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Abstract: Detecting moving objects is very important in many application contexts such as people detection, visual 
surveillance, automatic generation of video effects, and so on. The first and fundamental step of all motion 
detection algorithms is the background modeling. The goal of the methodology here proposed is to create a 
background model substantially independent from each hypothesis about the training phase, as the presence 
of moving persons, moving background objects, and changing (sudden or gradual) light conditions. We 
propose an  unsupervised approach that combines the results of temporal analysis of pixel intensity with a 
sliding window procedure to preserve the model from the presence of foreground moving objects during the 
building phase. Moreover, a multilayered approach has been implemented to handle small movements in 
background objects. The algorithm has been tested in many different contexts, such as a soccer stadium, a 
parking area, a street, a beach. Finally, it has been tested even on the CAVIAR 2005 dataset. 

1 INTRODUCTION 

Many computer vision tasks require robust 
segmentation of foreground objects from dynamic 
scenes. The most used algorithms for moving 
objects detection are based on background 
subtraction; for these approaches, the first and 
crucial step of these kind of algorithms is the 
background creation. Usually, independently from 
the applicative context, the main features that each 
background modeling algorithm has to handle are: 
• Presence of foreground and/or moving 

background objects during the model 
building phase; 

• Gradual and/or sudden variations in 
illumination conditions. 

Many authors have dealt with the problem of 
background modeling, as both a stand-alone task or 
a module in a complete motion detection system.  

A first group of algorithms uses statistical 
approaches to model background pixels. In 
(Wren,1997 and Kanade,1998) a pixel-wise gaussian 
distribution was assumed to model the background. 
In (Wren,1997) the algorithm was used for an indoor 
motion detection system, whereas in (Kanade,1998) 
the authors tested the algorithm in outdoor contexts. 
However, the presence of foreground objects during 

the building phase could cause the creation of an 
unreliable model, such as in presence of light 
movements in the background objects, or sudden 
light changes. These observations suggest that 
probably the proposed algorithms work well in 
presence of a supervised training, during which ideal 
conditions are granted by the human interaction. The 
natural evolution of these approaches was proposed 
in (Stauffer,1999): in this work a generalized 
mixture of gaussians was used to model complex 
non-static background. In this way the great 
drawback of the moving background objects was 
solved. However, the presence of foreground objects 
during this phase could heavily alter the reliability of 
the model, like happened under sudden light 
changes. In (Haritaoglu,1998) the authors did not 
construct a real gaussian distribution, while they 
preferred to maintain general statistics for each 
point. In this way they cope with the movements in 
background objects, even if they waive a correct 
segmentation of foreground objects in those regions. 
However, they could encounter misdetections in 
presence of foreground objects during the modeling 
phase, and in presence of sudden light changes, 
while they correctly handle gradual illumination 
changes. The natural improvement of this approach 
was proposed in (Kim,2004): the basic idea of 
(Haritaoglu,1998) was iterated in order to build a 
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codebook for each point, providing a set of different 
possible values for each point; the experimental 
results proposed by the authors appeared interesting. 
All the approaches above examined use statistical 
information, at different complexity level, for the 
background modeling.  

A different category is composed by the 
approaches that use filters for temporal analysis. In 
(Koller,2004) authors used a Kalman-filter approach 
for modeling the state dynamics for a given pixel. In 
(Elgammal,2000) a non-parametric technique was 
developed for estimating background probabilities at 
each pixel from many recent samples over time 
using Kernel density estimation. In (Doretto,2003) 
an autoregressive model was proposed to capture the 
properties of dynamics scenes. An improvement of 
this algorithm was implemented in (Monnet,2003) 
and (Zhong,2003) to address the modelling of 
dynamic backgrounds and perform foreground 
detection. In (Toyama,1999) a modified version of 
the Kalman filter, the Weiner filter, was used 
directly on the data. The common assumption of 
these techniques was that the observation time series 
were independent at each pixel.  

All the approaches above presented were tested 
on real sequences, producing interesting results, 
even if each of them suffered in almost one of the 
critical situations listed above. The approaches that 
apparently were able to work well in every 
conditions implicitly required a supervised 
background model construction, in order to prevent, 
for example, sudden light changes, or incoming 
foreground objects. Moreover, it should be noted 
that a modeling algorithm needs to limit the memory 
requirements: in an ideal case the best model could 
be created by observing a-posteriori all the frames of 
the training phase; however this solution is not 
reasonable, so one of the constraints of this kind of 
algorithms is to work in an incrementally mode, to 
reduce hardware requirements. 

In this work we present a background modeling 
algorithm able to face all the crucial situations 
typical of a motion detection system with an 
unsupervised approach; no assumptions about the 
presence/absence of foreground objects and changes 
in light conditions were required. The main idea is to 
exploit the pixels energy information in order to 
distinguish static points from moving ones. To make 
the system more reliable and robust, this procedure 
has been integrated in a sliding windows approach, 
that is incrementally maintained during the training 
phase; in this way the presence of sudden light 
changes and foreground objects is correctly handled, 
and they do not alter the final background model. In 

order to cope with the presence of moving 
background objects, a multilayered modeling 
approach has been implemented, integrating the one-
layer information given by the previous step with 
other data deriving from a long term temporal 
analysis. It should be noted that the whole procedure 
is on-line: no interaction with user is required at 
runtime; user should only opportunely set some 
thresholds, as explained in the following sections. 

2 ENERGY INFORMATION 

One of the main problems of background modeling 
algorithm is their sensitiveness to the presence of 
moving foreground objects in the scene.  

The proposed algorithm exploits the temporal 
analysis of the energy of each point, evaluated by 
means of sliding temporal windows. The basic idea 
is to analyze in a small temporal window the energy 
information for each point: the statistical values 
relative to slow energy points are used for the 
background model, while they are discarded for high 
energy ones. In the current temporal window, a point 
with a small amount of energy is a static point, that 
is a point whose intensity value is substantially 
unchanged in the entire window; otherwise it 
corresponds to a non static point, in particular it 
could be a foreground point or a moving background 
one. At this level, these two different cases will be 
treated similarly, while in the next section a more 
complex multilayer approach will be introduced in 
order to correctly distinguish between them.  

A coarse-to-fine approach for the background 
modeling is applied in a sliding window of size W 
(number of frames). The first image of each window 
is the coarse background model BC(x,y). In order to 
create at runtime the required model, instead of 
building the model at the end of a training period, as 
proposed in (Lipton,2002), the mean (1) and 
standard deviation (2) are evaluated at each frame; 
then, the energy content of each point is evaluated 
over the whole sliding window, to distinguish real 
background points from the other ones. Formally, 
for each frame the algorithm evaluates mean μ and 
standard deviation σ, as proposed in (Kanade,1998): 

1)1(),(),( −−+= ttt yxyx μααμμ  (1) 

1)1(|),(),(|),( −−+−= tttt yxyxyx σαμμασ  (2) 

only if the intensity value of that point is 
substantially unchanged with respect to the coarse 
background model, that is: 
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where th is a threshold experimentally selected. At 
the end of the analysis if the first W frames, for each 
point the algorithm evaluates the energy content as 
follows: 
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A low energy content means that the considered 
point is a static one and the corresponding statistics 
are included in the background model, whereas high 
energy points, corresponding to foreground or 
moving background objects cannot contribute to the 
model. The whole procedure is iterated on another 
sequence of W frames, starting from the frame W+1. 
The coarse model of the background is now the 
frame W+1, and the new statistical values (1) and 
(2) are evaluated for each point, like as the new 
energy content (4). The relevant difference with (5) 
is that now the new statistical parameters are 
averaged with the previous values, if they already 
exist; otherwise, they become the new statistical 
background model values. Formally, the new 
formulation of (5) become: 
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The parameter β is the classic updating parameter 
introduced in several works on background 
subtraction (Wren,1997), (Kanade,1998) and 
(Haritaoglu,1998). It allows to update the existent 
background model to the new light conditions in the 
scene. The whole procedure is iterated N times, 
where N could be a predefined value experimentally 
selected to ensure the complete coverage of all 
pixels. Otherwise, to make the system less 
dependent from any a-priori assumption, a dynamic 
termination criteria is introduced and easily verified; 
the modeling procedure stops when a great number 
of background points have meaningful values: 

0)),((# ≅= φyxBF  (7) 

3 MULTILAYER ANALYSIS 

The approach described above allows the creation of  
a statistical model for each point of the image, even 
if covered by moving objects. However, it is not able 
to distinguish movements of the background objects 
(for example, a tree blowing in the wind) from 
foreground objects. So, the resulting model is very 
sensitive to the presence of small movements in the 
background objects, and this is a crucial problem, 
especially in outdoor contexts. 

The solution we propose uses a temporal analysis 
of the training phase in order to automatically learn 
if the detected movement is due to the presence of a 
foreground or a moving background object. The 
starting point is the observation that, if a foreground 
object appears in the scene, the variation in the pixel 
intensity levels is unpredictable, without any logic 
and/or temporal meaning. Otherwise, in presence of 
a moving background object, there will be many 
variations of approximately the same magnitude, 
even if these variations will not have a fixed period 
(this automatically excludes the possibility to use 
frequency-based approaches, i.e. Fourier analysis). 

In order to motivate this assumption, we have 
analysed the mean intensity values of some points 
belonging to different image regions over a long 
observation period. The first group is composed by 
static background points (zone A in the first image 
of fig. 1), while the second (B) is composed by 
moving background points (background points that 
sometimes are covered by a moving tree). The third 
group (C) corresponds to some static adjacent 
background points that are covered by both moving 
people and a moving tree. Finally, the last region (D) 
corresponds to a region covered by only foreground 
objects. We have chosen to select a group of points 
for each class instead of a single point to reduce the 
effects of noise; on the other hand, for each group, 
the selected points are very spatially closed, because 
of their intensity values need to be similar for a 
correct analysis of their temporal trend. Indeed, the 
values assumed by each point in the same group 
have been averaged, and in figure 1 the temporal 
trend of each group of that zones is plotted. 

The static points (first graph) assume values that 
can be considered constant over the entire 
observation period (apart from the natural light 
changes). Points corresponding to static background 
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(last graph), but covered by a foreground object (in 
this case, a person moving in the scene) assume 
values that differs from the standard background 
value in an unpredictable way. On the other hand, 
static points that sometimes are covered by moving 
background objects (second graph) assume values 
that return many times in the whole observation 
period, even if they have not a fixed frequency. In 
the third graph the trend of a background point 
covered by both moving background objects and 
foreground ones is represented. Some values are 
admissible since they return several times, while 
some others are occasional so they can be discarded. 

Starting from this assumption, the goal of this 
step is to use a multilayer approach for the 
modelling, with the aim of discarding layers that 
correspond to variation exhibited only a few times 
for a given point. On the other hand, layers that 
return more times will be taken (they correspond to 
static points covered by background moving 
objects). Formally, the main idea proposed in the 
previous section remain unchanged, but it is now 
applied to all the background layers. The mean and 
standard deviation proposed in (1) and (2) become: 
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where i changes in the range [1…K], and K is the 
total number of layers. Similarly, for each frame of 
the examined sequence, the decision rule proposed 
in (3) for the updating of the parameters becomes: 

thyxByxI i
C
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where the notation i indicates the examined layer. 
It should be noted that, initially, there is only one 
layer for each point, the coarse background model 
(that correspond to the first frame). Starting from 
frame #2, if the condition (10) is not verified, a new 
layer is created. At the end of the observation period, 
for each point the algorithm builds a statistical 
model given by a serious of couple (μ,σ) for each 
layer. The criteria for selecting or discarding these 
values is based again on the evaluation of the energy 
content, but now the equation (4) is evaluated for 
each layer i: 
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Region A 

 
Region B 

 
Region C 

 
Region D 

Figure 1: the position of the examined regions in the 
whole image (first line) and the trend observed in these 
regions. Red points correspond to layers that do not 
belong to the correct model, while blue points 
correspond to correct background layers. 

Different layers are created only for those values 
that occur a certain number of times in the 
observation period. However, in this way both 
foreground objects and moving background ones 
contribute to the layer creation. In order to 
distinguish these two different cases, and maintain 
only information about moving background objects, 
the overall occurrence is evaluated for each layer: 

ilayertheofstatistics

thetoscontributethatyxWyxOi   ),(#),( =  (12) 
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Oi(x,y) counts the number of sliding windows that 
contributes to the creation of the statistic values for 
the layer i. At this point, the first K layers with the 
highest overall occurrences belong to the 
background model, while the others are discarded. 
After the examination of all the points with (12), the 
background model contains only information about 
the static background and moving background 
objects, while layers corresponding to spot noise or 
foreground objects are discarded since they occur 
only in a small number of sliding windows. The use 
of sliding windows allows to greatly reduce the 
memory requirements; the trade-off between 
goodness and hardware requirements seems to be 
very interesting with respect to the others proposed 
in (Lipton,2002). 

4 EXPERIMENTAL RESULTS  

We have tested the proposed algorithm on different 
sequences, in different conditions, in both indoor 
and outdoor environments. In table 1 the 
characteristics of each test sequence are reported. 
Some sequences present in the CAVIAR dataset 
(http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIA
RDATA1) have also been considered. Each 
sequence represents a different real situation, and 
different frame rates demonstrate the relative 
independency from the size of the sliding window 
(in our experiments, we have chosen to use a sliding 
window containing 100 frames, independently from 
the context and the camera frame rate). 

Table 1: Characteristics of the test sequences. 

Test Sequence Context Frame rate Size 
Archeological site Outdoor 30 768X576 

Laboratory Indoor 30 532X512 
Museum Indoor 15 640X480 

Soccer stadium Outdoor 200 1600X600 
Beach Outdoor 20 720X576 

CAVIAR seq. 1 Outdoor 25 384X288 
CAVIAR seq. 2 Indoor 40 384X288 

The first tests were carried out to evaluate the 
number of layers necessary for a given situation. In 
the second column of table 2 the mean number of 
layers for each context is proved. As it can be seen, 
this value is smaller for more structured contexts 
(laboratory, museum, soccer stadium), while it is 
higher in generic outdoor contexts (archeological 
site, CAVIAR seq. 1). The maximum number of 
layer in our experiments has been fixed to 5. The 
presence of moving trees in the background in the 
two contexts of the beach and the archeological site 
increases the number of layers. In more controlled 

environments, like the laboratory, requiring a small 
number of layer, probably the multilayer approach 
can be considered unnecessary.  

In order to have a quantitative representation of 
the reliability of the background models, we have 
chosen to test them by using a standard, consolidated 
motion detection algorithm, proposed in 
(Kanade,1998). A point will be considered as a 
foreground point if it differs from the mean value 
more than two times the standard deviation; in order 
to adapt this rule to our multilayer approach, we 
consider a point as a moving point the previous 
assert is valid for at least one layer: 

),(2),(),( yxyxyxI ii σμ ∗>−  (13) 

A quantitative estimation of the error, 
characterized by the Detection Rate (DR) and the 
False Alarm Rate (FAR), has been used as suggested 
in (Jaraba,2003): 

FNTP
TPDR
+

=          
FPTP

FPFAR
+

=  (14) 

where TP (true positive) are the detected regions that 
correspond to moving objects; FP (false positive) are 
the detected regions that do not correspond to a 
moving object; and FN (false negative) are moving 
objects not detected. 

Table 2: The mean number of layers and rates to measure 
the confidence for each of the examined different contexts. 

Test sequence Mean number 
of layers 

DR 
(%) 

FAR 
(%) 

Archeological site 3.12 87,46 3,72 
Laboratory 1.23 93,81 4,16 
Museum 2.05 89,12 4,83 

Soccer stadium 1.92 94,31 2,26 
Beach 4.33 88,56 5,26 

CAVIAR seq. 1 2.28 89,18 3,24 
CAVIAR seq. 2 1.54 91,15 3,85 

In the last two columns of table 2 we can see that 
the FAR parameter is always under the 6%, and it is 
higher for more complex environments (i.e. beach, 
museum), while it assumes small values in more 
controlled contexts (i.e. soccer stadium). 

Starting from the detection rule proposed in (13), 
we have chosen to use the perturbation detection rate 
(PDR) analysis to validate our approach. This 
technique, as explained in (Chalidabhongse,2003), 
makes the experimental results less sensitive to the 
effects of a manual ground truth segmentation. The 
goal of the PDR analysis is to measure the detection 
sensitivity of a background subtraction algorithm 
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without assuming knowledge of the actual 
foreground distribution. This analysis is performed 
by shifting or perturbing the entire background 
distributions by values with fixed magnitude Δ, and 
computing an average detection rate as a function of 
contrast Δ. More details about this procedure can be 
found in relative paper. The PDR analysis has been 
applied to all the experimental contexts presented 
above. The test set is given by 500 points for each 
frame, 200 frames for each sequence in each 
context. So, for each Δ, 200*500 perturbations and 
detection tests were performed. In figure 2 we have 
plotted the resulting PDR graphs. The worst results 
have been obtained in the beach, where the critical 
conditions due to the presence of moving 
background objects decrease the performance. In 
this case, the pixel intensity variations, due to the 
movement of the vegetation, are amplified by the 
perturbation introduced, causing a decrease of the 
global detection ability. On the other hand, the 
results obtained in the remaining contexts are very 
interesting, with a fast growth of the curve towards 
best performances, as already observed in table 2. 

 
Figure 2: the PDR analysis on the test sequences. It can 
be note that the best performance have been obtained in 
the soccer stadium and in the indoor contexts, while the 
worst results have been reported in the beach, probably 
due to the presence of moving vegetations. 

5 CONCLUSIONS 

In this paper an approach for the unsupervised 
building of a background model has been proposed. 

The proposed algorithm is able to model a scene 
even in presence of foreground objects and moving 
background ones; no a-priori assumptions about the 
presence of these moving objects, and changing in 
light conditions are needed. It combines the energy 
information of each pixel with a temporal analysis of 
the scene, by means of sliding windows, to detect 
static background points. Energy information is used 
again over the whole observation period to 
distinguish moving background objects from 

foreground ones, and the background is modeled by 
means of a multilayer statistical distribution. 

The algorithm has been tested in many different 
contexts, such as a soccer stadium, a parking area, 
an archeological site and two test sequences 
extracted from the CAVIAR 2005 dataset. The 
experimental results prove that the proposed 
algorithm try to correctly model the background in 
every kind of condition, in presence of both moving 
background and foreground objects. The quantitative 
evaluation presented confirm that the proposed 
algorithm gives reliable results. 
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