
WEB USER INTERACTION
Comparison of Declarative Approaches

Mikko Pohja,∗ Mikko Honkala,∗ Miemo Penttinen,† Petri Vuorimaa∗ and Panu Ervamaa†
∗Telecommunications Software and Multimedia Laboratory, Helsinki University of Tehcnology

P.O. Box 5400, FI-02015 HUT, Finland

†Frantic Media
Arabianranta 6, FI-00560 Helsinki, Finland

Keywords: Web User Interface, XForms, XUL.

Abstract: The World Wide Web is evolving from a platform for information access into a platform for interactive ser-
vices. Several applications are already used through Internet and Web browsers. User interface of such an
application is defined by HTML. However, HTML has its deficiencies when used as a general UI description
language. Several parties have addressed this problem by defining specific UI description languages. Thus, for
instance, a web browser could be used as a user interface for any application. We have revised the requirements
for a UI description language from literature and evaluated two XML-based UI description formats against the
requirements through use cases.

1 INTRODUCTION

Commerce and communication tasks, such as using
e-mail, are common today in the World Wide Web
(WWW). Also, there is a trend to realize higher in-
teraction tasks, such as information authoring, over
the WWW. Therefore, WWW is transforming from
a platform for information access into a platform for
interactive services (Hostetter et al., 1997). Tradi-
tionally, application User Interfaces (UI) were pro-
grammed as stand-alone clients using procedural pro-
gramming languages, such as Java or C++ and com-
ponent toolkits. WWW changed that; any browser
can be used as the client when accessing applications
in the Web, and the application UI is written in plat-
form independent HTML.

Unfortunately, some of the technologies used in the
Web are outdated and, in fact, were not originally de-
signed for the complex use case scenarios of today’s
applications. For instance, HTML forms are used as
the main interaction definition, even though they were
not designed to describe complex, higher-interaction
UIs. Their usage (along with client-side scripting) has
led to bad usability, maintainability, re-use, and ac-
cessibility. Therefore, a new paradigm for the Web is
needed: the declarative UI. Declarative UI languages
have usually a higher semantic level while traditional
programming languages have more expressive power.
Declarative languages, in addition to being modality

and device independent, are more easily processed by
accessibility and other tools, therefore fixing many of
the problems found in the approaches with lower se-
mantical level (e.g., HTML forms and scripting). For
practical reasons, it is essential that a balance between
semantical level and expressive power is found.

In this paper, we study two UI description lan-
guages and how they suit to Web applications. The
languages are XForms (Dubinko et al., 2003) and
XUL (Hyatt, 2001). They are selected, because they
can be used to build cross platform applications and
have already several implementations. The research
work has been conducted by doing a literature study
of related work, defining requirements for a UI de-
scription language, and defining and implementing
use cases with selected languages. The results are
comprised of evaluation of the languages against the
requirements and heuristics analysis of the use case
implementations.

The main contributions of this paper are the follow-
ing:

• Based on literature, a set of requirements for a web
user interface definition language is derived.

• Three descriptive use cases are designed and im-
plemented in two different languages, XForms and
XUL.

• XForms and XUL are evaluated based on the de-
rived requirements and the use cases.

295Pohja M., Honkala M., Penttinen M., Vuorimaa P. and Ervamaa P. (2006).
WEB USER INTERACTION - Comparison of Declarative Approaches.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 295-302
DOI: 10.5220/0001238802950302
Copyright c© SciTePress



• We propose an extension to XForms language for
navigating and editing recursive structures.

The paper is organized as follows. The next Section
gives background to the topic and reviews the related
work. Section 3 discusses the research scope and the
problem. In addition, it defines use cases. Results of
the work are presented in Section 4. Finally, Section
5 concludes the paper.

2 BACKGROUND

2.1 Related UI Languages

The focus of this paper is UI languages, whose cross-
platform implementations are readily available. Be-
cause of this, some research-oriented UI languages,
such as XIML (Puerta and Eisenstein, 2002) and
UIML (Abrams et al., 1999), are outside of the scope.
In addition to the UI languages reviewed in this pa-
per (XForms and XUL), there exists a whole array
of XML-based UI definition languages, whose imple-
mentations can be verified. Those are reviewed in
related research (Souchon and Vanderdonckt, 2003;
Trewin et al., 2004). In addition, there exists numer-
ous XML-based languages for the desktop GUI, in-
cluding Glade1, and Microsoft XAML (Rector, 2003),
while InfoPath addresses office applications (Hoff-
man, 2003).

2.2 XForms

XForms 1.0 Recommendation (Dubinko et al., 2003)
is the next-generation Web forms language, designed
by the W3C. It solves some of the problems found
in the HTML forms by separating the purpose from
the presentation and using declarative markup to de-
scribe the most common operations in form-based ap-
plications (Cardone et al., 2005). It can use any XML
grammar to describe the content of the form (the in-
stance data). Thus, it also enables to create generic
editors for different XML grammars with XForms. It
is possible to create complex forms with XForms us-
ing declarative markup, without resorting to scripting.

XForms is an abstract user interface description
language. One of its design goals was not to mandate
a certain modality. Therefore, it can be suited to de-
scribe user interfaces, which are realized in different
modalities, such as the GUI and Speech.

Several XML vocabularies have been specified in
W3C. Typically, an XML language is targeted for a
certain purpose (e.g., XHTML for content structuring
or SVG for 2D graphics). Moreover, XML languages

1Glade. Available at: http://glade.gnome.org/

can be combined. An XML document, which consists
of two or more XML languages, is called compound
document. A compound document can specify user
interface of an application. In this paper, XForms is
combined with XHTML+CSS level 2 to realize the
use cases. XForms 1.0 includes other W3C specifica-
tions directly: XML Events, XPath 1.0, XML Schema
Datatypes, and XML 1.0.

2.3 XUL

Mozilla has developed a UI description language
called XML User Interface Language (XUL) (Hyatt,
2001). The markup consists of widget elements like
buttons, menus, etc. XUL applications are based on
several W3C standards. Those include HTML 4.0;
Cascading Style Sheets (CSS) 1 and 2; Document Ob-
ject Model (DOM) Levels 1 and 2; JavaScript 1.5,
including ECMA-262 Edition 3 (ECMAscript); and
XML 1.0.

The goal of XUL is to build cross platform ap-
plications. The applications can be ported to all of
the operating systems on which Mozilla runs (e.g.,
Linux, Windows, Windows CE, and Mac OS X). The
layout and appearance of XUL applications are sepa-
rated from the application definition and logic. More-
over, the application can be localized for different lan-
guages and regions independently of its logic or pre-
sentation.

XUL can be complemented by few technologies in-
troduced by Mozilla. The eXtensible Bindings Lan-
guage (XBL) is a markup language that defines new
elements for XUL widgets. Overlays are XUL files
used to describe extra content for the UI. XPCOM
and XPConnect enable the integration of external li-
braries with XUL applications and, finally, XPInstall
provides a way to package XUL application compo-
nents with an install script. (Bojanic, 2003)

2.4 Requirements

Souchon and Vanderdonckt have reviewed XML-
compliant user interface description languages in
(Souchon and Vanderdonckt, 2003). The paper com-
pares the general properties and the UI description ca-
pacities of the languages. XIML is found out most
expressive language whereas UIML has best software
support. XUL is found to be less expressive. XForms
has not been evaluated in the paper.

Four XML languages for abstract user interface
representation are examined in (Trewin et al., 2004).
The languages are UIML, XIML, XForms, and AIAP.
The paper defines requirements for the representa-
tions. Those include high level requirements like ap-
plicability to any target and any delivery context, per-
sonalization, flexibility, extensibility, and simplicity.

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

296



In addition, they have defined technical requirements,
which consist of separating purpose from presenta-
tion, characteristics of interface elements and func-
tions, flexibility in inclusion of alternate resources,
compatibility with concrete user interfaces, support
for different interaction styles, and support for remote
control. XForms and AIAP fulfill best the require-
ments. Especially, in terms of separation of data from
presentation and flexibility in resource substitution.

Requirements for a generic user interface descrip-
tion format are discussed in (Simon et al., 2004).
They also present an implementation of an integrated
description of user interfaces for both graphical and
voice modality. The proposed requirements are de-
vice independence, modality independence, and cus-
tomizability concerning layout without restricting de-
vice independence.

3 RESEARCH SCOPE AND
METHODS

The research area of the paper is Web user interaction
models.

Because of the huge variance in interaction scenar-
ios and technologies (ranging from natural language
speech interaction to 3D interaction with immersive
displays), the research is tightly scoped. The scope
for the research is desktop-style user interaction in
WWW environment.

The research steps are enumerated in the following
list. The scoping, which is defined above, applies to
all of the research steps.

1. The Web application use cases are selected.

2. Requirements of a UI description format from lit-
erature are collected.

3. XForms and XUL are evaluated against the require-
ments.

4. The use case implementations are evaluated
through heuristic analysis (Nielsen, 1994).

3.1 Use Cases

The selected use cases are from an existing content
management system, which is used to manage the
content of an Internet magazine. The application is
used through Web and is originally implemented with
HTML and CSS. We selected three user interfaces
from the system, which are difficult to realize prop-
erly with HTML. First, the wireframe models of the
use cases were drawn. The models were designed
using general usability guidelines without taking ac-
count possible restrictions of the languages. Users are

Figure 1: Wireframe model of the document editor.

mainly journalists, who have experience in using typ-
ical word processing program and are familiar with
concepts like copy-paste.

The design of the user interfaces in this paper is
based on usability best practices (Cooper, 1995) and
user interface design patterns (Tidwell, 2005) and
(Laakso, 2003). The usability of the interfaces has
been validated by usage simulation (Preece et al.,
2002) and heuristic analysis (Nielsen, 1994).

Document Editor. The purpose of this user interface
is to create and modify simple structural documents,
which could, e.g., be displayed as a web page. The
type of data in the document is limited to text, pre-
existing images and pre-existing tables (created, e.g.,
by the Table Editor user interface). Wireframe model
of the Document Editor is shown in Figure 1.

The structure of the document can be modified
by marking text blocks with different existing styles
(e.g., heading 1, heading 2, text paragraph, notice,
etc.). The marking is targeted to a selected text box.
For the sake of simplicity, all styles are block-level
styles, i.e., they are always attached to the whole text
block.

To keep the focus on the structure of the document
in the interface, the images and tables cannot be mod-
ified in the document editor interface. A possible use
case for the document editor is: a journalist creates a
review of a laptop and completes it with images of the
laptop and a table about its features.

Table Editor. The purpose of this user interface is to
create and modify simple tabular data, which can be

WEB USER INTERACTION - Comparison of Declarative Approaches

297



Figure 2: Wireframe model of the table editor. (1) Active
column is color coded to match the coloring of the buttons
for manipulating the column. (2) Active row is color coded
to match the coloring of the buttons for manipulating the
row.

displayed, e.g., in a web page. The type of data in the
table is limited to characters and numbers. Wireframe
model of the Table Editor is shown in Figure 2.

The user can also edit the structure of the tabular
data by marking some of the columns or headers as
headings and by entering a header text for the whole
table. The number of rows and columns in the table is
user-editable.

For the sake of simplicity, table cells are not al-
lowed to span multiple columns or rows. Possible use
cases for the table editor are: the user wants to create a
table documenting the average monthly temperatures
in four different locations during one year; or the user
wants to create a table presenting the costs estimate
for purchasing a new computer setup.

Tree Editor. The purpose of this user interface is to
create and modify a tree structure where the nodes of
the tree have multiple editable attributes. In this pa-
per, we use the nodes to represent web site areas for a
site of a magazine. However, the nodes and attributes
could represent anything. The tree Editor is depicted
in Figure 3.

The user is able to create new nodes, edit the at-
tributes, move nodes around in the tree and delete
nodes. A possible use case for the tree editor is: man-
aging the structure of an online magazine.

4 RESULTS

The results of the paper are discussed in this Section.
We analyzed how the languages fulfill the require-
ments of a UI description language presented in the
literature. In addition, we introduce the use case im-
plementations and the heuristic analysis we did for
them. Finally, model differences of the languages are
explained.

Figure 3: Wireframe model of the tree editor. (1) Creates a
new area as a child to the currently selected node. Data for
the newly created area is entered from the form in the right.
(2) Moving nodes in the tree is done by drag-and-dropping
them. (3) Opens a calendar widget for selecting the date.
(4) Opens the URL in a browser.

4.1 Requirements

The languages were evaluated against the require-
ments, and the results are shown in Tables 1-3. The
general requirements in Table 1 are from (Simon
et al., 2004). They are device and modality indepen-
dence and customizability. Both languages meet the
requirements. XForms has abstract UI description.
Thus, the concrete UI is totally device independent.
Also, the UI description of XUL does not restrict the
selection of devices. XForms uses data types, which
makes it easy to utilize different modalities. For in-
stance in voice modality, grammar based recognition
can be made more specific. XUL widgets can also be
transferred to other modalities, but lack of data types
makes it more difficult. Both XForms and XUL pro-
vide control over layout and graphical appearance. In
XUL, the customization is easier because of specific
UI elements.

The requirements in Table 2 are represented in
(Trewin et al., 2004). In the paper, XForms is eval-
uated against the requirements among three other lan-
guages. XForms, along with Alternative Interface Ac-
cess Protocol (AIAP), was found best suited to meet
the requirements defined in the paper. Especially, re-
garding to separation of data from presentation and
flexibility in resource substitution.

The interface elements are not separated from their
presentation in XUL. In XForms, the data model can
be accessed through separate binding layer. In both
languages, the interface elements can have dependen-
cies. However, in XUL, the dependencies have to be
realized through scripts. XForms is also easier to use
in any target since its UI description is more abstract.
XForms supports data types, whereas XUL does not.

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

298



Table 1: The requirements of the UI description language
(Simon et al., 2004).

Requirement XForms XUL

General requirements
Device Independence Good Possible
Modality Independence Good Possible
Customizability Possible Good

Table 2: The requirements for universal interaction (Trewin
et al., 2004).

Requirement XForms XUL

Separation of Interface Elements from Pres.
Separation of Data/Pres. Good Possible

Interface Elements
Dependencies Good Possible
Any Target Good Possible
Data Types Good No

Presentation Related Information
Logical Groupings Good Good
Labels & Help Text Good Possible
Presentation Replacement Possible Possible

Run Time and Remote Control
Local Computation Good Possible
Serialization Good Possible

The presentation can be grouped well with both
languages. XForms provides explicit way to include
labels and help texts, while in XUL they can be real-
ized with normal text. Providing an alternative pre-
sentation is possible with both formats. Local com-
putations (e.g., data validation) and data serialization
are easier to provide with XForms, which has current
state always available. They must be realized through
scripts in XUL. These differences are discussed in
more detail in Subsection 4.6.

The requirements found from the literature were
extended with a more detailed typical interaction pat-
terns requirement set from the application scenario
(c.f. Table 3). Repeating structures (repeat) and
paging and dialogs (switch, message) are natively
supported by XForms, while in XUL they require
some script programming. Nested constructs are sup-
ported by the XUL tree control as well as our pro-
posed XForms tree module. Copy-paste, undo-redo,
and drag-and-drop can be programmed with scripts in
XUL, while in XForms only copy-paste is possible to
implement. As a summary, XUL handles the typical
interaction patterns better, since it has more desktop-
oriented focus.

Table 3: The proposed extensions to requirements.

Requirement XForms XUL

Typical Interaction Patterns
Paging & Dialogs Good Good
Repeating constructs Good Possible
Nested constructs Good(∗) Good
Copy-paste Possible Possible
Undo-redo No Possible
Drag-and-drop No Possible

(∗) using the proposed tree extension.

4.2 Use Case Implementations in
XForms

The XForms implementations of the use cases were
done using the XForms 1.1 Working Draft (Boyer
et al., 2004) (W3C Work In Progress), which is im-
plemented in the X-Smiles browser (Vuorimaa et al.,
2002). XForms 1.1 has several features, which make
it possible to minimize scripting. The main features
from XForms 1.1, which were utilized, are duplicate
and destroy actions, and mediatype-aware output ren-
dering. Otherwise these features would have required
the use of scripting.

XForms language was extended with a tree mod-
ule, since in XForms 1.1, there is no way of select-
ing nodes from a recursive structure. We also imple-
mented the tree module, as a proof of concept, in the
X-Smiles XForms implementation.

The user interface state is completely contained in
the XForms model, and can therefore automatically
be serialized and submitted to a server without any
additional scripting.

Document Editor. The document editor relies
on XForms repeat, and dynamic UI bindings. It
requires few XForms 1.1. features, which it uti-
lizes heavily, namely destroy and duplicate, and out-
put@mediatype. This UI has no scripting.

Tree Editor. The tree editor (cf. Fig. 4) uses the
proposed XForms Tree extension. All other dynamic
features are done using XForms UI bindings. This UI
has no scripting.

Table Editor. This table editor UI is written in
XForms 1.1, but it has a small script to insert, delete
and move columns. This could be avoided if XForms
had repeating and conditional action containers (such
as for and if ).

WEB USER INTERACTION - Comparison of Declarative Approaches

299



Figure 4: XForms Tree Editor.

4.3 Proposed XForms Extension:
Tree Module

We have extended the XForms 1.0 specification with
a tree module xforms:tree and a corresponding XPath
extension function nodeindex.

This form control displays a tree, which corre-
sponds to the instance tree rooted at the bound node.
It must have an id attribute. The item element’s label
(executed with the context of corresponding node) is
used to determine the label of each node.

The XPath function nodeindex takes an idref of
an tree widget, as an argument and returns the in-
stance node, which corresponds to the currently se-
lected node in a tree widget.

A code example of the tree element’s usage is
shown in Figure 5. It would display a tree of fold-
ers and files. When a user selects a node, an editor for
that node is shown in the relevant group.

4.4 Use Case Implementations in
XUL

In addition to the wireframe model designs, XUL en-
abled to use context menus in Document and Tree Ed-
itors. Also, Document editor has a real time preview
of a document. It is remarkable that XUL interfaces
require a lot of scripts. All the button functionalities,
drag-and-dropping, and focusing of elements have to
be realized through scripts. The XUL Document edi-
tor is depicted in Figure 6.

4.5 Heuristic Analysis

We did the heuristic analysis according to the heuris-
tics defined by Nielsen (Nielsen, 1994). We did not
find any major problems from the interfaces. Mainly,
because the wireframe models were already designed

<instance>
<data>

<folder name="xxx">
<folder name="xxx">

<file name="xxx" description="xxx"/>
</folder>

</folder>
</data name="xxx">

</instance>

<tree ref="/data/folder" prune="true"
id="folders">

<label>The directory document</label>
<item><label ref="@name"/></item>

</tree>

<group ref="nodeindex(’folders’)">
<group

ref="self::node()[localname()=’folder’]>
<label>Folder</label>
<input ref="@name"/>

</group>
<group

ref="self::node()[localname()=’file’]>
<label>File</label>
<input ref="@name"/>
<input ref="@description"/>

</group>
</group>

Figure 5: Example of tree widget usage.

Figure 6: XUL Document Editor.

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

300



Figure 7: UI Model using XForms.

according to the heuristics. Nevertheless, we were
able to identify some problems from all the inter-
faces. Common deficiencies were lack of undo-redo
and help operations. Of course, these should have
been considered already in the design phase.

XForms Document Editor does not have drag-and-
drop functionality. In addition, the preview function is
a bit problematic in XForms editors, because user has
to always save the form before previewing it. How-
ever, saving is not always desired when previewing.
Finally, selected column or headers cannot be high-
lighted in XForms Table Editor.

4.6 Model Differences Between XUL
and XForms

Although, in the selected use cases on a desktop com-
puter, the usability between the XForms and XUL
user interfaces does not differ, we have noticed a dif-
ference in the user interface development model. Like
XUL, most of the XML-based user interface defini-
tion languages are widget based. This means that they
are quite concrete, and the author works by adding
widgets, such as buttons and text areas to the user in-
terface. It is therefore very easy to graphically create
a user interface layout, but all user interface logic has
to be programmed using a programming or scripting
language, though. In contrast, XForms starts by defin-
ing a XML data model, and all operations are done
to the datamodel using declarative actions and XPath
expressions, while user interface is automatically kept
up-to date with a dynamic dependency tracking.

Maybe the biggest difference is the communication
between the user interface and the back-end system.
For the communication, the user interface state has to
be serialized for transmission. Vice versa, after get-
ting serialized reply from the server, it has to be de-
serialized into application state. In XForms (cf. Fig.
7), that serialization is automatic, since the datamodel
is a live XML document object model, which is auto-
matically serialized and de-serialized.

Figure 8: UI Model using XUL.

On the other hand, in XUL there is no explicit
datamodel, and communication between a backend
process and the user interface have to be reimple-
mented using ECMAScript for each user interface, as
shown in Fig. 8. This is true also for HTML forms
and its derivatives, such as Ajax2. For example, when
the server sends an updated structured content back,
there has to be a script, which updates the correspond-
ing XUL DOM, respectively. This means, that author-
ing and maintaining XUL-based applications is more
complicated than XForms.

It is noteworthy that XUL has a templates mecha-
nism, which allows to use RDF as the datamodel to
some extent. Since RDF is more complicated than
XML (graph vs. tree), and we would have to serial-
ize the RDF datamodel anyway into the XML docu-
ment model either at server or client, it was not used in
this paper. Using XBL (Hyatt, 2000) combined with
XUL should allow the use of XML datamodels, thus
removing the need of serializing and de-serializing
communications. All user interface logic has to be
still written in ECMAScript, though XBL encapsu-
lates the operations in a reusable manner. It is still
unknown, whether XUL+XBL removes the need for
any serialization and deserialization in the selected
use cases.

5 CONCLUSIONS

In this paper, two UI description languages were stud-
ied, namely XForms and XUL. We collected require-
ments for a UI description language from literature,
extended them with typical interaction patterns, and
evaluated the languages against the requirements. In
addition, we selected three use cases, which are typi-
cal to Web application UIs, but are difficult to realize
properly with HTML. First, we designed wireframe

2Ajax: A New Approach to Web Applica-
tions, http://adaptivepath.com/publications/essays/
archives/000385.php

WEB USER INTERACTION - Comparison of Declarative Approaches

301



models of the use cases according to the usability
guidelines. Based on those, we implemented the use
cases with both languages, and did heuristic analysis
for the implementations.

XForms fulfilled the requirements slightly better
than XUL. On the other hand, with XUL, the use
cases could be realized more strictly according to the
wireframe models, since, for instance, drag-and-drop
is not supported in XForms. As a conclusion, the dif-
ferences between XForms and XUL+XBL on desktop
are not big. We do expect that major differences can
arise in device independence and multimodal usage
scenarios, where XForms is better.

Also, we feel that both languages should add sup-
port for general undo-redo, copy-paste, and drag-and-
drop interaction patterns. In special cases, it is pos-
sible to support these, but for instance, copy-paste
between different types of data input and outputs is
not usually supported (for instance, copying the val-
ues in a repeating spreadsheet-type of table into a dif-
ferent type of repeating construct). These interaction
patterns are so widely available in current user inter-
faces, that they need to be supported in the Web user
interface languages as well, in order to facilitate the
deployment of these user interfaces on the Web.

REFERENCES

Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams,
S. M., and Shuster, J. E. (1999). UIML: an appliance-
independent XML user interface language. In WWW
’99: Proceeding of the eighth international confer-
ence on World Wide Web, pages 1695–1708, New
York, NY, USA. Elsevier North-Holland, Inc.

Bojanic, P. (2003). The Joy of XUL. Available online
http://www.mozilla.org/projects/xul/joy-of-xul.html.

Boyer, J., Landwehr, D., Merrick, R., and Raman, T. V.
(2004). XForms 1.1. W3C Working Draft.

Cardone, R., Soroker, D., and Tiwari, A. (2005). Using
XForms to simplify web programming. In WWW
’05: Proceedings of the 14th international conference
on World Wide Web, pages 215–224, New York, NY,
USA. ACM Press.

Cooper, A. (1995). About Face: The Essentials of User
Interface Design. John Wiley & Sons.

Dubinko, M., Klotz, L. L., Merrick, R., and Raman, T. V.
(2003). XForms 1.0. W3C Recommendation.

Hoffman, M. (2003). Architecture of microsoft office in-
fopath 2003. Microsoft Developer Network.

Hostetter, M., Kranz, D., Seed, C., and C. Terman, S. W.
(1997). Curl, a gentle slope language for the web.
World Wide Web Journal.

Hyatt, D. (2000). XBL - extensible binding language 1.0.
Netscape.

Hyatt, D. (2001). XML user interface language (XUL) 1.0.
Mozilla.org.

Laakso, S. (2003). User Interface De-
sign Patterns. Available online
http://www.cs.helsinki.fi/u/salaakso/patterns/.

Nielsen, J. (1994). Ten Usabil-
ity Heuristics. Available online
http://www.useit.com/papers/heuristic/heuristic list.html.

Preece, J., Rogers, Y., and Sharp, H. (2002). Interaction
Design, chapter 13. Wiley, 1st edition.

Puerta, A. and Eisenstein, J. (2002). Ximl: a common rep-
resentation for interaction data. In IUI ’02: Proceed-
ings of the 7th international conference on Intelligent
user interfaces, pages 214–215, New York, NY, USA.
ACM Press.

Rector, B. (2003). Introducing ”longhorn” for developers.
Microsoft Developer Network.

Simon, R., Kapsch, M. J., and Wegscheider, F. (2004). A
generic UIML vocabulary for device- and modality in-
dependent user interfaces. In WWW Alt. ’04: Proceed-
ings of the 13th international World Wide Web confer-
ence on Alternate track papers & posters, pages 434–
435, New York, NY, USA. ACM Press.

Souchon, N. and Vanderdonckt, J. (2003). A review of
XML-compliant user interface description languages.
In Proceedings of the 10th International Workshop on
Interactive Systems. Design, Specification, and Verifi-
cation: DSV-IS 2003. Springer.

Tidwell, J. (2005). Designing Interfaces: Patterns for Ef-
fective Interaction Design. O’Reilly Media, Inc., 1.
edition.

Trewin, S., Zimmermann, G., and Vanderheiden, G. (2004).
Abstract representations as a basis for usable user in-
terfaces. Interacting with Computers, 16(3):477–506.

Vuorimaa, P., Ropponen, T., von Knorring, N., and
Honkala, M. (2002). A Java based XML browser for
consumer devices. In The 17th ACM Symposium on
Applied Computing, Madrid, Spain.

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

302


