
FINDING A COMMON QUADRATIC LYAPUNOV FUNCTION
USING CONICAL HULLS

Rianto Adhy Sasongko
Control and Power Group, Department of Electrical and Electronic Engineering, South Kensington Campus,

Imperial College London, London SW7 2AZ, United Kingdom

J. C. Allwright
Control and Power Group, Department of Electrical and Electronic Engineering & Centre for Process Systems Engineering,

South Kensington Campus, Imperial College London, London SW7 2AZ, United Kingdom

Keywords: Positive semidefinite matrices, cone, conicall hull.

Abstract: Consider a set of linear time-invariant continuous-time systems that is a convex hull with vertices formed by a
given set of systems. The problem of finding a common Lyapunov function v, specified in terms of a symmetric
positive definite matrix, for the convex hull of systems is tackled by searching for a symmetric positive definite
(PD) matrix P which causes dv/dt to be negative definite for each vertex system. The approach involves an
extension of an existing method for solving optimization problems for positive semidefinite (PSD) matrices
that is based on a representation of the cone of PSD matrices as a conical hull. The condition that the derivative
of the Lyapunov function for each vertex system is negative definite is converted naturally into the condition
that the matrix P belongs to the interior of the intersection of several conical hulls: one for each vertex system
to ensure dv/dt for it is negative definite. The determination of a P in the intersection is viewed as the
solution of a quadratic programme on the product space of the cones. Then the existing theory and algorithms
for conical hull problems are adapted to the solution of the quadratic programme. The numerical results
suggest that the proposed algorithm is faster than the projective method used in MATLAB for small problems.
Effort is being devoted to improve it for larger problem.

1 INTRODUCTION

For a family of dynamical linear continuous-time sys-
tems, obtaining a common Lyapunov function (CLF)
is desirable to ensure stability of all systems in the
convex hull of that set of systems or stability when the
system transits from one vertex of the convex hull to
another at any time (D.Liberzon, 2003). The impor-
tance of a common Lyapunov function for stabiliza-
tion of switched linear systems is discussed in (G.Xie,
2004), and the existence of a common Lyapunov
function for a set of asymptotically stable systems is
examined in (N.A.Bobylev, 2002) and (R.N.Shorten,
2003). An algorithm for obtaining a common Lya-
punov function, called the gradient method, is dis-
cussed in (D.Liberzon, 2003). A semidefinite pro-
gramming algorithm, called the projective method,
(A.Nemirovskii, 1994) can also be used for solving
such problems.

Here a new algorithm is proposed for finding a
common Lyapunov function; it is based on the con-
ical hull approach to the description of the set of sym-
metric positive semidefinite matrices, which will be
introduced later.

Let S denote the set of symmetric matrices from
Rn×n. Let S≥ be the set of positive semidefinite ma-
trices, and S> the subset of positive definite matrices,
from S.

For a set of N stable Ai ∈ Rn×n, i = 1 : N ,
the function v(x) = xT Px is a common Lyapunov
function for the Ai if P ∈ S satisfies

AT
i P + PAi < 0, ∀i ∈ [1 : N ] (1)

Solving (1) for such a P is a semidefinite program-
ming problem with the symmetric positive definite
matrix P as the variable.

In the following analysis, it will be convenient to
describe such P by vec(P), which is the vector con-
sisting of the entries of P in a certain order. In de-
tail, vec(P ) = [P (1, :)T ; P (2, :)T ; . . . ;P (n, :)T ] ∈
Rn2

(using MATLAB notation). Of course, P =
vec−1(p). Consequently condition (1) can be written
as:

Mip ∈ vec(S>) , ∀i ∈ [1 : N ]
p ∈ vec(S>) (2)

for

Mi = −(AT
i ⊗ I + I ⊗AT

i ) ∈ Rn2×n2 (3)

113
Adhy Sasongko R. and C. Allwright J. (2006).
FINDING A COMMON QUADRATIC LYAPUNOV FUNCTION USING CONICAL HULLS.
In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics, pages 113-118
DOI: 10.5220/0001218001130118
Copyright c© SciTePress



where ⊗ denotes the Kronecker product.
Since the Ai are asymptotically stable, the Mi are

non-singular. Therefore P = vec−1(p) solves (1) if
and only if

p ∈ M−1
i vec(S>),∀i ∈ 1 : N

p ∈ vec(S>) ,
(4)

or if and only if p ∈ int(I), the interior of I, where I
is defined by

I =

{
N⋂

i=1

M−1
i vec(S>)

}
(5)

The solution p needs to be in the interior of I to guar-
antee the positive definiteness of the corresponding
matrix P = vec−1(p).

Hence, there is a CLF of the form v(x) = xT Px if
and only if

I 6= ∅ (6)

and the problem of solving (1) is equivalent to that of
finding an interior point p of the intersection I, assum-
ing it has one.

The main contribution here is the development of
a computational method for finding a vector p in
interior(I), if there is one.

We have chosen to investigate the above formula-
tion since the other obvious formulation

min
Pi∈S≥
i=[0:N ]

N∑
i=1

‖Pi+AT
i P0+PT

0 Ai‖2+‖P0−βI‖2 (7)

leads to one additional conical hull being involved
(the purpose of β, a positive scalar, will become clear
near (22)).

The material is presented in the following way.
Some descriptions and properties of a conical hull
representation of the set of symmetric PSD matrices
is given in Section 2. An approach for finding a point
in the interior of I using the conical hull approach is
outlined in Section 3. More detail about the solution
of the CLF problem using conical hulls is also given
in this section. Numerical procedure and some results
for the CLF problem are given in Section 4. Finally,
the conclusions are given in Section 5.

2 A CONICAL HULL FOR PSD
MATRICES

2.1 Conical Hull Characterization
for Symmetric PSD Matrices

The background theory of symmetric matrices can
be found in various references, some of them are

(R.A.Horn, 1985) and (G.Strang, 1988). The de-
finitions of this section and the basic conical hull
theory and approach used throughout this paper
are from (J.C.Allwright, 1988) and (J.C.Allwright,
1989); most of the proofs can be found in these pa-
pers.

Symmetric PSD matrices are defined uniquely by
their diagonal and upper triangle of elements, so
vec(S) = {vec(A) : A ∈ S} is a subset of a linear
subspace of Rn2

that has dimension r = n(n + 1)/2.
An orthonormal basis for that subspace can easily be
found. For instance, for the case n = 3, suitable ba-
sis vectors are w1 = e1, w2 = (e2 + e4)/

√
2, w3 =

(e3+e7)/
√

2, w4 = e5, w5 = (e6+e8)/
√

2, w6 = e9

where ei = [0 0 . . . 0 1 0 . . . 0]′ with the 1 in row i.
The corresponding basis matrix is

W = [w1 w2 . . . wr] ∈ Rn2×r (8)

and it is easy to check that WT W = Ir, R[WT ] =
Rr and R[W ] = vec(S).

Using this basis, vec(A) ∈ Rn2
can be written in

terms of the vector vec(A) ∈ Rr as

vec(A) = Wvec(A) ∈ Rn2
(9)

where
vec(A) = WT vec(A) ∈ Rr. (10)

Since, generically, vec(A) contains no redundant
information regarding symmetric A, it can be thought
of as a minimal description of such an A.

Now any matrix A ∈ S≥ can be written as A = M2

for some M ∈ S. For example, if the spectral form of
A is written as V ΛV T with Λ = diag[λ1 λ2 . . . λn]
then such an M is V diag(

√
λ1 . . .

√
λn)VT. Let-

ting B = M(‖M‖F )−1, where ‖M‖F :=
(
∑n

i,j=1 m2
ij)

0.5 is the Frobenius norm, we see that
our general A can be written as A = αB2 for α ∈
[0,∞) and B ∈ U := {B ∈ S : ‖B‖F = 1}. This
suggests, correctly, that S≥ = cone{B2 : B ∈ U}
where cone(X) := {αx : α ∈ [0,∞), x ∈ X} is the
conical hull of X .

In fact, it will be more convenient to use

vec(S≥) = cone(Ω) (11)

where
Ω = conv {Ψ} (12)

for

Ψ =
{
vec(B2) : B ∈ U

}
⊂ Rn2

U =
{
B ∈ Rn×n : BT = B , ‖B‖F = 1

} (13)

and it is obvious that the set vec(S≥) that contains
only the minimal description of every symmetric pos-
itive semidefinite matrix can be written as:

vec(S≥) = cone(WT Ω) (14)

ICINCO 2006 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

114



2.2 Properties of our Conical Hull of
Symmetric PSD Matrices

Some definitions and properties of the conical hull
of PSD matrices are presented in this section; this
will be needed for the development of the algorithm.
Recall that vec(S≥) = cone(Ω) and vec(S≥) =
cone(WTΩ) for Ω of (12). Since the set S> of
symmetric positive definite matrices is the interior of
the set S≥

vec(S>) = int(cone(WT Ω)) (15)

It follows from the definition (12) that Ω is a non-
empty, convex, and compact set, and (not so obvi-
ously) that:

min ‖x‖2 = n−1/2

x ∈ Ω (16)

A consequence of this fact is that:

min ‖x‖2 = σmin(L)n−1/2

x ∈ LWT Ω
(17)

for all L ∈ Rr×r, where σmin(L) is the minimum
singular value of L.

It is interesting that Ω is a subset of an affine subset
of Rr, which is actually the intersection of an affine
set and (vec(S≥), which is a cone. Hence, somewhat
surprisingly, Ω is a ’flat’ set. This is illustrated in the
following figure:

Figure 1: Depiction of Ω.

For the determination of feasible descent directions
later, it will be important to be able to solve easily, for
any vector ḡ ∈ Rr, the optimization problem:

min ḡT γ
γ ∈ LWT Ω (18)

It turns out that a minimizer γ̂ can be found easily as

γ̂ = LWT vec(ννT ) (19)

where ν is a normalized eigenvector corresponding to
the minimum eigenvalue of Z, with Z defined as:

Z = [vec−1(ḡ) + vec−1]/2 ∈ Rn×n (20)

for
ḡ = WLT g (21)

3 OPTIMIZATION ON CONICAL
HULLS

Conceptually the CLF problem is that of finding a
z̄ ∈ int(

⋂
Ki) where the Ki are the convex sets

cone(WT M̄iΩ). The approach will be to first find
a point in the intersection

⋂
Ki and then, if it is not

in the interior, to perturb it into the interior (if there is
one).

The basic idea for finding a point in
⋂

Ki is to
find a z̄i in each Ki such that the distance between
all z̄i is minimized. Then, if the minimal distance is
zero, we have found a point ˆ̄z which is in the inter-
section

⋂
Ki. Obviously the origin is not in the inte-

rior of the intersection, so to encourage the optimiza-
tion algorithm to find a non-zero point, a penalty term
‖z̄1 − vec(βI)‖2, with positive real β, is added to the
cost to attract vec−1(z̄) towards the positive definite
matrix βI . Hence the problem is

min
z̄i∈Ki

i=[1:N ]

∑
i,j∈[1:N ]

i 6=j

‖z̄i − z̄j‖2 + ‖z̄1 − vec(βI)‖2

(22)
which is a convex problem. Next a cone is constructed
as:

K = {K1 ×K2 × . . .×KN} (23)
Then the optimization problem (22) can be reformu-
lated as :

min v(z̄)
z̄ ∈ K (24)

where,

v(z̄) = z̄T Q̄z̄ + F̄ z̄

Q̄ =
∑N

i,j=1, i 6=j P̄T
Eij

P̄Eij
+ P̄T

1 P̄1

F̄ = −2β̄T P̄1

P̄Eij = P̄i − P̄j

(25)

Here β̄ = vec(βI), z̄ = (z̄1, . . . , z̄N )T with each
z̄i ∈ Ki, and the matrix P̄i selects z̄i from z̄, in that
z̄i = P̄iz̄.

The set K itself is a convex cone, so the algorithm
of (J.C.Allwright, 1988) for finding the closest point
in cone(Γ) to a point d, i.e. for solving

min ‖d− x‖2 ,
x ∈ cone(Γ)

(26)

can be adapted to solve the optimization problem
above because ‖d− x‖2 = ‖d‖2 − 2dT x + ‖x‖2 and

FINDING A COMMON QUADRATIC LYAPUNOV FUNCTION USING CONICAL HULLS

115



this has the same form as the cost of (22).
To proceed further, the notion of a truncated cone

is needed . The bounded subset coneT(Γ) =
{αx : x ∈ Γ, α ∈ [0, 1]} will be called the trun-
cation of the complete conical hull cone(Γ) =
{αx : x ∈ Γ, α ∈ [0,∞]}. Then the corresponding
truncated cone Kη is defined by

Kη =
�
coneT(η1W

TM̄1Ω)× coneT(η2W
TM̄2Ω)×

. . .× coneT(ηNWTM̄NΩ)
	

(27)

It turns out that it is easy to compute a positive real
η such that the unknown optimal solution of (22) lies
in the bounded set Kη. This yields the optimization
problem

min v(z̄)
z̄ ∈ Kη (28)

An algorithm for solving this problem is discussed
next.

3.1 Finding Supporting Hyperplanes

The concepts and algorithm of (J.C.Allwright, 1988)
can now be applied to solve the optimization prob-
lem of (28). At each iteration, it first calculating the
gradient ḡk = 2z̄T

k Q̄ − 2β̄T (P̄T
1 P̄1) of the quadratic

cost v(z̄) . A linearisation about z̄k of v(z̄) is then
provided by v(z̄k) + ḡT

k (z̄ − z̄k). The next step is to
minimize this linearisation with respect to z̄ from Kη

by solving the problem:

Figure 2: Linear minimization over cone.

min ḡT
k (z̄ − z̄k)

z̄ ∈ Kη (29)

For suppose an optimal solution for this problem is
called z̃k. Then z̃k − z̄k is a feasible descent direc-
tion from z̄k and therefore can be used to decrease the

value of the cost fuction v(z̄). It can be seen that the
minimizer will be either in the set ηWT M̄iΩ or at the
origin i.e. at the vertex of the cone. An interpretation
of this optimization is that it is finding the supporting
hyperplane for the set Kη that has normal ḡk. Owing
to the structure of optimization problem (29), this lin-
ear programming problem can be decomposed into N
separate minimization problems

min ḡT
ik

z̄
z̄ ∈ Kη

i
i ∈ [1 : N ]

(30)

where the gradients ḡik
are from the partitioning of

the gradient vector ḡ
k

as
[
ḡ1k

ḡ2k
. . . ḡ

Nk

]T

.

According to (18-21), minimizing ḡT (̄z) over the set
Kη

i = coneT(ηiWTM̄iΩ) will give the following
minimizer:

z̃
ik

= ηiW
T vec(νik

νT
ik

) (31)

where ηi is truncation factor for appropriate set and
νik

is a normalized eigenvector corresponding to the
minimum eigenvalue of Zik

, λmin[Zik
], which is de-

fined as:

Zik
=

(vec−1(ḡik
)) + (vec−1(ḡik

)T )
2

∈ Rn×n

(32)
with,

ḡik
= W [ḡT

ik
WT M̄iW ]T (33)

Hence the contact point between set Kη and support-
ing hyperplane Hk =

{
z̄

∣∣ḡT
k z̄ = C

}
is the vector

z̃
k

=
[
z̃T
1k

z̃T
2k

. . . z̃T
Nk

]T
.

3.2 Quadratic Minimization Over a
Polytope

One way to determine a point z̄k+1 giving
v(z̄k+1) < v(z̄k) would be to minimize v(z̄) on
the set {z̄k + ω(z̃k − z̄k) : ω ∈ [0, 1]}. This involves
optimization with respect to the scalar ω and is
therefore relatively easy to carry out. This set is a
subset of Kη so optimization on it can be regarded as
optimization of v(z̄) on an approximation to Kη. Ob-
viously using a larger approximating set would tend
to give a greater reduction in v(z̄). Such a set can be
obtained as the convex hull of {0, z̃k, z̄k−1, z̄k, . . .}.
Then z̄k+1 is chosen as the point in this convex hull
that minimizes v(z̄). A way to do this optimization
on the polytope is outlined next.

Having the contact points available, an approxi-
mation to the set Kη is given by the convex hull of
the contact points (29) and the optimal points of (28)
from previous iterations. Then the minimizer of (28),
ˆ̄z, can be calculated by solving a quadratic problem

ICINCO 2006 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

116



over this convex hull, as follows:

Theorem 3.1 : Let ˆ̄z
k−Nv

, ˆ̄z
k−Nv+1 , . . . , ˆ̄z

k−1 be the
set of minimizers of the quadratic function v(z̄) over
the convex hull defined at iterations (k − Nv), (k −
Nv + 1), . . . , (k − 1), and let z̃

k−1 be the minimizer
of ḡT

k−1(z̄− z̄k−1) over Kη at iteration (k− 1). Then

v(ˆ̄zk) ≤ v(z̃k−1) ≤ v(ˆ̄zk−1) (34)

where,

ˆ̄zk = arg min v(z̄)
z̄∈co{ˆ̄z

k−Nv
,ˆ̄z

k−Nv+1 ,...,ˆ̄z
k−1 ,z̃

k−1}
(35)

Here co
{
v̄1, v̄2, . . . , v̄Nv

}
represents the convex hull

of the vectors v̄1 , v̄2 , . . . , v̄Nv
and Nv denotes the

number of vectors used for the convex hull. The inte-
ger k denotes the iteration number.

To solve optimization problem (35), we first repre-
sent the variables z̄i of each set Ki as a convex com-
bination of v̄i

1
, v̄i

2
, . . . , v̄i

Nv
, i.e.

z̄i =
∑Nv

j=1 µi
j
v̄i

j
for

∑Nv
j=1 µi

j
= 1, µi

j
≥ 0

(36)
for all i ∈ [1 : N ] with each vi

j
∈ R(r×1).

Using this in (35) transforms the problem into the
quadratic programme in µ̃

min
µ̃∈R(Nv×N)×1

µ̃T VT Q̄Vµ̃ + F̄Vµ̃

subject to Gcµ̃ =
[
1̄((Nv×N)×1)

]
µ̃ ≥ 0

(37)

where

V =


V̄1 0̄(r×Nv) . . . 0̄(r×Nv)

0̄(r×Nv) V̄2 . . . 0̄(r×Nv)

...
...

0̄(r×Nv) 0̄(r×Nv) . . . V̄
N

 (38)

Gc =


1̄(1×Nv)1 0̄(1×Nv) . . . 0̄(1×Nv)

0̄(1×Nv) 1̄(1×Nv)2 . . . 0̄(1×Nv)

...
...

0̄(1×Nv) . . . 1̄(1×Nv)N


(39)

with

V̄
i
=

[
v̄

i

1
v̄

i

2
. . . v̄

i

Nv

]
µ̃ = [µ̄1T

µ̄2T

. . . µ̄NT

]T

µ̄i = [µi
1

µi
2

. . . µi
Nv

]T ; i = 1, . . . , N.

(40)

Here 0̄(p×q) is a p× q zero matrix and 1̄p×q is a p× q
matrix with all its entries equal to 1.

The optimal solution, ˆ̄z, of the original problem
(35) can then be calculated from the solution ˆ̃µ of the
transformed problem (37) using

ˆ̄z = [Vf ] ˆ̃µ (41)

where Vf is as defined in (38) with its entries formed
from the vectors specifying the convex hull defined in
the last iteration.

The convergence of the sequence z̄k to an optimizer
for optimization problem (22) can be proved in much
the same way that convergence for a similar optimiza-
tion problem was proved in (J.C.Allwright, 1988).

3.3 Correction Using Gradient

It may happen that the solution P̂ = vec−1(W ˆ̄zi)
from (41) above lies on one or more of the boundaries
of the cones Kη

i , in which case the solution will not
satisfy at least one of the positive-definiteness con-
straints. Even if the all the positive-definiteness con-
straints are satisfied, it might be desired to have a ma-
trix that is not so close to the boundary in that the
smallest eigenvalue of−(AT

i P +PAi) is undesirably
small. In this case, a correction using the gradients of
the constraints can be incorporated into the algorithm.
This enables a small update δP to be applied to the so-
lution P̂ to give the modified solution P̂ + δP where
the correction can be obtained by finding a δP̃ that
makes the following inequalities hold for all j:∑

l,m∈[1:n]
∂λj(M̃(i))

∂Pl,m
δP̃l,m ≤ 0, i ∈ I−∑

l,m∈[1:n]
∂λj(M̃(i))

∂Pl,m
δP̃l,m < 0, i ∈ I0∑

l,m∈[1:n]
∂λj(M̃(i))

∂Pl,m
δP̃l,m < 0, i ∈ I+

(42)

Here (l,m) is the index of the elements of P̂ =
vec−1(ˆ̄z), and M̃(i) = AT

i P + PAi. I−, I0, and
I+ denote the index of sets where the initial point P̂
lies inside the corresponding set, on its boundary or
outside, respectively. It is obvious that for i ∈ I−,
i ∈ I0, and i ∈ I+, the value of M̃(i) will be nega-
tive, zero, and positive respectively.
The gradient can obtained from:

∂λj(M̃(i))
∂Pl,m

= xjx
T
j (43)

with xj is the eigenvector corresponding to the eigen-
value λj(M̃(i)). The δP̃ will make the inequalities
in (42) hold, and it can be used for updating δP i.e.
we can set δP = ωδP̃ by choosing an appropriate
scalar ω > 0, so that all constraints are satisfied by
the corrected solution.

4 NUMERICAL CALCULATION

4.1 The Algorithm

The algorithm then is implemented in numerical cal-
culation for solving our convex problem. The algo-
rithm is arranged as follows:

FINDING A COMMON QUADRATIC LYAPUNOV FUNCTION USING CONICAL HULLS

117



1. set k = 0, choose initial point z̄0, error bound ε >
0, number of vertices of the convex hull Nv , and
calculate basis matrix W and M̄i for all i

2. set z̄ = z̄k

3. calculate cost value v(z̄k) and the gradient ḡk, then
find the the contact point ˜̄zk between set Kη and
hyperplane Hk by solving ḡT

k z̄ (29)
4. for co {z̄k, z̄k−1, . . . , z̄k−Nv+1, ˜̄zk}, if k < (Nv −

1) then set z̄k−1, . . . , z̄k−Nv+1 = 0, form V and
Gc, and calculate VT Q̄V and F̄V

5. solve the quadratic programming problem (37) to
get the minimizer ˆ̄zk, and calculate v(ˆ̄zk) and the
lower bound blow = v(z̄k) + ḡT

k (ˆ̄zk − z̄k)

6. if v(ˆ̄zk)−blow < ε then stop, otherwise set z̄k+1 =
ˆ̄zk and k = k + 1 and go to step 2

7. perform correction procedure of section 3.3 if nec-
essary

4.2 Numerical Results

The algorithm has been tested for finding a com-
mon Lyapunov function for a various problems. The
results were compared with those of the projective
methods (A.Nemirovskii, 1994) available in the MAT-
LAB LMI toolbox. A common symmetric PD matrix
P was found after finite iterations using the conical
hulls, and the computing times for it are listed in 2nd
row of table 1. The 3rd row shows the processing time
for the correction procedure. The conical hull algo-
rithm and the MATLAB algorithm were executed 100
times to observe the consistency of the time calcula-
tions. Since the latest version of MATLAB exploits
the JIT-accelerator, converting the M-script to C/C++
code (MEX-file) would not have improved the execu-
tion time.

Table 1: Numerical Results - Processing time (seconds).
n = 10 N = 2 N = 4 N = 6 N = 10

C −Hull 0.003 0.0502 0.11 0.384
(corrct) 0.023 0.0411 0.0576 0.06

ProjMet 0.0633 0.0805 0.1063 0.2484

The results show that the conical hull algorithm
is faster for N = 2, 4. As the number of inequal-
ities increases, the conical hull algorithm becomes
slower, compared to the projective method. Since the
proposed method uses distance minimization between
points in all the cones, as the number of inequalities
rises, the number of variables will also rise signifi-
cantly. Probably, the reason the conical hull algo-
rithm performs less well for bigger problem is that
the QP involved at each iteration becomes relatively
more costly to execute. To overcome this problem,
an efficient way for managing the variables should be

explored. It should be noticed that the proposed algo-
rithm guarantees all the inequalities are satisfied ac-
curately.

5 CONCLUSIONS

A new algorithm has been presented, based on the ex-
isting conical hull theory, for solving the problem of
finding a common quadratic Lyapunov function for
a family of stable dynamical systems. The numeri-
cal results suggest that the algorithm is better than the
projective method for small problems. Further devel-
opments will be carried out to improve it for larger
problems and apply it to control studies.

ACKNOWLEDGEMENTS

The first author would like to thank the Islamic De-
velopment Bank (IDB) who provides the fund that en-
ables him to undergo the project.

REFERENCES

A.Nemirovskii (1994). The projective method for solving
linear matrix inequalities. Proceedings of the Ameri-
can Control Conference, pages 840–844.

D.Liberzon (2003). Gradient algorithm for finding common
lyapunov functions. 42nd IEEE Conference on Deci-
sion and Control, pages 4782–4787.

G.Strang (1988). Linear algebra and its applications. Har-
court Brace Jovanovich, San Diego, 3 edition.

G.Xie (2004). Stability and stabilization of switched linear
systems with state delay: continuous-time case. 16th
Mathematical Theory of Networks and Systems Con-
ference.

J.C.Allwright (1988). Positive semidefinite matrices : Char-
acterization via conical hulls and least-squares solu-
tion of a matrix equation. SIAM journal of Control
and Optimization, 26:537–556.

J.C.Allwright (1989). On maximizing the minimum eigen-
value of a linear combination of symmetric matrices.
SIAM journal on Matrix Analysis and Applications,
10:347–382.

N.A.Bobylev, e. (2002). On the stability of families of dy-
namical systems. Differential Equations, 38(4):464–
470.

R.A.Horn (1985). Matrix Analysis. Cambridge University
Press.

R.N.Shorten (2003). On common quadratic lyapunov func-
tions for pairs of stable lti systems whose system ma-
trices are in companion form. IEEE Transactions on
Automatic Control, 48(4):618–621.

ICINCO 2006 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

118


