
A FORMAL DEFINITION OF SELECTION OPERATIONS THAT
EXTEND XQUERY WITH INTERACTIVE QUERY CONSTRUCTION

Alda Lopes Gançarski
University of Minho

Departamento de Informática, Campus de Gualtar, 4710 Braga, Portugal
Member of LIP6, Paris, France

Pedro Rangel Henriques
University of Minho

Departamento de Informática, Campus de Gualtar, 4710 Braga, Portugal

Keywords: XML, XQuery, Information Retrieval, Interactive search.

Abstract: XQuery is the standard language for querying XML documents using structural and content restrictions.
XQuery is being complemented with a Full-Text language to perform operations on text treating it as a se-
quence of words, units of punctuation, and spaces. Due to the complex nature of XQuery structured queries,
an extension to XQuery was informally proposed to allow for the selection of the interesting subset of elements
from each intermediate result of a query. Intermediate results are, thus, available during the construction of
the query, which helps the user in building a query to retrieve the desired result. In this paper, we formally
define selection operations by extending XQuery grammar and defining new functions. These definitions will
be used to build a processing system. The system should be incremental such that, after changing a query,
only the operations depending on the changes are computed.

1 INTRODUCTION1

Traditional IR consists of retrieving from a collec-
tion the relevant documents to a query, while return-
ing as few as possible of non relevant documents.
Moreover, the resulting documents should be ranked
by their relevance to the query. A query is a natu-
ral language expression describing the desired sub-
ject. To take advantage from the structural informa-
tion of XML documents, query formats for structured
documents retrieval were enriched to access certain
parts of documents. So, the user can access those
parts based on content and structural restrictions. Ex-
amples of such queries are those defined by XPath
language (Berglund et al., 2005) and XQuery (Boag
et al., 2005), the proposition by the W3C to become
the standard XML query language. To include sim-
ilarity search operations of traditional IR in XPath,
some works developed relevance computation meth-
ods, like the ones presented in (Fuhr et al., 2004).
XQuery and XPath are being extended with the possi-
bility of associating a score (or relevance measure) to
an expression that verifies if some phrase exists in the

1This research is done in the context of the RESPIRE
project financed by the French ANR-ARA programm.

content of some element or attribute. This functional-
ity is included in a language that complements XPath
and XQuery, the Full-Text language proposed by the
W3C (Amer-Yahia et al., 2005). However, structured
queries construction is not always an easy process be-
cause, among other reasons, the user may not have a
deep knowledge of the query language, or may not
know a priori exactly what to search. Moreover, af-
ter specifying a query, the user may get a final re-
sult that it is not what was expected. To solve this
problem, IXDIRQL (Gançarski and Henriques, 2003)
was defined as an extension to XPath, not only with
textual similarity operations, but also with an inter-
active/iterative paradigm for building queries. With
this paradigm, each operation specified by the user
leads to an intermediate result which the user can ac-
cess. This helps the user choosing the next opera-
tion, changing an operation already introduced in the
query, or selecting, using selection operations, the in-
teresting subsets of intermediate results, until reach-
ing the adequate query and thus the desired result. If
intermediate results are large, the user is able select
a number of interesting elements that is sufficient to
satisfy him. This avoids continuing the query with a
large number of unnecessary elements to process and
further results are easier to analyse.

148 Lopes Gançarski A. and Rangel Henriques P. (2006).
A FORMAL DEFINITION OF SELECTION OPERATIONS THAT EXTEND XQUERY WITH INTERACTIVE QUERY CONSTRUCTION.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 148-155
DOI: 10.5220/0001251501480155
Copyright c© SciTePress

A prototype to process IXDIRQL queries was cre-
ated and used by real users (Gançarski and Henriques,
2005b) allowing to verify, not only its correct behav-
ior, but also the correct understanding and use of se-
lection operations with respect to some pre-defined
information needs. In (Gançarski and Henriques,
2005a) the authors informally suggest to extend the
interactive/iterative paradigm of query construction to
XQuery. For that, XQuery is augmented with selec-
tion operations. The present paper formally defines
these operations in order to: (1) include them in the
XQuery W3C definition (Boag et al., 2005)(Amer-
Yahia et al., 2005), thus following the same formal-
ism for grammar and functions definition; (2) build
an adequate processing system.

This article is organized as follows. Section 2 in-
troduces XQuery and Full-Text languages. Then, Sec-
tions 3 and 4 define selection operations, namely se-
lect and judgeRel, respectively. Section 5 proposes an
incremental processing for the extended XQuery. The
article finishes with a conclusion, giving some direc-
tives for future work.

2 XQUERY AND FULL-TEXT
LANGUAGES

XQuery is formed by several kinds of ex-
pressions, including XPath location paths and
for..let..where..order by..return (FLWOR) expres-
sions based on typical database query languages,
such as SQL. To pass information from one operator
to another, variables are used. As an example, assume
a document that stores information about articles, in-
cluding title, author and publisher. Next query returns
articles of author Kevin ordered by the respective title.

for $a in /articles/article
where $a/author = ”Kevin”
order by $a/title
return $a

XQuery operates in the abstract, logical structure
of an XML document, rather than its surface syntax.
The corresponding data model represents documents
as trees where nodes can correspond to a document,
an element, an attribute, a textual block, a namespace,
a processing instruction or a comment. Each node has
a unique identity.

Full-Text language extends XQuery with ftcontains
expressions and the inclusion of score variables into
the FLWOR expressions. The ftcontains function can
be used anywhere a comparison can occur, like the
equal operator. An ftcontains expression includes a
location path to specify the nodes where the function
is applied and the expression of the search strings to

be found as matches. ftcontains returns a Boolean
value true if there is some node in the path expression
that matches the expression of the search strings. To
show an example, the following query returns the
author(s) of each article whose title contains ”XML”.

for $a in /articles/article
where $a/title ftcontains ”XML”
return $a/author

A score variable stores the relevance measure as-
sociated to an expression that verifies if some phrase
exists in the content of some element or attribute.
The expression is restricted to a Boolean combination
of ftcontains expressions. The variable gets bound
to a value of type xs:float (the xs namespace refers
to XML schema) in the range [0, 1], a higher value
implying a higher degree of relevance. The value
reflects the relevance of the match criteria and the
way it is calculated is left implementation-dependent.
The following example query returns articles (stored
in $a) ordered by the relevance (stored in $s) of their
title with respect to ”XML”.

for $a score $s in
/articles /article [title ftcontains ”XML”]

order by $s
return $a

3 SELECT FUNCTION

The interactive paradigm of query construction is
based on selection operations which consist of re-
stricting intermediate results to the subset of elements
that satisfy the user. Selection is performed in lo-
cation path expressions using the mf:select function.
The namespace prefix mf (from my function) used in
this paper is associated to new functions.

The mf:select function selects the subset of inter-
esting elements based on some criteria. While in a fil-
ter the set of elements is selected by intention, in the
mf:select it is by extension, ie explicitly referring to
each element. This can be interesting when the spec-
ification of the criteria is too complicated (the user
may even not know how to do it) or when it is more
efficient/rapid to directly refer the desired elements.

Suppose each node is identified by a unique identi-
fier and consider it as a string of characters. The input
to mf:select is a node and a list of node identifiers.
The output is the input node if it is selected (i.e., if
its identifier belongs to the list of identifiers), or an
empty sequence of nodes (denoted by “()”). For
example, suppose the user wants references made
inside interesting articles of author “Kevin”. Here,
interesting may refer, among other things, to the

A FORMAL DEFINITION OF SELECTION OPERATIONS THAT EXTEND XQUERY WITH INTERACTIVE QUERY
CONSTRUCTION

149

article’s title, co-authors, publisher, date, size. The
user can, then, make the following query:

for $a in /articles/article[author = “Kevin”]
[mf:select(., (”a4”, ”a8”))]

return $a//references

In this query, function mf:select selects articles
identified by ”a4” and ”a8”. Symbol “.” refers to
each context node, i.e., each resulting node of the
precedent operation. Thus, mf:select takes each ar-
ticle being a context node and returns it if it corre-
sponds to some of the selected items.

Due to the interactive nature of the mf:select func-
tion, this example query is written in three steps:

1. The user specifies the for clause with the path re-
turning the list of articles of author “Kevin”:
for $a in /articles/article[author = “Kevin”]

2. Analysing the list of articles given by the path, the
user selects the interesting ones with the mf:select:
for $a in /articles/article[author = “Kevin”]

[mf:select(., (”a4”, ”a8”))]

3. The user completes the query with the return
clause:
for $a in /articles/article[author = “Kevin”]

[mf:select(., (”a4”, ”a8”))]
return $a//references

Despites mf:select receives a list of node identifiers,
the user is not obliged to know them with a good inter-
mediate results view. This view should allow the se-
lection of interesting elements by using, for instance,
a button associated with each element. The system
should, then, automatically write the element identi-
fiers in the query edition view.

XQuery allows for user defined functions, such
us mf:select. To formally define mf:select, let
IdNodeTab be a table maintained by the system that
makes each node to correspond to its own identifier:

IdNodeTab : xs:string × node()

The XQuery node test node() matches any node.
The mf:select function can, then, be defined by:

declare function mf:select($contextNode as node()?,
$selectedIds as xs:string*) as node()?

{
for $s in $selectedIds
let $n := IdNodeTab[$s]
if ($contextNode=$n)

return $contextNode else return ()
}

Here, $selectedIds is a variable containing the list
of selected node identifiers of type xs:string. Variable
$n stores, for each selected identifier, the correspond-
ing node given by table IdNodeTab. The function re-
turns the context node if it is the same as some node
in $n.

4 JUDGEREL OPERATOR

The judgeRel operator selects the subset of elements
judged relevant by the user among the ones in the re-
sulting ranked list returned by a ftcontains expression
associated to a score variable. Let the following be
an example query:

for $a score $s in
/articles/article[title ftcontains ”XML”]

order by $s
return $a/references

This query returns a list of references ranked
by the relevance corresponding to the title of the
article where they are cited. These references may
or not correspond to effective relevant titles as they
come from the ranked list of titles estimated by the
processing system. Using the judgeRel operator,
the user can judge and select relevant elements
during query construction by analysing the resulting
ranked list given by ftcontains. Consequently, the
relevance associated to relevant elements becomes
1 and to non-relevant ones becomes 0. These new
relevance values are taken into account in the final
score computation. In the previous query, suppose
title elements identified by ”t4” and ”t8” are judged
relevant and selected when the user analyses the
ranked list returned by the ftcontains clause. Then,
the query becomes:

for $a score $s in /articles/article
[title ftcontains ”XML” judgeRel (”t4”,”t8”)]

order by $s
return $a/references

Here, the list of references returned in the return
clause is composed of references coming from articles
where the title is for sure relevant (the user judge it
relevant).

As with the mf:select function, due to the inter-
active nature of the judgeRel operator, the example
query is written in three steps:

1. The user specifies the for clause and the ftcontains
expression:
for $a score $s

in /articles/article[title ftcontains ”XML”]

WEBIST 2006 - INTERNET TECHNOLOGY

150

2. The resulting ranked list of the ftcontains clause
gives the user a good starting point to search rel-
evant titles. Analysing it, the user inserts the
judgeRel operator with the found relevant ele-
ments:
for $a score $s in /articles/article

[title ftcontains ”XML” judgeRel (”t4”,”t8”)

3. Finally, the user writes the order by and the return
clauses to have the final list of references:
for $a score $s in /articles/article

[title ftcontains ”XML” judgeRel (”t4”,”t8”)]
order by $s
return $a/references

As with the mf:select function, the view showing
the ranked list should allow the user to directly choose
the relevant elements, avoiding to know their internal
node identifiers.

4.1 Syntax Definition

The judgeRel operator must be included in the
XQuery grammar extended with Full-Text language
grammar presented in (Amer-Yahia et al., 2005).
In this grammar, productions number 35, 37, 38
and 51 derive the for clause, a score variable, the
let clause and the ftcontains expression, respectively2:

[35] ForClause ::= “for” “$” VarName ...
FTScoreVar? “in” ExprSingle ...

[37] FTScoreVar ::= ”score” ”$” VarName
[38] LetClause ::=

((”let” “$” VarName ... FTScoreVar?) |
(”let” “score” “$” VarName)) “:=” ExprSingle ...

[51] FTContainsExpr ::=
RangeExpr (”ftcontains” FTSelection ...)?

In production number 51: RangeExpr derives the
expression that yields the list of nodes where the
ftcontains is applied, also called the search context
(list of context nodes); FTSelection derives Boolean
combinations of phrases to search and match options,
such as case sensitivity. In productions 35 and 38,
the score variable stores the score associated to the
expression derived by ExprSingle. This last symbol
derives any kind of XQuery expression, such as
FLWOR expressions and ftcontains expressions.
However, the expression associated to score variables
is restricted to a Boolean combination of ftcontains
expressions, involving only ”and” and ”or” operators.
Consequently, we propose to substitute ExprSingle
in productions number 35 and 38 by ScoreExpr,

2For simplicity, some optional symbols are substituted
by “...”.

yielding:

[35] ForClause ::= “for” “$” VarName ...
(FTScoreVar “in” ScoreExpr |
“in” ExprSingle) ...

[38] LetClause ::= (”let” “$” VarName ...
(FTScoreVar “:=” ScoreExpr |
“=:” ExprSingle) |
”let” “score” “$” VarName ScoreExpr) ...

Symbol ScoreExpr derives the Boolean combi-
nation of ftcontains expressions in the following
productions:

ScoreExpr ::= ScoreOrExpr
ScoreOrExpr ::= ScoreAndExpr |

ScoreAndExpr ”or” ScoreOrExpr
ScoreAndExpr ::= ScoreExprUnit |

ScoreExprUnit ”and” ScoreAndExpr
ScoreExprUnit ::= ”(” ScoreExpr ”)” |

RangeExpr (”ftcontains” FTSelection ...
JudgeRelExpr?)?

As in XQuery grammar specified in (Amer-Yahia
et al., 2005), productions reflect operator precedence.
Higher precedence operators appear more deeply
nested. Symbols ScoreOrExpr and ScoreAndExpr
derives an ”or” and an ”and” Boolean operation,
respectively. The symbol ScoreExprUnit derives a
ScoreExpr expression between parenthesis or derives
ftcontains expressions associated to score variables.
These expressions are similar to those derived by
production number 51 augmented with the optional
judgeRel operator. The symbol JudgeRelExpr derives
the judgeRel operator by the following production:

JudgeRelExpr ::= ”judgeRel” ”(” StringLiteral* ”)”

The StringLiteral symbol defined in the XQuery
grammar allows to derive a node identifier. judgeRel
is, thus, associated to the set of node identifiers judged
relevant by the user.

4.2 Semantics Definition

The judgeRel operator is included in expressions that
compute score variables. Thus, its semantic definition
is given together. However, the definition of those
expressions cannot be expressed in terms of XQuery,
because they require the presence of second-order
functions (i.e. functions that do not evaluate their
argument(s) as regular XQuery expression(s) but use
them interpreted). It is assumed in (Amer-Yahia et al.,
2005) that there is a semantic second-order function
fts:score that takes one argument (a ScoreExpr
expression) and returns the score of this expres-
sion. Given this function, the generic expression

A FORMAL DEFINITION OF SELECTION OPERATIONS THAT EXTEND XQUERY WITH INTERACTIVE QUERY
CONSTRUCTION

151

score $var as ScoreExpr is evaluated as though
it is replaced with $var:=fts:score(ScoreExpr),
where fts namespace refers to Full-Text semantics.
We propose to define the fts:score function as follows:

declare function fts:score($e as xs:string) as xs:float
{
1. if (mf:operatorScore($e) = ”or”) then
2. mf:scoreOr(fts:score(mf:operandLeftScore($e)),
3. fts:score(mf:operandRightScore($e)))
4. else if (mf:operatorScore($e) = ”and”) then
5. mf:scoreAnd(fts:score(mf:operandLeftScore($e)),
6. fts:score(mf:operandRightScore($e)))
7. else
8. let $s := mf:searchContext($e)
9. return
10. if (mf:includesJudgeRel($e)) then
11. let $j := mf:judgeRelIds($e)
12. let $i := for $a in $j return IdNodeTab[$a]
13. return mf:scoreJudgeRel($s, $i)
14. else
15. let $m := mf:matchExpr($e)
16. return mf:scoreFTContains($s, $m)
}

The argument of the function is a string corre-
sponding to the score expression derived by the Score-
Expr symbol defined in Section 4.1. The function re-
turns a float value xs:float.

Due to the recursive calls to the fts:score function
(lines 2, 3, 5, 6), the score is computed, first, for each
ftcontains expression, and then for each Boolean op-
erator of the ScoreExpr expression, respecting opera-
tor precedence, until a final result.

In line 1, the function mf:operatorScore takes the
ScoreExpr expression and gives the first operator to
evaluate: an ”and”, an ”or” or none. For that, opera-
tor precedence is taken into consideration. Depend-
ing on the operator, different actions are taken. If
the operator is an ”or” (line 1), the score is computed
by function mf:scoreOr applied to the score of both
left and right operands of the ”or” (lines 2 and 3, re-
spectively). Those operands are given by functions
mf:operandLeftScore and mf:operandRightScore, re-
spectively. If the operator is an ”and” (line 4), a sim-
ilar action is taken, being now the score computed by
the function mf:scoreAnd (lines 5 and 6).

If no operator is found, the score of a ftcontains
expression derived by symbol ScoreExprUnit (de-
fined in Section 4.1) is computed by the actions be-
tween lines 7 and 16. Variable $s stores the search
context derived by symbol RangeExpr (presented in
Section 4.1) (line 8). This is done by function
mf:searchContext. The existence of a judgeRel opera-
tor is, then, verified by function mf:includesJudgeRel
analyzing the ScoreExpr expression. If there is such
operator (line 10), the following actions are done.

Variable $j stores the node identifiers that are judged
relevant by the user (line 11). These are given by
function mf:judgeRelIds which receives the Score-
Expr expression. Another variable, $i, stores the
nodes corresponding to the identifiers judged rele-
vant by the user (line 12). These nodes are given
by table IdNodeTab (presented in Section 3). Func-
tion mf:scoreJudgeRel takes the list of search context
nodes (stored in $s) and the list of nodes judged rele-
vant (stored in $i) and gives the resulting score of the
score clause (line 13).

If there is no judgeRel operator in the ScoreExpr
expression (line 14), variable $m stores the Boolean
combinations of phrases to search and match options
derived by symbol FTSelection (presented in Sec-
tion 4.1). This is done by function mf:matchExpr
(line 15). Then, taking variable $m, function
mf:scoreFTContains computes the score associated to
the search context nodes stored in variable $s (line
16).

The new functions used inside fts:score are
not defined here more in detail. Most of them
give the result based in a simple lexical/syntactic
analysis of the ScoreExpr expression to find
specific subexpressions (mf:operatorScore,
mf:operandLeftScore, mf:operandRightScore,
mf:includesJudgeRel, mf:judgeRelIds, mf:matchExpr
and mf:ignoreOption). The function
mf:searchContext finds a sub-expression to compute a
list of corresponding nodes. The remaining functions
(mf:scoreOr, mf:scoreAnd, mf:scoreJudgeRel and
mf:scoreFTContains) are dedicated to score compu-
tation. The Full-Text language and the extensions
made here are independent of the score computation
method. So, each application can choose its own
method for ftcontains expressions and their Boolean
combinations. For example, in (Gançarski and
Henriques, 2005a), a method is proposed for the
XQuery extended with selection operations.

4.3 An Example of fts:score
Processing

As an example of executing the fts:score function,
consider the following query:

for $a score $s in
/articles/article[reference ftcontains ”XML”
and section ftcontains ”XML” judgeRel (”s1”)]

order by $s
return $a/title

In what follows, for simplicity, the definition of
fts:score given in Section 4.2 is referred by the lines
of the actions to execute. Also, element nodes are re-
ferred by their identifiers.

WEBIST 2006 - INTERNET TECHNOLOGY

152

The previous query returns titles of articles where
references are about ”XML” and sections are about
”XML application”. Resulting titles are ordered
by their score. Assume that article a1 was found
in the for clause. Assume also that it has sec-
tions s1 and s2 and references r1 and r2. When
function fts:score is executed, the Boolean opera-
tor ”and” is detected by function mf:operatorScore
in line 4. Thus, function fts:score is recursively
called for both operands of the ”and”, as indi-
cated in lines 5 and 6. Those operands are sub-
expressions of the ScoreExpr expression in the score
clause given by functions mf:operandLeftScore and
mf:operandRightScore. The corresponding results are
used as arguments to the mf:scoreAnd function to
compute the final result of the score clause for article
a1 (line 5). If there are more articles, a score is com-
puted for each one using again the function fts:score.

For both arguments of the ”and” operator, the
fts:score function is executed after line 7 because
there are no more Boolean operators. Concerning
the first argument, the search context is computed
by function mf:searchContext, returning the reference
list of nodes (“r1”, “r2”) stored in variable $s. The
function mf:includesJudgeRel verifies that there is no
judgeRel operator (line 14) and the execution con-
tinues in line 15. Here, mf:matchExpr function re-
turns the phrase to search ”XML” stored in variable
$m (there are no match options). This phrase, to-
gether with the search context, is given to function
mf:scoreFTContains to compute the resulting score of
the first argument of the ”and” operator.

Concerning the second argument, line 8 is also ex-
ecuted to compute the search context, in this case
the list of section nodes (“s1”, “s2”). This argu-
ment has a judgeRel operator. Consequently, actions
of lines 11 to 13 are executed. The user judged rel-
evant section s1. This node identifier is given by
function mf:judgeRelIds (line 11). The correspond-
ing node is, then, given by table IdNodeTab (line
12). The resulting score is, finally, given by func-
tion mf:scoreJudgeRel which takes the search context
(“s1”, “s2”) and the list (“s1”) of sections judged
relevant in this context (line 13).

5 INCREMENTAL QUERY
PROCESSING

The editing environment for the extended XQuery
must allow the user to access intermediate results of
query operations. Besides, it should be associated
with an incremental processing of query operations.
This means that, each time a new operation is inserted
or an existing one is changed, the system does not
calculate all the query operations. Instead, it first cal-

culates the intermediate results of the new or changed
operation; then, it recalculates the intermediate results
that are dependent on the previous ones and the final
result of the query.

5.1 fts:score Incremental Processing

A particular case of incremental operation evaluation
is for the fts:score function defined in Section 4.2
because it includes many operations. Suppose, for
instance, that the user is specifying a query with the
following for clause:

for $a score $s in
/articles/article[title ftcontains ”XML”]

The value of the score variable is given by
fts:score. As there is not yet a judgeRel operator, the
else condition in line 14 is executed. For a correct
access to intermediate results, the resulting list of
titles of the search context stored in variable $s (line
8) should be presented to the user, together with the
respective scores computed in line 16 by function
mf:scoreFTContains. Facing this list, if the user
judges relevant title identified by ”t1”, the query
becomes:

for $a score $s in articles/article
[title ftcontains ”XML” judgeRel (”t1”)]

The fts:score function is executed again, now ex-
ecuting lines 11 to 13 because there is the judgeRel
operator. The incremental query processing must as-
sure that all the computations executed before these
lines are not done again.

5.2 Automatic Generation of an
Incremental Processing
Prototype

We propose to build an incremental editor/processor
using LRC (Kuiper and Saraiva, 1998), as done for
IXDIRQL (Gançarski and Henriques, 2005a). LRC
is a generator of incremental environments based on
formal definition of languages. Language definition is
made through an attribute grammar (AG) which con-
sists of a context free grammar extended with a set of
attributes (and semantic rules for their evaluation) to
specify the semantics of the analyzed texts. If nec-
essary, it also allows imposing contextual conditions
to productions of the grammar, based on attribute val-
ues. Contextual conditions correspond to the static
semantics, in opposition to dynamic semantics, which
consist of computing the meaning of a text of the lan-
guage. Editors generated by LRC are syntax-directed.

A FORMAL DEFINITION OF SELECTION OPERATIONS THAT EXTEND XQUERY WITH INTERACTIVE QUERY
CONSTRUCTION

153

This helps the user to write his texts by making ex-
plicit the syntax of the language and also its static se-
mantics.

If LRC generates an environment for XQuery, we
have: (1) A text is a query. (2) Language syntax
is given by the XQuery grammar defined in (Amer-
Yahia et al., 2005). (3) Dynamic semantics cor-
responds to the evaluation of query results. It is
based on the semantic definition of the XQuery and
Full-Text, including the new productions and func-
tions defined in this paper. (4) Static semantics ver-
ifies, among other things, which elements are valid
operands for each location path operation. Elements
validation is based on the documents DTD or Schema.

To exemplify the XQuery language definition by
an AG to give to LRC, suppose that attribute aScore
stores the score associated to symbols ScoreOrExpr
and ScoreAndExpr defined in Section 4.1. Then, the
production where ScoreOrExpr is derived and the
rule to compute the value of aScore are, respectively:

ScoreOrExpr ::= ScoreAndExpr ”or” ScoreOrExpr
ScoreOrExpr$1.aScore =

mf:scoreOr(ScoreAndExpr.aScore,
ScoreOrExpr$2.aScore)

Here, the two occurrences of ScoreOrExpr are dis-
tinguished by suffixes $1 and $2, representing the po-
sition of the symbol in the production. Attribute aS-
core of symbol ScoreOrExpr$1 is denoted by Score-
OrExpr$1.aScore (the same for ScoreOrExpr$2 and
ScoreAndExpr).

The score is calculated by function mf:scoreOr in-
troduced in Section 4.2. It take as arguments at-
tributes aScore of both symbols on the right hand side
of the production.

To compute attribute values, a derivation tree of
queries is first created. Then, each node in the tree
is decorated with its attributes and attribute values
which are computed accordingly to the correspond-
ing rules. These rules define a computation order in
the attributes because they can be dependent on each
other, yielding a dependencies graph.

Each time a text (a query in our case) is changed,
the dependencies graph changes. Then, the incremen-
tal attribute evaluator computes the values of the new
attributes in the graph and the values of existing at-
tributes that depend on the new ones. The incremental
evaluation is obtained via standard function memoiza-
tion. It is out the scope of the paper the presentation
of this method, the interested reader being able to find
details in (Saraiva et al., 2000).

6 CONCLUSION AND FUTURE
WORK

This paper formally defines an extension to XQuery
with selection operations for the interactive/iterative
query construction. This helps the user, not only in
choosing the operations that yield the desired answer,
but also in restricting each intermediate result to the
subset of nodes that pleases the user. The proposed
formal definition can be used to build a processing
system for the interactive edition and processing of
XQuery. As future work, a prototype of a process-
ing system will be built using LRC, as explained in
Section 5.2. For score computations, the method pro-
posed in (Gançarski and Henriques, 2005a) can be
used. Once created, the prototype will be used by real
users to verify the correct understanding and use of
selection operations, as well as the interest of access-
ing intermediate results during query construction.

ACKNOWLEDGEMENTS

The authors are grateful to the Portuguese Fundação
para a Ciência e a Tecnologia for the financial support.

REFERENCES

Amer-Yahia, S., Botev, C., Buxton, S., Case, P., Doerre,
J., McBeath, D., Rys, M., and Shanmugasundaram, J.
(2005). XQuery 1.0 and XPath 2.0 Full-Text Working
Draft. http://www.w3.org/TR/2004/WD-xquery-full-
text-20040709/.

Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.,
Kay, M., Robie, J., and Siméon, J. (2005). XML
Path Language (XPath) 2.0 W3C Working Draft.
http//www.w3c.org/xpath20/.

Boag, S., Chamberlin, D., Fernandez, M., Florescu, D.,
Robie, J., and Siméon, J. (2005). XQuery 1.0:
An XML Query Language. W3C Working Draft.
http://www.w3.org/TR/xquery/.

Fuhr, N., Lalmas, M., Malik, S., and Szlávik, Z., editors
(2004). INEX: Initiative for the Evaluation of XML
Retrieval Workshop Proceedings. DELOS Network
of Excellence in Digital Libraries, Schloss Dagstuhl,
Germany.

Gançarski, A. and Henriques, P. (2003). IXDIRQL: an In-
teractive XML Data and Information Retrieval Query
Language. In Proceedings of the 7th ICCC/IFIP
International Conference on Electronic Publishing,
Guimarães, Portugal.

Gançarski, A. and Henriques, P. (2005a). A processing en-
vironement for the IXDIRQL XML query language.
In Proceedings of the IADIS Virtual Multi Conference
on Computer Science and Information Systems (MCC-
SIS05).

WEBIST 2006 - INTERNET TECHNOLOGY

154

Gançarski, A. and Henriques, P. (2005b). Extending
XQuery with selection operations to allow for interac-
tive construction of queries. In Proceedings of the 9th
ICCC International Conference on Electronic Pub-
lishing, Leuven, Belgium.

Kuiper, M. and Saraiva, J. (1998). LRC: A Generator for
Incremental Language-Oriented Tools. In 7th Interna-
tional Conference on Compiler Construction, volume
1383, pages 298—301. LNCS.

Saraiva, J., Swierstra, D., and Kuiper, M. (2000). Func-
tional Incremental Attribute Evaluation. In 9th In-
ternational Conference on Compiler Construction
(CC/ETAPS’00), volume 1781. LNCS.

A FORMAL DEFINITION OF SELECTION OPERATIONS THAT EXTEND XQUERY WITH INTERACTIVE QUERY
CONSTRUCTION

155

