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Abstract: The Object Constraint Language OCL is an extension of the UML notation for the expression of restrictions 
on diagrams. We propose to take advantage of its all expression capabilities for validating the UML system 
properties. For this purpose, we develop an approach to support the OCL invariant verification on the 
colored Petri nets derived from the UML modeling. A case study is given throughout the paper to illustrate 
the approach. 

1 INTRODUCTION 

UML (OMG, 2003) suffers from ceaseless critics on 
the precision of its semantics when the verification 
of modeling correctness has become a key issue. 
UML 2.0 (OMG, 2004) brings more precision on its 
semantics, but it remains informal and lacks tools for 
automatic analysis and validation. We presented in 
(Bouabana-Tebibel, 2004) a methodology to 
automatically derive UML modeling in colored Petri 
nets (Jensen, 1992) which are supported by lots of 
tools to verifying them. In the present paper, we 
carry on with this work by developing a technique to 
deal with the verification process. 
The Petri nets resulting from the derivation 
processes, are analyzed by means of PROD (PROD, 
2004), a model checker tool for predicate/transition 
nets. Model checking is classified as the most 
appropriate technique for verifying operational UML 
models (Beato, 2004), (Ober, 2003). It allows a fast 
and simple way to check whether the property holds 
or not. To avoid the high cost learning of the model 
checker, the designer can specify the system 
properties in OCL, the Object Constraint Language 
(OMG, 2003) which permits to formulate 
restrictions over UML models, in particular, 
invariants. The latter can be after, automatically 
translated to temporal logic properties in order to be 
verified by PROD during the Petri net analysis.  
Translating OCL invariants into LTL and CTL 
properties remains insufficient for validating the 
properties. Indeed, OCL expressions refer to 
classifiers to evaluate their association ends. The 
association ends values are updated (created, 

modified or read) on the object life cycle by means 
of the link actions. So, in addition to the OCL 
invariant translation in LTL and CTL properties, we 
propose an approach to translate the link actions in 
Petri nets, to achieve the systematic formal 
verification of the OCL constraints. 
The remainder of the paper starts with a brief expose 
on the UML modeling derivation to Petri nets, this, 
constituting the background of the present work. The 
proposed approach is then presented and the 
techniques upon which it is based are developed. 
These techniques are illustrated in a case study. We 
conclude with some observations on the obtained 
results and recommendations on future research 
direction.  

2 BACKGROUND 

We summarize in this section, the work that we 
present in (Bouabana-Tebibel, 2004) to derive UML 
statecharts to colored Petri nets. This work supports 
the approach that we develop in the present paper.  

2.1 Statecharts 

A statechart describes the behavior of a class in 
terms of states and exchanged messages with other 
classes’ statecharts. A state is composed of two 
atomic actions (at its entry and its exit) and one 
activity. The states are linked by means of 
transitions annotated with the event that triggers the 
transition (event trigger) and atomic actions 
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produced by the triggered transition. Due to their 
atomicity, the entry, exit and transit actions are in 
fact, generated events respectively called: entry, exit 
or transit events, see figure 1. 
 

State 2 
entry: event  
do: activity 
exit: event

trigger / transit event 
State 1 

entry: event  
do: activity 
exit: event

Figure 1. Statechart’s events and activity 
 

The event is of two types: send event or call event. 
These events are mentioned on the statechart as 
follows: «send» class(), «call» operation(). 
Examples of these events are given in the case study 
of figure 2. 
We illustrate our study through a message server 
application where the main role of the server is to 
manage the communication between the connected 
stations. All the exchanged messages must go 
through this server, to be forwarded to the receivers. 
Figure 2 represents the statechart of a station which 
can, at all times, connect itself from the server. Its 
connection request is realized using the «send» 
connection event. The server confirms the station 
connection using the «send» okconnection events. 
When connected, a station can notify a message, 
receive a message or disconnect itself. It notifies by 
means of the «send» notification event.  
 

entry : «send» connection() 

 connected 

entry : «send» disconnection() 
disconnection 

connection 

«send» okconnection()   

/ «create» notification() 

«send» okdisconnection()

reception
exit : «call» save() 

«send» forward()       

entry : «send» notification()   
notification 

Figure 2. Statechart of the station class 

After receiving a forwarded message from the server 
by means of the «send» forward trigger, it saves it 
using the «call» save event. Its disconnection is 
requested by the «send» disconnection event and 
confirmed by the «send» okdisconnection event. 

2.2 Petri Nets 

Petri nets have been presented in several works 
(Baresi, 2002) as a suitable formalism for translating 

the UML dynamic models. We used them in 
(Bouabana-Tebibel, 2004) to derive the statechart 
and collaboration diagrams. We defined them by the 
7-tuple <P, T, A, C, Pre, Post, M0,> where: 
 
-  P = {p1, p2, …, pn} is a set of places. 
-  T = {t1, t2, …, tn} is a set of transitions. 
-  A ⊆ P × T ∪ T × P, is a set of arcs. 
-  C = {C1, C2, …,  Cn} is a set of colors where Ci = 
{<c1,  c2,,  …, ck>} and cj is a variable or a constant. 
-  Pre : P × T → P(C) is a precondition function to 
the transition firing such that Pre(pi, ti) = {C1, C2, …, 
Ck}. 
-  Post : P × T → P(C) is a postcondition function to 
the transition firing such that Post(pi, ti) = {C1, C2, 
…, Ck}. 
Mo : P → C is the initial marking function, such that 
Mo(pi) = ∑k=1,K Ck. 

2.3 Derivation Approach 

The derivation process is based onto an object-
oriented approach. Each statechart modeling an 
interactive class behaviour is transformed to an 
object subnet called Dynamic Model or DM (see 
figure 3). To construct the DM, each state s ∈ S is 
converted to a place p ∈ P and each transition tr ∈ 
Tr is converted to a transition t ∈ T. 

 
The classes interact through the Link place which 
receives the events generated by the DMs and then 
dispatches them to the destination DMs. The 
forwarding is relayed by the Input place which 
constitutes an input interface of the DM. The events 
are modeled by tokens of event type 
To deal with Petri net simulation, we tackle the Petri 
net initial marking which may be of two types: static 
or dynamic. The static initial marking provides the 
class instances and their attribute values. These 
instances are extracted from the object diagram to 
initialize the Object place with tokens of object type 
of the form <obj, attrib>. The dynamic initial 

OPN 

 Link 

OPN 

OPN  DM 
    Input 

Object 

Scenario 

Figure 3. Petri nets interconnection architecture 

Figure 1: Statechart’s events and activity. 

Figure 2: Statechart of the station class. 

Figure 3: Petri nets interconnection architecture. 
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marking provides the exchanged messages among 
the interactive objects. These messages are extracted 
from the sequence diagram to initialize the Scenario 
place with tokens of event type. The event tokens 
have the form <srce, targ, op/xobj, attrib> where 
Srce and targ are respectively the source object’s 
identity and the target object’s identity. The 
component op/xobj gives the called operation if a 
call event and the exchanged object’s identity if a 
send event. As for attrib, it designates the set 
{attrib1, …, attribk}of the exchanged object’s 
attributes if a send event, the operation attributes if a 
call event.  
Thus, each generated event on the statechart is 
converted to an arc from the Scenario place to the 
transition to which it is related. It is after converted 
to an arc from this transition to the Link place. As 
for the event trigger, it is converted to an arc from 
the Input place to the transition on which it occurs. 
Figure 4 represents the Petri net resulting from the 
conversion of the statechart of the station class. 
 

3 ANALYSIS AND 
VERIFICATION 

The verification by model checking as treated in 
PROD, is based on the state space generation and 
the verification of safety and liveness system’s 
properties on this space. The properties may be 
basic, about the correctness of the model 
construction or specific, written by the modeler to 
ensure the faithfulness of the system modeling. For 
each of these approaches, given a property, a 
positive or negative reply is obtained. If the property 

is not satisfied, it generates a trace showing a case 
where it is not verified. 

3.1 Generic Property Verification 

The basic properties are verified according to on-
the-fly tester approach or the reachability graph 
inspection approach. The on-the-fly verification of a 
property means that the property is verified during 
the state space generation which is automatically 
stopped as soon as the property fails, in contrary to 
the traditional approach where properties are 
verified on the reachability graph, after its 
generation. 
The on-the-fly tester approach detects deadlock, 
livelock and reject states. The deadlock verification 
ensures that there exists no reachable marking where 
no transition is enabled. In other words, that means 
that there is no UML states that prevent any activity 
to be invoked eventually. The livelock detection 
informs about loops of actions on the graph. As for 
the reject state checking, it detects undesirable 
markings in critical places which is equivalent in 
UML, to rejecting undesirable objects at given 
states. These three properties are systematically 
verified, without intervention of the designer. 
The reachability inspection approach permits the 
verification of some other properties such as quasi-
liveness, boundedness or reinitializability. These 
properties are automatically verified. 
The quasi-liveness property is weaker than the 
deadlock. It guaranties that each transition is enabled 
at least once, i.e., each UML activity can be invoked 
eventually.  
The boundedness is formulated to require an upper 
bound to the number of objects that can be present, 
in a state at a given time or in an association end, 
according to the UML specification using the 
multiplicity construct. Since objects correspond to 
tokens, this property upper-bounds the number of 
tokens. 
The reinitializability property checks the possibility 
for a system of restarting from any state, i.e., the 
initial marking should be reachable from any 
marking of the net. This is realized by a systematic 
computation of the net strongly connected 
components which must be equal to 1, so that the net 
can be reinitializable. 

3.2 Specific Property Verification 

For a more precise validation, system’s specific 
properties can be written by the designer in LTL or 
CTL logics and then, verified by PROD. Since the 
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main motivation of this work is that the UML 
designer may reach a valid modeling without needs 
for knowledge of formal techniques, it is only 
reasonable that the properties are expressed by the 
modeler in the OCL language and are after, 
automatically translated in LTL and CTL logics.  
Many works have investigated the OCL invariant 
translation in other formalisms such as Object-Z 
(Roe, 2003), B (Marcano, 2002), first-order 
predicate logic (Beckert, 2002) or object-based 
temporal logic (Distefano, 2000). Other works 
tackled OCL invariant extension with temporal 
operations (Cengarle, 2002), (Flake, 2004). The 
relevance of such a mapping is of a practical nature. 
It presents the merit of providing a specific 
translation that takes the target tool’s (PROD) 
characteristics into account. Due to the paper length, 
this translation is presented in another work. 
OCL is mainly based on collection handling in order 
to specify object invariants. As these collections 
correspond to association ends, the latter must 
appear on Petri net specification so that the 
translated LTL and CTL properties (whose 
expression is essentially made of these constructs), 
can be verified. This lead us to the necessity of 
introducing the association end modeling onto the 
statecharts in order to get after transformation, the 
equivalent Petri net constructs. This object flow 
modeling is realized by means of the link actions. 
However, the usefulness of the link actions does not 
concern explicitly the modeling of the object life 
cycle. When constructing his diagrams, the designer 
does not necessarily think to modeling these 
concepts which are rather specific to the link and 
end object updates. For example, for connecting a 
station to the server, the connection request and 
connection confirmation actions are naturally and 
systematically modeled by the designer, but the 
addition of the connected station to the association 
end is usually omitted from the modelling, see 
figures 2 & 5. That is why we recommend to the 
designer to specify the link actions on the statechart 
so that the OCL invariants can be verified. But, we 
release him from this modeling on the sequence 
diagram and take in charge the treatments related to 
the initialization of these actions.  
UML action semantics was defined in (OMG, 2001) 
for model execution and transformation. It is a 
practical framework for formal descriptions. For this 
work, we are particularly interested in the create link 
and destroy link. The create link action permits to 
add a new end object in the association end. The 
destroy link action removes an end object from the 
association end. These actions will be represented on 

the statechart as tagged values of the form 
{linkAction(associationEnd)}, following the event 
which provokes the association end update. 
On figure 5, after confirmation of its connection or 
disconnection («send» okconnection or «send» 
okdisconnection), the station adds or removes itself 
from the association end connectedStation, using 
respectively, {createLink(connectedStation)} or 
{destroyLink(connectedStation)}. It adds a notifed or 
received message with {createLink 
(transmittedMessage)} or 
{createLink(receivedMessage)}, respectively.  
 

The link actions may concern an active (interactive) 
or passive (exchanged) end object. The object-
oriented approach, on which both UML and Object 
Petri nets rely, is based on modularity and 
encapsulation principles. To deal with modularity, a 
given association end should appear and be 
manipulated in only one statechart. In Petri nets, the 
association end is translated in a place of role type. 
This place holds the name of the association end and 
belongs to the DM translating the statechart.  
Furthermore, an association end regrouping active 
objects must be updated within the statechart of 
these objects’ class, in order to comply with the 
encapsulation concept. Indeed, since the end object 
is saved in the role place with its attributes, these 
attributes must be accessible when updating the 
association end. The exchanged objects are usually 
manipulated by the interactive objects and are not 
specified by dynamic models. So, the association 
end representing them could be updated in the 
statechart of the class that is at the opposite end. As 
more than one opposite end can be linked, the 
selected class is the one affecting the association 
end. For exchanged objects, the encapsulation 
constraint is lifted given that the exchanged object’s 

entry : «send» connection() 

connected 

entry : «send» disconnection()
disconnection 

connection 

       «send» okconnection() 
{createLink(connectedStation)}  

/ «create» notification() 

«send» okdisconnection()  
{destroyLink(connectedStation)} 

reception 
exit : «call» save() 

  «send» forward() 
 {createLink(receivedMessage)}

entry : «send» notification() 
{createLink(transmittedMessage)} 

notification 

Figure 5. Statechart of the station class with link action specification Figure 5: Statechart of the station class with link action 
specification. 
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attributes are transmitted within the message and so, 
accessible by the interactive objects. 
In Petri nets, the create link action is semantically 
equivalent to an arc from the transition related to the 
association end update towards the place specifying 
the association end, adding an object within. The 
destroy link action is semantically equivalent to an 
arc from the association end place to the transition 
corresponding to the link action, removing an object, 
see figure 6.  
 

The object to be added to / removed from the 
association end is extracted from the components of 
the token (whose global form is <srce, targ, op/xobj, 
attrib>) corresponding to the event that provokes the 
association end update. This token is situated in the 
Scenario place if the event is generated. It is located 
in the Link place if the event occurs. The 
added/removed object may be the source object (src) 
or the exchanged object (xobj) if the link action 
follows a generated event. It is the target object 
(targ) or the exchanged object (xobj) if the link 
action follows an event trigger. 
In Petri nets, the association end objects are colored 
tokens of role type They are of the form <assoc, obj, 
attrib>, where obj is the object to be added to or 
removed from the association end and assoc is the 
object at the opposite end. 
We propose in what follows, to express a property 
extracted from the server message application. This 
property is first expressed into a paraphrased 
(textual) form. It is after, specified as OCL 
invariants and finally translated into LTL properties.  
 
Property 1 
The number of connected stations is limited to 
maxStation. 
 
Property 1 expression in OCL 
context s:Server inv: s.connectedStation→size <= 
Server.maxStation 
 
Property 1 expression in PROD 

For each server s and for each place of its DM* write 
the property: 
# verify henceforth (card(connectedStation : field[0] 
== s) <= (placeDM*server : field[2]))  
where:  
-  connectedStation: field[0] designates the first 
component (assoc) of the connectedStation’s tokens, 
- placeDM*server: field[2] designates the third 
component (attrib2 = maxStation) of the tokens of 
DM* of the server, 
-  DM* designates a DM excluding the places of role 
type. 

4 CONCLUSION AND FURTHER 
WORK 

Formalization of UML statechart semantics (Kuske, 
2001), (Truong, 2005), (Varro, 2002) and integration 
in the statecharts of formal languages state-oriented 
(Attiogbé 2003), (Meyer, 2001) or property-oriented 
(Attiogbé 2003), (Royer, 2003) were widely 
investigated in the research area. The OCL language 
has also been used in various works in particular, 
those of Flake (Flake, 03), (Flake, 04) who extends 
it with temporal logics to express properties over 
time. However, through our multiple investigations, 
we have never encountered works that tackle the 
integration of the end associations on the statecharts 
to formalize the object flow dynamics.  
This paper presents an approach to systematically 
validate the UML modeling without need for the 
user to know formal checking techniques. The 
verification concerns both the correctness of the 
model construction and the faithfulness of the 
modeling. The latter is allowed thanks to the system 
awaited properties which are expressed by the 
modeler in OCL language and then translated into 
LTL and CTL properties. To efficiently deal with 
their validation, we propose to introduce an object 
flow specification into the object’s control flow 
model (statechart), using predefined actions on the 
association ends. 
An extension of this work concerns the automatic 
translation of the OCL invariants to LTL and CTL 
properties according to PROD syntax and features. 
This work is actually under review. Another 
prospect of this paper is the analysis of the 
validation/verification results and their feedback to 
the user are explored. These results must be 
presented to the designer in an interpreted form, 
where the error in modeling is simply and clearly 
pointed out. Since the methodology calls for UML 

Statechart constructs Petri net constructs

  {CreateLink(role)} 
role

derivation 

derivation 
role

  {DestroyLink(role)} 

Figura 6. Translation of the link actions Figure 6: Translation of the link actions. 
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designer to provide the input specifications, it is only 
reasonable for the output results to be meaningful to 
that user.  
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