
RESEARCH AND IMPLEMENTATION OF MPLS VPN
PROTOCOL BASED ON NETWORK PROCESSOR

Wang YongJun, Huang QingYuan
School of Computer, National University of Defense Technology, ChangSha, HuNan, P.R.China

Keywords: Network processor, protocol development, software framework, picocode, MPLS, VPN.

Abstract: MPLS VPN is one of popular protocols in next generation internet. In general, it would be implemented in
modern routers. In this paper, the implementation technology of MPLS VPN was studied in high
performance router based on network processor. The programming view of NPs is studied and a flexible
protocol development software framework is proposed, which considers function partition of protocol into
two parts for specific NP and general-purpose processor. Making use of properties of flexible programming
and high processing capability of network processor, software architecture of MPLS VPN was proposed, the
key technology was designed and implemented, which shows the efficiency of protocol extension and
exploits the method to software upgrade of network processor.

1 MOTIVATION

With the rapid development of internet, electronic
business activities have become more and more
popular. Many enterprises allow the partners to
access their private network in order to simplify and
to speed up information exchange. However,
because of the distribution and open nature of
internet, such business activities are threatened by
security problems. Hence, virtual private network
technology is brought to tackle with such security
threat.

Traditional layer-2 VPN gets poor scalability
because of full connections between different sites.
MPLS VPN (Ivan, 2001) which is created on layer-3
can get over the problem while its deployment and
management are very easy. Thus the security and
privacy of layer-2 VPN can be assured through only
delivering VPN route information which is handed
out with BGP to VPN member routers.

MPLS VPN can overcome the limitations of
traditional VPN (Rosen,1999). It can reduce the
construction cost of enterprises’ private network
through utilizing the powerful transportation ability
of public backbone network effectively while
notably improving employment and management
flexibility of user network. At the same time,
through the isolation of routing information between
users and public network as well different users,

MPLS VPN can meet user’s requirement for
security, real time, broad bandwidth, and
convenience. It will be one of the core protocols of
next generation internet.

Network processors(Stephen, 2000)（NPs）are
an attempt by hardware vendors to fulfill the
growing need for low-priced specialized network
hardware that is more future proof than conventional
custom hardware or ASIC-based designs, and can be
applied in a wide range of situations (e.g. in
networked devices, as edge network routers and
even in the network core). NPs are multiprocessor-
based hardware units that support a number of
network ports and provide software based packet
processing facilities that can be programmed with
the aid of a toolkit. So Network Processors (NPs) are
emerging as cost effective networking elements that
can be more readily updated and evolved than
custom hardware or ASIC-based designs with high
performance.

The aim of the research discussed in this paper is
to design and implement MPLS VPN protocol based
on NP. To support it, a flexible protocol
development software framework for NPs is
proposed that accommodates complex architectures
and architectural heterogeneity while also supporting
high performance. In this framework, software
architecture of MPLS VPN is studied and proposed,
the key technology was designed and implemented.

156 YongJun W. and QingYuan H. (2006).
RESEARCH AND IMPLEMENTATION OF MPLS VPN PROTOCOL BASED ON NETWORK PROCESSOR.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 156-163
DOI: 10.5220/0001252401560163
Copyright c© SciTePress

The remainder of the paper is structured as
follows. In section II, we characterize NP
architecture as a basis for arguing, and also survey a
number of existing NP software development
support. In section III, we present our approach-
flexible development framework to programming
NPs and show how this improves on existing
approaches. Then, in section IV, we describe the
research and implementation of MPLS VPN
protocol in detail. Finally, in section V we offer our
conclusions.

2 RELATED WORK

2.1 Network Processor Architecture

The challenge in NP design is to provide fast and
flexible processing capabilities that enable a variety
of functions on the data path yet keep the simplicity
of programming similar to that of a General-Purpose
Processor (GPP). The NP system architecture plays
a significant role in this respect: such architectures
are primarily designed according to a serial model
(or pipeline) or a parallel model.

In the parallel model, each thread in an NP core
receives a different packet and executes the entire
data-path code for this packet. In the serial model,
each NP core receives each packet and executes a
different portion of the data-path code in a thread.

From a programming point of view, the serial
model requires that the code be partitioned such that
the work is evenly distributed. In the parallel model,
given that the same code can be performed by any
NP Core and packets are assigned to the next
available thread in any NP Core, the work is
inherently evenly distributed. The Intel IXP
(Matthew etc, 2002) architecture is designed
primarily on a serial model, whereas the IBM
PowerNP (James etc, 2003) is designed on a parallel
model. For realistic, changing traffic mixes, the
serial model would require a dynamic repartitioning
of the code to maintain performance, unlike the
parallel model for which no partitioning takes place.

2.2 Support of NP Software
Development

The provision of software development
environments for different NPs is almost as diverse
as NP hardware architecture.

In terms of proprietary software, we focus on
programming models and development

environments for the IXP1200 and the IBM
PowerNP. Information on the software environments
used by other NPs is unfortunately hard to obtain
without signing non-disclosure agreements.

Intel’s MicroACE (Intel, 2001) is targeted at the
IXP1200 and other Intel IXA products. In this
model, proxy-like software elements (called active
computing elements or ACEs) on the IXP1200’s
StrongARM control processor are ‘mirrored’ by
blocks of code (called microblocks) that run on
microengines. When the programmer loads a
StrongARM element, the corresponding microblock
is transparently loaded onto a microengine as a side
effect. IBM’s NPTool (James etc, 2003) includes
such related toolkits as NPScope ,NPSim, which are
loose coupled.

Turning to research-derived programming
environments, NetBind (Campbell, etc. 2002)
provides the abstraction of a set of packet processing
components that can be bound into a data path.
NetBind goes beyond MicroACE in supporting
flexible composition of microblocks, but it offers no
abstraction over the NP’s interconnects or over
different sorts of processors.

Apart from the work discussed above, additional
research has focused on creating toolsets for specific
NPs such as C compilers, simulators, debuggers and
benchmarkers; some of this work is described in
(Wagner, 2001), (Memik, 2001).

Above work can be classified into two kinds.
The first focuses on making tools more usable,
which has good performance but lack of
development efficiency without efficient integration
of those tools. The other one focus on providing
programming model that promote design portability
and transferable programming skills , which has
good software development view, but would make
performance influenced. We consider that most
emergent problem of current NPs software
development is how to provide a flexible framework
and integrated toolkit to programmers to make
complexity lower, improve the programming
efficiency and shorten time-to-market actually.

RESEARCH AND IMPLEMENTATION OF MPLS VPN PROTOCOL BASED ON NETWORK PROCESSOR

157

3 FLEXIBLE SOFTWARE
FRAMEWORK OF PROTOCOL
DEVELOPMENT

3.1 General Architecture of NP
Software

The architecture of NP-based communication device
architecture and software are very different from that
of traditional one. A general architecture of
network processor software is shown as figure 1,
which is divided into two part: network processor
picocode, control point software.

 Network processor Picocode
Embedded process chipset and co-processor of
Network Processor core are responsible for
executing Network processor picocode which is
divided into two part: forwarding picocode and
control picocode. Forwarding picocode is
responsible for data plane process including packet
classification, modification and forwarding.
Complex packet process can be redirected to control
point. Control picocode is responsible for control
plane process including initialization of network
processor, picocode downloading from control point,
management of various classification tables and
forwarding tables.

 Control Point (CP) Software
From NP’s view, Control Point Software is
composed of NPAS and network application.

 Network processor application service-
NPAS

NPAS provides seamless interactions and
application programming interfaces between control
point software and network processor picocode,
whose function involves: NP management, table
management of kinds of protocols, traffic
engineering management, redirection path of
protocol processing, and so on.

 High Level Network Application
Except NPAS, other process running on control
processor can be called high level network
application , for example, TCP/IP, routing protocols
and other signaling protocol . Network protocol
processing would be initiated by registering its
callback procedure to NPAS redirection path.
So, in general, complete processing of protocol
includes two parts: the first is data plane on NP, the
second is control plane on CP.

Figure 2 illustrates picocode view from
programmer. Packet processing is divided into two
stages: ingress and egress. Ingress refers to the data
flow from the link towards the switch interface, and
egress is the opposite. The same threads can perform
processing at ingress or egress, thereby
automatically balancing the processing power where
needed. Along with the packet, additional context
information can be transported from ingress to
egress, such as the output port identifier of the
egress NP obtained by the IP forwarding lookup
previously executed on the ingress NP.

Ingress processing of packets steps from low
layer to high layer, and the egress is opposite. Every
layer acts according to corresponding tables of
protocol, for example, multicast IP table, which is
created and filled by control plane software, such as
routing protocol.

3.2 Integrated Coordinated
Software Development Toolkit

We focus on the design of integrated coordinated
software development toolkit, which would provide
great convenience for programmer of NP software.
The architecture of toolkit is illustrated as Figure.3.

The top level is NP software view from
programmer, composed of information of picocode

High speed Ethernet ports

Control Picocode

Data Forwarding Picocode

High Level
Network Application

NPAS APIs

Network Processor

NP
inter
face

Control Point

Figure 1: General Architecture of NP Software.

Figure 2: NP Picocode View From Programmer.

Egress

Linecard
Interaface

Sw
itch

Interface

Ingress

Layer-2
bridging

Layer-3
Forwarding

Frame
Classification

Layer-2
Forwarding

Ingress
Flow Control

Egress
Flow Control

Multicast IP Table
Unicast IP Table

IP BA Table
…

ARP Table

WEBIST 2006 - INTERNET TECHNOLOGY

158

flow, related table structure and packet processing
performance.

The toolkit involves two main part integrated
development environment: CP IDE and NP IDE,
which would work coordinately.

CP IDE supports development of CP program. In
general, two program frame are given to develop
protocol processing callback, and NPAS extension.
The main task of NPAS extension program is design
of table structure, which also corresponds to table in
NP, because entries of NP’s one are written by CP.
So NP Table Generation module can help create the
right structure of NP table directly without manual
edition of programmer.

NP’s View From Programmer

CP
IDE

NP
IDE

Knowledge
base of NP

Protocol
Processing
Callback

NPAS
Extensio

n

Protocol
Table

Extension

Picocode
Generation

CP Program NP Picocode

Picocode
Function and
Performance
Simulation

Consistency
Check

NP Table
Generation

NP IDE supports development of CP program. In
general, two program frame are given to develop
protocol table extension, and picocode generation.
Specialized picocode module will be programmed
by human, but IDE will provide some useful facility
to help integration to whole NP software, for
example, check and suggestion for interface between
different picocode module, allocation of public
register and buffer, and so on, which will promote
programming efficiency greatly.

After generation of picocode, module of
picocode function and performance simulation will
compile, debug and test the code. The test result can
be shown in the view of programmer. If
requirement can not be fulfilled, programmer will
check and debug program again, even repartition
protocol function. The simulation module will
provide possible performance bottleneck and give
some improvement suggestion intelligently.

Another useful coordinated working module is
consistency check of both CP program and NP
picocode, to keep corresponding structure and
declaration consistency.

In order to program high-performance modular
picocode, NP IDE provides a knowledge base of NP

for programmer, which can be queried and sampled.
The knowledge include structure of NP, mechanism
of all kinds of coprocessors and their programming
interface.

 Sample: Knowledge of Tree Search Engine
mechanism of IBM PowerNP

Tree search engine （ TSE ） (IBM, 2001) is a
hardware accelerated co-processor for tree search
and management of table including access control
table, forwarding table, security policy table and so
on. Various tables are stored and indexed through
Patricia tree which is a path-compressed binary tree.
Data of tables is stored in leaves of the tree.
Compressed data is stored in direct table (DT) which
effectively improves tree search speed through
hardware HASH algorithm.

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

DT table

Tree search engine supports three kinds tree search
algorithm: Full Match (FM), Longest Prefix Match
(LPM), Software management Tree (SMT).
FM algorithm uses Patricia tree. Leaves are the only
matching selection of key. LPM and SMT use
extended Patricia tree. Data structure of SMT tree is
similar to FM tree. The difference between them is
that SMT may have many leave nodes which are
organized as a chain. Key search ends on the chain
until one match is found or there is no matching
totally. FM is suitable for fix length key search
while SMT is suitable for multidimensional key (as
IP five tuples) search.

PowerNP can support 192-bits key search. The
format of leave node can be defined freely in
picocode. The extension of various forwarding
tables is very easy for the flexible software
programming feature of TSE co-processor and
NPAS table management interface as the high
performance table search speed can be assured.

Figure 3: Architecture of Integrated Coordinated
Development Toolkit of NP Software.

Figure 4: Patricia tree structure.

RESEARCH AND IMPLEMENTATION OF MPLS VPN PROTOCOL BASED ON NETWORK PROCESSOR

159

4 IMPLEMENTATION OF MPLS
VPN PROTOCOL

4.1 Function Partition

NP-based MPLS VPN software architecture is
composed of control plane and forwarding plane
software. As is shown in figure 5. Control plane
software includes:

 User interface implements configuration
command of MPLS and VPN.

 IP routing protocols implement IP route
learning which is the basis of the
construction of label switch path.
Multiprotocols BGP protocol（MPBGP）
(Bates, 2000) implements the delivering of
VPN routing information in BGP domains.
VRF table management implements the
management of VPN routing information
tables. It is equal to extract many
independent tables from IP routing tables.
Each VPN has one corresponding VRF
table. VRF route is only managed by VRF
manager which is responsible for delivering
VRF routing information to MPGP for
broadcast at the ingress.

 MPBGP will inform VRF manager about
VPN route at the egress.

 Label distribution protocol （ LDP ）
(Andersson, 2001)， implementing MPLS

label switch path（LSP）messages;

 NPAS，implementing the management of
network processor, including the
configuration of various MPLS VPN tables
on forwarding plane.

 Forwarding plane software is network
processor picocode software:

 NP picocode，maintaining and searching
various forwarding tables in network
processor, including IP forwarding tables
,VRF forwarding tables, label forwarding
tables. MPLS VPN forwarding flow is also
implemented.

UI

IP route
protocol

VRF
manager

LDP
protocol

TCP/IP

NPAS

NPpicocode

IP forward
table

VRF forward
table

label forward
table

IP forward
table

VRF forward
table

label forward
table

Control plane

Forward plane

Figure 5: MPLS VPN software architecture.

4.2 Table Design

NP-based MPLS VPN is a function extended over
standard network protocol suits, so it is better to
minimize changes over primitive architecture while
utilizing network processor’s scalability effectively.
In this section, two of the key issues will be
discussed: (1) the design of VRF forwarding table
on control point; (2) the implementation of VRF
forwarding table and code on network processor.

4.2.1 VRF Table Design on CP

Actually, VRF forwarding table can be regarded as a
subset of global table. It is organized according to
the need of VPN route. Related properties are also
stored in the table, the information of which is
delivered by UI configuring module or VRF
manager through MPBGP.

VRF should be assigned name and route
distinguisher (RD) when it is created. At present, we
only consider the scenario of one VRF with single
RD in the overall network. RD and destination IP
are the index of VPN member in VRF forwarding
table. RD is eight bytes, including type, manager and
sequence number. It supports autonomic system and
IP.

There are two schemes to design VRF table:
 Extension scheme ― multi-route table

structure and multi-route table HASH table
organization structure

To support MPLS VPN, the storage of VPN
route information must be taken into account while
keeping the primitive route table storage structure.
Since VPN route address is private, route managing

WEBIST 2006 - INTERNET TECHNOLOGY

160

unit shall create and maintain multi-route tables,
including both original public network route tables
which can be regarded as special private route tables
whose RD is zero and VPN private route tables
which are Radix Tree route tables indexed by
corresponding VRF RD. Hence, all the route tables
can be organized and stored as Radix Tree route
tables indexed by RD. Lookup of these hash tables is
very fast. The structure of hash tables is shown as
figure 6:

 Modification scheme ―single IP forwarding
table

This method is implemented through directly
modifying the data structure and management
function of backbone routers. The index of
forwarding tables is also changed as RD plus IPV4
address. New items of the tables such as bottom
label are needed to support lookup process for
datagram from VRF interfaces and general
interfaces whose RD is zero. Mapping between
interfaces and RD is needed because of pre-
acquisition for RD before table lookup.

Figure 6: Multi-route table and HASH table structure.

Comparing the two schemes according to
workload and performance, we choose the first
scheme which needs minimal modification of
current BGP and IP route tables ,that is easy for
maintain system stability. The basic data structure of
VRF table item can be shown as below:
; leaf data structure
Struct

np_signature_t signature
;Signature
np_uint16 VPN_color

; needed for VPN
np_uint32 reserved_hdr
; Reserved variable
np_uint32 flags_counter
; Maint.flags&Count@BVNC
BLIx xxxx Sxxx cccc
;cccc cccc cccc cccc
np_ipps_ecmpActionData_s ecmpActionData
;16 bits
np_ipps_vrf_nextHopForwardingLeaf_s
nextHop[3]
np_uint32 bgp_nexthop
; BGP next hop
np_uint8 bgp_csi1
; BGP skip counter & csi
Sxxx cccc
np_uint16 bgp_csi2
;BGP csi, cccc cccc cccc cccc
np_uint8 bot_label_part1
; goes with insert_bot_label bottom
label is 20 bits long we use bit 23 (0-
23) for insert bottom label flag
np_uint16 bot_label_part2
np_fwd_table_id_t fwding_tableid

endstruct

4.2.2 VRF Forwarding Table Design and
Picocode Flow in Network Processor

 Picocode VRF table design
VRF manager maintains a VRF route table of multi-
table structure on both control point and network
processor, as is similar to IP forwarding table.
However, different from the multi route tables
structure on control point, network processor which
supports 192-bits key search only maintains one
picocode VRF forwarding table.

There are two implementation schemes for
relation between VRF forwarding table and IP
forwarding table. The first scheme adopts
independent table. This scheme defines a new VRF
table which is indexed by RD plus IPv4. The second
scheme adopts integral table. This scheme modifies
IP forwarding table structure and extends key length
to 96-bits for VPN searching. The second scheme
affects general IP forwarding speed and needs
modify IP table management function. So we select
the first scheme.

 MPLS VPN picocode flow
The standard functions of edge routers based on
network processor include: IP forwarding, MPLS
forwarding and so on. The modification of picocode

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Public net Radix Tree

VPN1 Radix Tree

VPN2 Radix Tree

VPNn Radix Tree

…

…
…

RD HASH table

RESEARCH AND IMPLEMENTATION OF MPLS VPN PROTOCOL BASED ON NETWORK PROCESSOR

161

software is needed to support MPLS VPN through
pushing two labels at ingress and pulling them out at
egress.

Switch/
Route

process

IP L4 Process
(policy control)

IP VPN or L3
process

Data frame preprocess

VRF interface check and
RD table lookup

Data frame analysis

MPLS process

Physical interface

Switch

 Figure 7: Ingress picocode flow.

Cell to frame process

Data frame preprocess

Switch/
route

process

IP
process

MPLS
process

Output scheduling
(flow control, traffic shaping)

Physical interface

Switch

Figure 8: Egress picocode flow.

To construct key words of VPN route, We design
RD table for mapping VRF interface to RD. Detailed
flow is shown as figure 7,8. Data structure of VRF
table item on NP which is corresponding to that is
on CP can be shown as below:
STRUCT
byte control_flags
; (BGP)(LV)(I=E_node)(x) X X X
byte counter_skip

; flag for enabling/disabling counting
on this entry
hword counter_csi
; remaining bytes of counter set index
ecmpActionData hword; ecmp thresholds
(thr1 and thr2)
word next_hop_0
; IP address
hword encoded_target_blade_0
; compacted TB/TP values
hword action_flags_0
hword egress_Context_0
; egress context
word next_hop_1
; IP address
hword encoded_target_blade_1
; compacted TB/TP values
hword action_flags_1
hword egress_Context_1
; egress context

word next_hop_2
; IP address
hword encoded_target_blade_2
; compacted TB/TP values
hword action_flags_2
hword egress_Context_2
; egress context

word BGP_next_hop
; IP address of BGP Next Hop
byte BGP_counter_skip
; flag for enabling/disabling BGP
counter on this entry
hword BGP_counter_csi
; remaining bytes of BGP counter set
index
byte insertBottomLabel
; MSb (bit 23) = insert bottom label
flag
hword bottom_Label
; bottom label itself is 20 bits long
hword next_lookup_table_id
; Table Id associated with 2nd lookup

endstruct

IP VPN process module is extended. VRF
interfaces checking module and RD table lookup
module are fresh modules. When RD table lookup
for datagram from VRF interfaces succeed, IP VPN
process is activated. OutSegment index is extracted

WEBIST 2006 - INTERNET TECHNOLOGY

162

from MPLS InSegment table. Standard MPLS
datagram are processed by standard MPLS
procedure.

We implement two-layer label pushing function
for MPLS process module in egress flow to support
VPN application.

5 CONCLUSION

In this paper we have discussed a flexible integrated
coordinated software development toolkit which has
been proposed to support rapid development of
protocol from programmer’s view, and provides
plenty of assistance functions to help NP
programming more quickly and efficiently. Through
this toolkit, MPLS VPN protocol is developed.

NPs will be adopted in more and more
communication devices, especially edge devices for
their flexibility of protocol function upgrading. One
of our future work is to develop more new network
protocols according to new requirement of network
application.

ACKNOWLEDGMENTS

This work was supported in part by Chinese NSF
grant 90104001/F0107.

REFERENCES

Stephen J. Sheafor.(2000). Network Processor: Using in a
New Era of Performance and Flexibility. Retrieved
November 20, 2005, from http://www.sitera.com.

C. Sauer K. Keutzer C. Kulkarni, M. Gries (October
2003). Programming Challenges in Network Processor
Deployment. In Int. Conference on Compilers,
Architecture, and Synthesis for Embedded Systems
(CASES).

Agere Systems Proprietary. The Challenge for Next
Generation Network Processors. April 2001.

IBM PowerNP NP4GS3 network processor datasheet.
Retrieved December 20, 2005, from
http://www.ibm.com/chips/techlib/techlib.nsf/products
/PowerNP NP4GS3.

Matthew Adiletta, Mark Rosenbluth, Debra Bernstein,
Gilbert Wolrich, and Hugh Wilkinson. (August 2002).
The next generation of Intel IXP processors. Intel
Technology Journal, 6(3):6-18.

James Allen, Brian Bass, Claude Basso, Rick Boivie, Jean
Calvignac, Gordon Davis, Laurent Frelechoux, Marco
Heddes, Andreas Herkersdorf, Andreas Kind, Joe
Logan, Mohammad Peyravian, Mark Rinaldi, Ravi

Sabhikhi, Michael Siegel, and Marcel Waldvogel.
(2003). PowerNP network processor: Hardware,
software and applications. IBM Journal of Research
and Development.

Intel Press. 2001. MicroACE, design document, revision
1.0. Intel Press, Intel Corporation.

Campbell A.T., Kounavis M.E., Villela D.A., Vicente
J.B., de Meer H.G.,Miki K., and Kalaichelvan K.S.
(June 2002). NetBind: A Binding Tool for
Constructing Data Paths in Network Processor-based
Routers. In 5th IEEE International Conference on
Open Architectures and Network Programming
(OPENARCH’02).

Wagner J. Leupers R.(2001). C compiler design for an
industrial network processor. Proceedings of the 2001
ACM SIGPLAN workshop on Optimization of
middleware and distributed systems.

Memik G. Mangione-Smith W H. Hu W.(2001).
Netbench: A benchmarking suite for network
processors. ICCAD.

Network Processing Forum Working Group (Oct 2002).
Network processing forum backgrounder. Retrieved
November 20, 2005, from http://www.npforum.org/.

Ivan Pepelnjak, Jim Guichard, 2001. MPLS and VPN
Architectures. Cisco Press.

Rosen, E., Rekhter, Y. (1999). BGP/MPLS VPNs, IETF
RFC 2547.

Bates, T., Rekhter, Y., Chandra, R., Katz, D.(2000).
Multiprotocol Extensions for BGP-4, IETF RFC 2858

Andersson, L., Doolan, P., Feldman, N. , Fredette,
A. ,Thomas., B.(2001). LDP Specification., IETF RFC
3036.

RESEARCH AND IMPLEMENTATION OF MPLS VPN PROTOCOL BASED ON NETWORK PROCESSOR

163

