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Abstract: The problem that a robot navigates autonomously through its environment, builds its own map and localizes 
itself in the map, is still an open problem. It is known as the SLAM (Simultaneous Localization and Map 
Building) problem. This problem is made even more difficult when we have several robots cooperating to 
build a common map of an unknown environment, due to the problem of map integration of several 
submaps built independently by each robot, and with a high degree of error, making the map matching 
specially difficult. Most of the approaches to solve map building problems are quantitative, resulting in a 
great computational cost and a low level of abstraction. In order to fulfil these drawbacks qualitative models 
have been recently used. However, qualitative models are non deterministic. Therefore, the solution recently 
adopted has been to mix both qualitative and quantitative models to represent the environment and build 
maps. However, no reasoning process has been used to deal with the information stored in maps up to now, 
therefore maps are only static storage of landmarks. In this paper we propose a novel method for 
cooperative map building based on hybrid (qualitative+quantitative) representation which includes also a 
reasoning process. Distinctive landmarks acquisition for map representation is provided by the cognitive 
vision and infrared modules which compute differences from the expected data according to the current map 
and the actual information perceived. We will store in the map the relative orientation information of the 
landmarks which appear in the environment, after a qualitative reasoning process, therefore the map will be 
independent of the point of view of the robot. Map integration will then be achieved by localizing each 
robot in the maps made by the other robots, through a process of pattern matching of the hybrid maps 
elaborated by each robot, resulting in an integrated map which all robots share, and which is the main 
objective of this work. This map building method is currently being tested on a team of Sony AIBO four 
legged robots.  

1 INTRODUCTION 

An autonomous mobile robot, able to explore an 
unknown but structured environment, must first be 
able to perform several related tasks, which can be 
illustrated by the answers to the following questions 
(Levitt, 1990): 

• What should I remember? (mapping) 
• Where am I? (localization) 
• Where should I go? (path planning) 
• How can I go? (motion control or navigation) 

Acquiring and maintaining internal maps of the 
world is a necessary task to carry out a successful 
navigation in complex environments. 

We are going to solve in this paper the problem 
of map building for several cooperating autonomous 
mobile robots on an unknown labyrinth made of 
rectangular walls. The walls are distributed 
randomly forming a labyrinth and the robots are left 
inside with no knowledge of the environment. The 
robots have to explore the environment and to 
cooperate to build a map of the environment.  

There are in the literature a lot of approaches for 
building maps in static, structured and relatively 
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small environments. They can be divided into three 
main strategies: qualitative, quantitative and hybrid 
approaches. 

Qualitative models focus on the boundaries of 
the objects, making divisions of the space more or 
less detailed. These approaches deal with imprecise 
information in a manner inspired by the cognitive 
processes used by humans. The qualitative concept 
of a topological map, which represents the world 
using nodes (places) and arcs (relations), has been 
used in several approaches, such as the one 
introduced by (Kuipers, 1978). Another model is 
defined by (Freksa, 2000), where schematic maps 
are used to reason about relative positions and 
orientations.  Other qualitative models have been 
carried out by several authors. Most of these 
qualitative models have been implemented mainly in 
simulations. 

Quantitative methods represent the environment 
by metrical information obtained by the sensors. The 
major exponent of this strategy is the grid-based 
model, introduced by (Moravec and Elfes, 1985). 
Quantitative models are affected by odometric and 
sensory errors. In recent years, many quantitative 
approaches have been developed using probabilistic 
techniques to cope with partial and inaccurate 
information. All of these approaches are based in 
implementations of the Bayes filter, as the Kalman 
filter, hidden Markov models, partially observable 
Markov decision processes or Monte Carlo 
localization. A survey on this techniques can be 
found in (Thrun, 2001) and (Thrun, 2002). 

Hybrid approaches handle with qualitative and 
quantitative information, combining the best of the 
each model. One of the first models for map 
building was proposed by (Thrun, 1998), which 
combines the occupancy grids with topological 
maps. Other hybrid models can be found in 
numerous papers, as (Escrig, 2005). More hybrid 
models use probabilistic techniques to cope with 
partial information. 

The work presented in this paper represents 
hybrid information into a map: quantitative data 
provided by robot sensors (most of the times this 
data contain imprecision); and qualitative data. 
Moreover, our approach is going to use a qualitative 
reasoning process which will allow us to solve the 
four problems above mentioned: mapping, 
localization, planning and navigation.  

2 COOPERATIVE MAP 
BUILDING 

We are going to solve the problem of cooperative 
map building for several autonomous mobile robots 
on an unknown labyrinth made of rectangular walls. 
We suppose each robot is able to explore an area in 
front of it, in order to detect if this area is free or if it 
is occupied by one or more walls, or by other robot. 
Taking into account that the walls are straight, each 
robot must detect the distance and orientation of 
each wall which enters in its exploring area, and the 
position of a circle enclosing each other robot it 
detects in the area. In the case of AIBO robots, we 
have implemented a multisensory approach to 
explore this area, by using the TV camera of the 
robot, and the infrared range sensor.  

The cooperative map building procedure is 
composed of the following steps: 

• Individual Map Building 
• Map Sharing and Self-Localization 
• Integrated Map Building 

3 INDIVIDUAL MAP BUILDING 

For each robot, we build a individual map taking as 
input the distance and orientation of each wall which 
enters in its exploring area, and the position of a 
circle enclosing each other robot it detects in the 
area, and have as output the generated map, and the 
orders to the robot for exploring the environment, in 
the terms of “walk XX centimetres”, and “turn YY 
degrees”. 

3.1 Initialization  

At the beginning, the robot map is empty, and the 
robot detects nothing in the area in front of it, 
therefore it assumes the initial hypothesis that the 
scenario is composed of an infinite floor surface, 
without walls, with only an explored point: the 
current position of the robot. The robot starts 
walking ahead until the explored area in front of the 
robot is occupied by a wall. This situation can be 
seen at the snapshot 1 of figure 1. Each step the 
robot gives is memorized in the database (only to 
make an approximate evaluation of the distance the 
robot walks in free walking). When the robot detects 
a wall, it enters into the wall following mode. 
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3.2 Wall Following 

When the robot detects an unknown wall, it starts 
following the wall by turning right and following the 
wall. While it is walking along a straight wall, it 
stores the distance it walks as an approximate 
measure of the length of the wall. When it reaches a 
corner, it labels the corner and it stores the 
approximate turning angle of the corner before start 
following a new wall. This process can be seen at 
snapshots 2, 3 and 4 of figure 1. 

Nevertheless, the process is not as simple as 
this. The imprecise information about robot position 
and orientation given by odometry, makes 
impossible to generate a map of the scenario as the 
one shown in figure 1. In fact, the real map is more 
or less as the one shown in figure 2. 

The map information stored in the database 
when the robot discovers point d is the following: 
 

point(nonreal,p01). 
point(real,a,95). 
line(p01,a,3). 
point(real,b,100). 
line(a,b,3). 
point(real,c,105). 
line(b,c,1). 
point(real,d,-85). 
line(c,d,1). 
 

Taking into account the uncertainty in direction 
and length, we can easily see that it will be 
impossible to recognize directly the corner i as the 
corner a, therefore it will be seen as a different one 
and the robot will give infinite loops around the 
room. This process will end when the following 
module, the hybrid shape pattern matching, proposes 
that corner a is corner i, so the shape is totally 
explored. 

1 2 

3 4 

Figure 1: An example of scenario. 
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Figure 2: The scenario map as build by the wall following process alone. 
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3.3 Hybrid Shape Pattern Matching 

The hybrid shape pattern matching is continuously 
monitoring the output of the previous module, which 
can be seen in figure 3. In this figure, we can see 
from left to right the movements of the robot, as a 
straight line for each straight step, an angle down for 
inner corners, and an angle up for external corners. 
The pattern matching process tries to detect cycles in 
the trace shown in figure 3. The first hypothesis 
which we can make is to suppose that corner a is the 
same as corner i, but the pattern matching process is 
only sure when corner d is revisited, as is one of the 
two only external corners of the scenario, and it is 
very difficult to misrecognize this. 

Note that this hypothesis can be wrong, 
therefore it will be stated and maintained only if 
subsequent measures are compatible with this 
hypothesis. If not, the hypothesis must be revised 
through a truth maintenance process which we 
implement thanks to the backtracking mechanism of 
prolog, the language we have implemented this 
algorithm. 

Once the hypothesis has been stated, the 
scenario map is corrected under the assumption that 
corner a is corner i, and the position and orientation 
error between i and a, is cancelled by splitting it in 

several minor corrections to angles and distances in 
order to achieve that point a and point i will be the 
same, resulting in a map as the one seen in figure 4. 

3.4 Inner/Outer Area Exploration  

Once the shape of the scenario has been resolved, it 
is necessary to see if it is a shape enclosing the 
robot, or if it is a shape surrounded by the robot. 
This can be seen by simply seeing if the total angle 
is +360 degrees, in which case the robot is inside the 
shape, or -360 degrees, if the robot has surrounded a 
shape from the outside. Now it is necessary to split 
all the unexplored area by using the two-dimensional 
qualitative orientation model of (Zimmerman and 
Freksa, 1993). The model defines a Reference 
System (RS) formed by two points, a and b, which 
establishes the left/right dichotomy. The fine RS 
includes two perpendicular lines by the points a and 
b. This RS divides the space into 15 qualitative 
regions (Figure5a). An iconical representation of the 
fine RS and the names of the regions are shown in 
Figure 5b). 

obstacle 

cycle  i=a 

a b c d e f g h i 

Figure 3: The hybrid pattern matching process.
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Figure 4: The scenario map corrected by the hypothesis a=i.
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Figure 5: a) The fine RS and b) its iconical representation. 

 
The information which can be represented by 

this RS is the qualitative orientation of a point 
object, c, with respect to (wrt) the RS formed by the 
point objects a and b, that is, c wrt ab. The 
relationship c wrt ab can also be expressed in other 
five different ways: c wrt ba, a wrt bc, a wrt cb, b 
wrt ac and b wrt ca, which are the result of applying 
the inverse (INV), homing (HM), homing-inverse 
(HMI), shortcut (SC), and shortcut-inverse (SCI) 
operations, respectively. 

The composition of relationships for this model, 
what we call Basic Step of the Inference Process 
(BSIP), on qualitative spatial orientation is defined 
such that “given the relationships c wrt ab and d wrt 
bc, we want to obtain the relationship d wrt ab”. 

The idea is to split the unexplored area in 
several subareas where the position of the robot does 
not vary with respect to any pair of corners of the 
scenario shape. As there are many subdivisions, 
secondly, we select not all, but only a few, which 
makes all the subareas convex, and which 
maximizes the probability of recognizing the corner 
(for instance, corners d and e will be preferent). In 
our case, the whole area is splitted in three convex 
regions: abcd, dahe, and fehg. Then the robot starts 
walking along the borders of these regions (lines a-d 
and e-h). 

If the robot found a wall while exploring the 
area, the shape is explored by using the same 
procedure of wall following and hybrid pattern 
matching. If not, the subareas are finally explored 
until the map is complete, or until the cooperative 
map building process decides that the integrated map 
is complete and that the individual maps must not be 
completed, as it would result in duplication of effort.  

4 MAP SHARING AND  
SELF-LOCALIZATION 

Each robot builds its own map independently 
according to the procedure stated in the previous 
point. In this point, which is made concurrently with 
the previous one, each robot shares its individual 

map with the other robots, so each robot has a copy 
of the maps of the other ones. The objective is that 
each robot must self-localize itself in the maps of the 
other robots. 

The procedure is very similar to the problem of 
SLAM (Simultaneous Localization and Map 
Building problem), which is described in (Lu, 1997). 
In the SLAM problem, a mobile robot must explore 
an unknown environment and to build a map of the 
environment. Once the map is built, the robot is 
kidnapped and located in other place of the 
labyrinth. The robot must then be able to localize 
itself in its map. A solution for this problem, making 
use of an hybrid approach very close to the one we 
describe, is described in (Escrig, 2005). 

The key problem of the SLAM, which is the 
same of this point, is to localize the robot in a map 
already built. Is not important if the robot must 
localize itself in a map of the environment made by 
itself, or made by other robot. 

The hybrid map of the environment, 
corresponding to the exploration of figure 1, will be 
the following (from point a to e): 

 
point(real,a,95). 
point(real,b,100). 
line(a,b,3). 
point(real,c,105). 
line(b,c,1). 
rel(a,b,c,[r]). 
point(real,d,-85). 
line(c,d,1). 
rel(b,c,d,[r]). 
point(real,e,-90). 
line(d,e,1). 
rel(c,d,e,[l]). 
 

Where the predicate rel(a,b,c,[r]) means that the 
qualitative orientation c wrt ab is r (see figure 5). 

The process of self-localization of the robot in 
the maps of others robots takes into account the own 
map of each robot, and the fact that the robot is 
localized in this map. Then the map of each robot is 
compared with the maps of other robots, first by 
comparing the qualitative orientation of the corners 
(In the above example, the rel/4 predicate, which 
says to us that the corner c is located at the right [r] 
of system ab, that corner d is located at the right [r] 
of system bc, and so on). The comparison of the 
qualitative orientations is very simple in 
computational cost and gives a few possibilities of 
matching, which are then compared quantitatively 
by using the line/3 and the point/3 predicates, which 
allow us to compare the angles and distances, and 
then the better matching is selected. 

a 

b 
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A simplification of this process is when a robot 
detects another one, because then it is possible to 
take advantage of the fact that two maps must match 
exactly starting from the localization of their robots, 
thus making simpler this process. 

5 INTEGRATED MAP BUILDING 

The last point is to integrate all maps in a single 
map. This process can be done starting from the 
individual maps and the matching corners that have 
been identified in the previous point. This allows to 
assert as working hypothesis (which can be wrong, 
so this point must take into account a possible 
backtracking of matching points) an integrated map 
and the matching of each individual map in the 
cooperative map. This hypothesis is maintained until 
a robot generates a individual map which does not 
match with the integrated map, resulting in a 
backtracking process to detect which corner 
matching is erroneous, according to new data. This 
is a constraint solving problem, in which we offer 
the integrated map as the map which better adjusts to 
each individual map, but taking into account that is 
not the only solution (for example, a solution where 
the environment is composed of all individual maps 
without any matching is always possible, but is not 
the simpler one). A good way to select the working 
hypothesis is to select the integrated map with fewer 
corners of all solutions, compatible with current 
matchings. 

Finally, the integrated map building process 
must decide if the integrated map is complete. If it 
is, it will send a signal to all robots to make them 
interrupt its individual map building process and to 
accept the integrated map as complete, and to give 
the environment as completely explored. If we do 
not take this step, each robot will individually 
explore the environment, so the exploring work 
would be repeated as many times as robots we have, 
and the idea is to accelerate the environment 
exploration by using more robots.  

6 CONCLUSIONS 

This paper describes a procedure to the problem of 
exploring a unknown environment with several 
robots, which makes the exploration faster as the 
number of robots increases. This is a good procedure 
for starting cooperative works with several mobile 
robots, as for example to explore an area for finding 

things, or for vacuum cleaning of huge surfaces (as 
commercial centres), and so on. The algorithm can 
be programmed in a main host connected by 
wireless with the mobile robots, or can be 
implemented in each robot without a central host 
(useful for autonomous systems), if a common 
memory is shared among them by wireless. 
Currently we are working on its implementation on a 
team of Sony AIBO four legged robots, on an 
unknown environment composed of boxes on a 
room, to form a labyrinth which must be explored. 
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