comput., 63, 539-550.Sakai. http://www.sakaiproject
.org/.

SharePoint. Microsoft continues commitment to XML
web services with new SharePoint products and
technologies toolkits. http://www.microsoft.com/press
pass/press/2004/aug04/08-09webpartspr.mspx.

Thomas, M., Mock, S., Boisseau, J., Dahan, M., Mueller,
K., and Sutton, D. 2001. The GridPort toolkit
architecture for building Grid portals. In Proc. of the
10th IEEE Intl. Symp. on High Perf. Dist. Comp.

von Laszewski, G., Foster, I., Gawor, J., and Lane, P.
2001. A Java commodity Grid kit. Concurrency and
Computation: Practice and Experience, 13(8-9), 643-
662.

WSRP1.0. Web Services for Remote Portlets specification
version 1.0. http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-
1.0.pdf.

Wu, B., Dovey, M., Hong Ng, M., Tai, K., Murdock, S.,
Fangohr, H., Johnston, S., Jeffreys, P., Cox, S., Essex,
J.W., and Sansom, M.S.P., 2004, A web/Grid portal
implementation of BioSimGrid: a Biomolecular
simulation database. J. of Digital Information
Management, 2(2), 74-78.

Yang, X., Chohan, D., Wang, X.D., and Allan, R., 2005A.
A web portal for the National Grid Service. In UK e-
Science AHM 2005, Nottingham, UK, available on
CDROM.

Yang, X., Wang, X.D., and Allan, R. 2005B. WSRP
support investigation of selected open-source portal
frameworks. In GCE05: Portals Workshop, Seattle,
USA, submitted to Concurrency Computat.: Pract.
Exper.

JSR 168 AND WSRP 1.0 – HOW MATURE ARE PORTAL STANDARDS?

399

