
A LOGIC-BASED MOBILE AGENT FRAMEWORK FOR WEB
APPLICATIONS

Shinichi Motomura, Takao Kawamura, Kazunori Sugahara
Tottori University

4–101, Koyama-Minami, Tottori 680–8552, JAPAN

Keywords: Logic programming, mobile agent, field, XML-RPC.

Abstract: A new logic-based mobile agent framework named Maglog is proposed in this paper. In Maglog, a concept
called “field” is introduced. By using this concept, the following functions are realized: 1) the agent migra-
tion which is the function that enables agents to migrate between computers, 2) the inter-agent communication
which is the indirect communication with other agents through the field, 3) the adaptation which is the function
that enables agents to execute programs stored in the field. We have implemented Maglog on Java environ-
ment. The program of an agent which is a set of Prolog clauses is translated into Java source code with our
Maglog translator, and then it is compiled into Java classes with a Java compiler. In addition, through XML-
RPC interface for Maglog which we have also implemented, other systems can easily utilize Maglog. The
effectiveness of Maglog is confirmed through the demonstration of an application: the distributed e-Lerning
system.

1 INTRODUCTION

Techniques for developing Web applications show an
advance recently and dynamic contents provided by
programs can be inserted in them. These programs
have an inclination to become complicated and some
of them are having communication facility with an-
other computers. Service-oriented architecture (SOA)
attracts attention as a key technology for this require-
ment. SOA is an architectural style whose goal is
to achieve loose coupling among interacting software
agents.

On the other hand, mobile agent systems are dis-
cussed for developing distributed applications. It is
meaningful to develop Web applications based on mo-
bile agent systems. For realization of the mobile agent
systems, the following functions are required to be
implemented.
1. Agents should be able to migrate from one com-

puter to another with data and programs.

2. Agents should be able to communicate with other
agents.

3. Agents should be able to adapt themselves to en-
vironments such as computers they belong to. The
adaptation is accomplished by taking data and pro-
grams of the environments into themselves.

Considering the above points, a concept of the
“field” is proposed to realize the required functions
simply.

Agents communicate with other agents indirectly
through the field and adapt themselves to the environ-
ment by importing data and programs stored in the
field. The functions realized by the field are summa-
rized as follows.

1. Migration: Function that enables agents to migrate
between computers.

2. Inter-agent communication: Indirect communica-
tion with other agents through the field. That is, an
agent is able to import data or programs that other
agents store in the field.

3. Adaptation: Function that enables agents to exe-
cute programs stored in the field.

For the implementation of the mobile agent system
with the concept of the field, programs that describe
behavior of the agent are written in Prolog language in
our system. Since Prolog is logic programming lan-
guage and has powerful pattern matching mechanism,
agents are able to search data and programs stored in
fields easily. This powerful pattern matching mech-
anism of Prolog is called “unification”. Unifications
between computers are realized to construct mobile

121Motomura S., Kawamura T. and Sugahara K. (2006).
A LOGIC-BASED MOBILE AGENT FRAMEWORK FOR WEB APPLICATIONS.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 121-126
DOI: 10.5220/0001251101210126
Copyright c© SciTePress

Agent

Field

Agent Server

Host

NetworkMigration

Figure 1: Overview of a mobile agent system on Maglog.

agent system.
In this paper, the mobile agent framework named

Maglog on Java environment is proposed to imple-
ment the above-mentioned functions. Java is adapted
because of its huge class libraries to build network
applications. It also should be noted that Java’s goal
of “write once, run anywhere” is desirable for mobile
agent systems.

There are several mobile agent frameworks
realized as a set of class libraries for Java
such as Aglets(Lange and Oshima, 1998), Mo-
bileSpaces(Satoh, 2000), and Bee-gent(Kawamura
et al., 2000). The combinations of one of them and
a Prolog interpreter written in Java such as NetPro-
log(de Carvalho et al., 1999) and Jinni(Tarau, 1999)
have some similarity to Maglog. The main difference
between the combinations and Maglog is the class
of mobility. Their mobilities are weak mobility, in
which only their clause databases are migrated. On
Maglog, all of the execution state including execution
stack can be migrated. That is to say, the mobility of
Maglog is strong mobility so that agents on Maglog
can backtrack and unify variables across the network.
That makes programs on Maglog simple and under-
standable.

2 OVERVIEW OF MAGLOG

Figure 1 shows an overview of a mobile agent system
on Maglog executing an example. In the figure, two
computers (hereafter referred as hosts) are connected
to a network and agent servers are running on each of
them to activate agents and to provide fields for them.

The rest of this section describes three basic com-
ponents of Maglog, that is, agent, agent server and
field.

2.1 Agent

An agent has the following functions.

1. Execution of a program that describes behavior of
the agent,

2. Execution of procedures stored in a field where the
agent currently locates,

3. Communication with other agents through a field,

4. Creation of agents and fields,

5. Migration to another host in a network,

6. Cloning of itself.

An agent of Maglog executes its program sequen-
tially. The class of agent migration is strong migration
which involves the transparent migration of agent’s
execution state as well as its program and data. In
order to realize unifications between computers, Ma-
glog supports strong mobility.

For creation of a child agent, a parent agent exe-
cutes the following built-in predicate.

create(AgentID,File,Goal)

In this predicate, File corresponds to the filename
in which the behavior of the agent is described. If the
execution of the predicate is successful, an agent is
created and its globally unique identifier AgentID is
returned. The created agent immediately executes the
goal specified by the argument Goal and disappears
when the execution is accomplished.

An agent can obtain its identifier by executing the
following built-in predicate.

get id(Agent)

An agent can create its clone agent by executing
the following built-in predicate. If CloneAgentID
is the empty set, it is original agent. In the case of the
cloned agent, CloneAgentID is the cloned agent
identifier.

fork(CloneAgentID)

Each agent contains Prolog program and its inter-
preter. Initial behavior of the agent is described in the
Prolog program given by File in the predicate of its
creation. Since Prolog language treats programs and
data identically, the agent behavior might be modified
during execution.

Figure 2 shows an example of an agent be-
havior. agentA is assumed to have a clause
in((clause(p(x),Y),assert(p(X):-Y)),
fieldA) in its program. Behavior of agentA is
described as follows,

1. agentA enters fieldA.

2. agentA executes a predicate clause(p(X),Y)
and retrieves a clause whose head matches p(X)
from fieldA as a result. Here Y is bounded to
q(X),r(X) which is the body of the clause.

3. agentA executes a predicate
assert(p(X):-Y), and then a clause
p(X):-q(X),r(X) is added to its own
program.

WEBIST 2006 - INTERNET TECHNOLOGY

122

That is to say, an agent is able to import clauses from
fields so that it can change its behavior dynamically.

The built-in predicate in/2 will be described in
Section 3.1. Here the notation Name/Arity is the
predicate indicator (hereafter referred as PredSpec)
which refers one or several predicates. Name and
Arity correspond to the name of predicate and its
number of argument respectively.

agentA

fieldA

p(X) :- q(X), r(X).

in((clause(p(X), Y), assert(p(X):-Y)), fieldA).

in((clause(p(X),Y),
 assert(p(X):-Y)),fieldA).

in((clause(p(X),Y),
 assert(p(X):-Y)),fieldA).

p(X):-q(X),r(Y).

Figure 2: Dynamic change of program that describes be-
havior of the agent by asserting a new clause.

2.2 AgentServer

An agent server is a runtime environment for agents
and it provides required functions for agents. The
above-mentioned predicates, such as create/3 and
get id/1, are the examples of the functions.

An agent server creates and deletes agents. An
agent server assigns AgentID to the created agent.
AgentID consists of host’s IP address and the time
the agent created, so that it becomes globally unique.
In addition, an agent server also provides an agent mi-
gration function. When an agent migrates from hostA
to hostB, the agent server on hostA suspends the
agent’s execution and transports the agent to hostB.
And after that the agent server on hostB resumes the
execution of the agent.

An agent server also manages fields and provides
functions for an agent to utilize them.

2.3 Field

A field is an object managed by an agent server to
hold Prolog clauses, and it is created when an agent
executes the following built-in predicate.

fcreate(Field)

If Field is an unbound variable, a field which has a
unique identifier is created, and its identifier is bound

to the argument Field. If Field is a symbol, the
action of this predicate depends on whether the field
whose identifier is the symbol exists or not. If it does
not exist, a field whose identifier is the symbol is cre-
ated, otherwise nothing is done.

Important features of Maglog realized with the con-
cept of the field will be described in the following sec-
tion.

3 FEATURES REALIZED WITH
FIELD

3.1 Predicate Library

An agent enters a field and executes a goal by the fol-
lowing built-in predicate.

in(Goal, Field)

The agent exits from Field automatically whether
the execution succeeds or not. This built-in predicate
is re-executable, i.e. each time it is executed, it at-
tempts to enter the field and executes the next clause
that matches with Goal. When there is no more
clause to execute, this predicate fails.

When an agent enters into a field, it imports proce-
dures of the field and combines them with procedures
of itself. Therefore, an agent needs not hold all of the
program by itself to solve a problem, but rather enters
the appropriate fields which provide necessary proce-
dures. An agent can change its behavior dynamically
according to the field which it entered. In this way, an
agent can adapt its behavior to the environments.

3.2 Inter-agent Communication

Agents entering the same field can be considered of
forming a group. The procedures within the field are
shared by the agents. Moreover, by adding/removing
procedures within the field, agents can influence the
behavior of other agents.

Updating procedures in a field can be done by the
following built-in predicates.

fasserta(Clause, Field)
fassertz(Clause, Field)
fretract(Clause, Field)

The first argument Clause of these predicates is a
clause to be added or removed from the field speci-
fied by the second argument Field. fasserta/2
inserts the clause in front of all the other clauses with
the same functor and arity. Functor and arity mean
the name of predicate and its number of the argument
respectively. On the other hand, fassertz/2 adds
the clause after all the other clauses with the same
functor and arity. fretract/2 removes the next

A LOGIC-BASED MOBILE AGENT FRAMEWORK FOR WEB APPLICATIONS

123

unifiable clause that matches with the argument from
the field. This built-in predicate is re-executable, i.e.
each time it is executed it attempts to remove the next
clause that matches with its argument. If there is no
more clause to remove, then this predicate fails.

By using these predicates, an agent can communi-
cate with other agents not only asynchronously but
also synchronously. An agent has two modes for exe-
cution of procedures stored in a field. In the fail mode,
the execution fails when an agent attempts to execute
or to retract a non-existent clause in a field. In the
block mode, an agent that attempts to execute or to
retract a non-existent clause in a field is blocked until
another agent adds the target clause to the field. For
agents in the block mode, a field can be used as a syn-
chronous communication mechanism such as a tuple
space in Linda model(Carriero and Gelernter, 1989)

Figure 3 shows an example of the synchronous
inter-agent communication.

1. PARENT creates fieldA.

2. PARENT creates CHILD and makes it execute
main(’fieldA’). PARENT attempts to re-
move the clause that matches ans(ID,X) from
fieldA and it is blocked until a unifiable clause
is added by CHILD.

3. CHILD executes calculate(X) and the re-
sult is bound to X. The identifier of CHILD is
bound to ID by the execution of the built-in pred-
icate get id(ID). CHILD adds ans(ID,X) to
fieldA.

4. PARENT wakes up and removes ans(ID,X)
from fieldA.

2.create

1.create

3.write

4.read

fieldA

main(Field) :-
 calculate(X),
 get_id(ID),
 fassert(ans(ID, X), Field).
calculate(X) :- ...

main :-
 fcreate(’fieldA’),
 create(ID, ’CHILD’,
 main(’fieldA’)),
 fretract(ans(ID, X), ’fieldA’).

PARENT

CHILD

ans(ID, X).

Figure 3: Agents can communicate synchronously through
a field.

3.3 Agent Migration

Each agent server has globally unique identifier that is
composed of the server IP address and defined name.

If the second argument of the predicates in/2,
fasserta/2, fassertz/2, and fretract/2
is specified in the form of Field@ServerID, the
agent executing this predicate migrates to the host in
which the agent server specified by ServerID runs,
and enters Field. The agent returns to the host lo-
cated before the migration automatically as it exits the
field.

Figure 4 shows that the agent matches f(X) with
clauses in two fields in hostA and hostB. As shown in
Fig. 4, this attempt proceeds through performing the
following steps and succeeds.

1. An agent enters fieldA in hostA and executes the
goal f(X). Consequently X is bound to 3, because
f(3) is the first clause that matches with f(X).

2. The agent migrates to hostB and enters fieldB.

3. The agent executes the goal f(3). This attempt
fails since there is no clause that matches with
f(3).

4. The agent returns to hostA and enters fieldA auto-
matically.

5. The agent attempts to execute the next clause that
matches with f(X). X is therefore bound to 5.

6. The agent migrates to hostB and enters fieldB,
again.

7. The agent executes the goal f(5). This attempt
succeeds this time since there is the clause f(5)
in fieldB.

f(3).
f(5).

fieldA fieldB

hostB

f(5).
f(6).

X=5?
yes

backtracking

X=3

X=3?
no1

2 6

3

4

7

hostA

AS1 AS2

in(f(X), fieldA@AS1),
in(f(X), fieldB@AS2).

X=5

5

Figure 4: Backtracking and unification between two hosts.

WEBIST 2006 - INTERNET TECHNOLOGY

124

4 IMPLEMENTATION

We have implemented Maglog on Java environment
through extending PrologCafé(Banbara and Tamura,
1999) which is a Prolog-to-Java source-to-source
translator system.

The program of an agent which is a set of Prolog
clauses is translated into Java source code with our
Maglog translator, and then it is compiled into Java
classes with a Java compiler. As mentioned in Sec-
tion 2.1, an agent can import Prolog clauses from a
field at run time. These clauses are interpreted by the
Prolog interpreter included in an agent instead of be-
ing compiled into Java classes. An agent runs as a
thread in a process named agent server.

Agent servers have an XML-RPC(Winer, 1998) in-
terface which is accessible from applications written
in any other language with support for XML-RPC.

The following operations from other systems are
available through XML-RPC.

1. create and kill agents,

2. create and delete fields,

3. assert clauses into fields and retract clauses from
fields,

4. get a list of names of fields,

5. get a list of IDs of agents currently exist.

Implementation of Maglog features realized with
the concept of the field is described in the rest of this
section.

4.1 Predicate Library

As shown in Fig. 5, a field is implemented as a
Java Hashtable, i.e. procedures in a field are put in
a hashtable; a key is PredSpec of a procedure, and the
value is a set of objects representing the procedure
whose predicate indicator is PredSpec.

Figure 5: Structure of a field.

When an agent executes a predicate in in/2, it
searches the predicate by specifying PredSpec from
the hashtables of fields it currently enters and inter-
prets the found value.

In order to improve execution rate, the concept of a
static field is introduced into Maglog. It stores read-
only procedures compiled into Java classes before the
agent server to which the field belongs starts.

A static field is implemented as a Java Class Loader
which receives PredSpec and loads the bytecodes of
the class for the corresponding procedure.

According to the experiments, an agent can execute
a clause in a static field about 250 times faster than in
an ordinary field.

4.2 Inter-agent Communication

As mentioned in Section 3.2, an agent which attempts
to execute or to retract a non-existent clause in a
field simply fails in the fail mode, while the agent in
the block mode is blocked by calling the Java wait
method.

When another agent adds one clause to a field, the
blocked agents in the field are waked up by the Java
notifyAll method and try to execute their goal.
The agents whose target clause is added restart while
the rest of the wake-up agents are blocked again.

4.3 Agent Migration

The migration of an agent is realized by using a Re-
mote Procedure Call (RPC) as the following:

1. The source agent server encodes the agent as the
argument of a RPC.

2. The source agent server gets serverID of the
destination agent server from the second argu-
ment of the predicates in/2, fasserta/2,
fassertz/2, and fretract/2.

3. The source agent server sends a RPC re-
quest to the destination agent for invocation of
receiveAgent method.

4. The destination agent server decodes the argument
of the RPC and restarts the decoded agent.

The mechanism for RPC is implemented using XML-
RPC.

5 APPLICATIONS

In this section, one of the applications is demonstrated
to confirm the effectiveness of Maglog.

5.1 Distributed e-Learning System

A distributed e-Learning system for asynchronous
Web-based training has been built using Maglog. This
system allows a student to study by himself in his

A LOGIC-BASED MOBILE AGENT FRAMEWORK FOR WEB APPLICATIONS

125

own time and schedule, without live interaction of a
teacher.

Our distributed e-Learning system consists of ex-
ercise agents and user interface programs. Each
exercise agent includes not only exercise data but
teacher’s functions to mark user’s answers, to tell the
correct answers and to show some extra information.
Every computer of students receives some number of
exercise agents from another computer when it joins
the system and takes the responsibility of sending ap-
propriate exercise agents to requesting computers.

The user interface program is developed as a plug-
in program of Firefox web browser. XML-RPC is
used for communication between the plug-in program
and an agent server.

Figure 6 shows one part of key codes in this appli-
cation. This procedure is a part of an exercise agent.
This is the procedure to provide an exercise for a
remote user. In executing this procedure, following
steps are performed.

1. An agent retrieves a clause request/2 which
other agent added from fieldA. Here, Host and
Field are host name and field name of student’s
computer.

2. The agent migrates to Host and enters Field,
and it provides an exercise for student. When the
student finishes the exercise, the agent returns to
the host it belongs automatically.

3. The agent recursively executes this procedure.

Figure 6: This is the procedure to provide an exercise for a
remote user.

In this procedure, two types of field, fieldA and
Field are used. fieldA in line 1 of Fig.6 is used as
a medium of asynchronous communication between
agents, and Field in line 2 is used as an abstraction
of migration.

6 CONCLUSION

The new framework named Maglog for mobile agent
systems was designed and developed on Java environ-
ment. In Maglog, a concept called “field” is intro-
duced. By using this concept, migration, inter-agent
communication and adaptation functions are realized.

The effectiveness of the proposed framework Ma-
glog is confirmed through the demonstration of an ap-
plication: the distributed e-Learning system.

Regarding the issue of error handling, Maglog cur-
rently handles only one type of error which occurs
when an agent intends to migrate to a host. Handlings
of errors after or during migration are remained as fu-
ture works. Security issues are indispensable prob-
lems for distributed applications using mobile agents.
In Maglog, programmable security functions are not
provided sufficiently because security issues are vast.
Those functions are due to be added in future works.
In addition to make programs more practical, it is nec-
essary to provide a program developing environment,
such as a debugging tools and a testing tools.

REFERENCES

Banbara, M. and Tamura, N. (1999). Translating a linear
logic programming language into Java. In M.Carro,
I.Dutra, et al., editors, Proceedings of the ICLP’99
Workshop on Parallelism and Implementation Tech-
nology for (Constraint) Logic Programming Lan-
guages, pages 19–39.

Carriero, N. and Gelernter, D. (1989). Linda in context.
Communications of the ACM, 32(4):444–458.

de Carvalho, C. L., Pereira, E. C., and da Silva Julia, R. M.
(1999). Netprolog: A logic programming system for
the java virtual machine. In Proceedings of the 1st
International Conference on Enterprise Information
Systems, pages 591–598. Setubal, Portugal.

Kawamura, T., Hasegawa, T., Ohsuga, A., and Honiden,
S. (2000). Bee-gent: Bonding and encapsulation en-
hancement agent framework for development of dis-
tributed systems. Systems and Computers in Japan,
31(13):42–56. John Wiley & Sons, Inc.

Lange, D. B. and Oshima, M. (1998). Programming and
Deploying Java Mobile Agents with Aglets. Addison
Wesley.

Satoh, I. (2000). Mobilespaces: A framework for building
adaptive distributed applications using a hierarchical
mobile agent system. In Proceedings of IEEE Interna-
tional Conference on Distributed Computing Systems,
pages 161–168. IEEE Press.

Tarau, P. (1999). Inference and computation mobility with
jinni. In Apt, K., Marek, V., and Truszczynski, M.,
editors, The Logic Programming Paradigm: a 25 Year
Perspective, pages 33–48. Springer.

Winer, D. (1998). Xml-rpc specification.
http://xmlrcp.com/spec.

WEBIST 2006 - INTERNET TECHNOLOGY

126

