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Abstract: This paper deals with fault detection and isolation off-line affecting sensors and actuators of uncertain 
parameter systems modelled by bond graph. A fuzzy approach for fault detection based on residual 
fuzzification is proposed. Besides, an isolation method based on fuzzy processing of the detection results is 
proposed. Finally binary approach and fuzzy one are compared through an illustrative example. 

1 INTRODUCTION 

Due to the increasing size and complexity of modern 
processes, their safety and their efficiency become 
very important. The aim of our work is to keep 
process in a good level of safety. Presently, fault 
detection and isolation is an increasingly active 
research domain. A process is in a defective state if 
causal relations between its known variables 
changed (Brunet J., 90). A widespread solution for 
fault detection and isolation is to use analytical 
model-based redundancy (Evsukoff A. et al., 2000). 

The choice of a modelling formalism is an 
important step for fault detection and isolation 
because the quality of redundancy relations depends 
on the quality of the model. In the frame of our work 
we chose Bond graph modelling. In fact the Bond 
graph is a powerful tool used for modelling the 
dynamical systems. Thanks to its provided 
information, bond graph can be used directly to 
generate analytical redundancy relations between 
known variables (Tagina M., 95).  

Moreover, the system parameters are sometimes 
uncertain; they can also be fluctuated by a wear, or 

an external disturbance (Niesner C., 2004). Fuzzy 
reasoning is a powerful tool for modelling the 
uncertainty generated by models and sensor 
imprecision as well as vagueness of the normal 
behaviour limits (Evsukoff A. et al., 2000).  

This paper proposes a fuzzy approach for fault 
detection and isolation affecting sensors and 
actuators of bond graph modelled uncertain 
parameter systems.   

In section 2, two methods for fault detection are 
presented, one is based on a fixed threshold in order 
to detect fault via a crisp decision, the other, which 
is proposed, is based on fuzzification of residuals 
provided by analytical redundancy relations (ARRs). 
In section 3, an isolation method based on known 
variables signature is presented, then an isolation 
method based on fuzzy processing of the detection 
results is proposed. Finally, in section 4, the classical 
and the fuzzy approach are applied to an illustrative 
example and results are compared in section 5. 
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2 FAULT DETECTION 
METHODS FOR UNCERTAIN 
PARAMETER SYSTEMS 

2.1 Binary Logic Based Method 

This technique consists on a test of the signal 
amplitude. The adjustment parameters are the 
thresholds regulated according to the various 
operating assumptions and the desired performances 
for detection (Brunet J., 90).  

2.2 The Proposed Method Based on 
Fuzzy Logic  

Observed residuals, written in integral form obtained 
when a rectangular fault affects sensors or actuators 
in a limited interval, have the following forms: 
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Figure 1: Residual forms in case of a rectangular fault. 

The (c) residuals can not be processed in the 
same way as the (a) and (b) residuals.  In fact for (a) 
and (b) residuals, the fault cancellation brings back 
the residual to a constant or null value. For the (c) 
residual, the fault cancellation does not prevent its 
divergence due to the double integration.  

2.2.1 (a) and (b) Residuals 

We have proposed in (Bouabdallah S. et al., 2005), a 
fault detection method based on the fuzzification of 
(a) and (b) residuals.  

Fuzzy reasoning is composed of the following 
stages: attribute fuzzification, application of 
inference rules and defuzzification (Bûhler H., 94). 
 

In the Fuzzy Logic Toolbox of Matlab 7.0, there 
are five steps of the fuzzy inference process: 

 
Step 1: Fuzzify inputs 
It consists in taking inputs and determining the 
degree to which they belong to each of the 
appropriate fuzzy sets via membership functions. A 
membership function is a curve that defines how 
each point in the input space is mapped to a 
membership value or degree of membership between 
0 and 1. The output is then a fuzzy degree of 
membership in the qualifying linguistic set.  
 
Step 2: Apply Fuzzy Operator 
Once the inputs have been fuzzified, we know the 
degree to which each part of the antecedent has been 
satisfied for each rule. If the antecedent of a given 
rule has more than one part, the fuzzy operator is 
applied to obtain one number that represents the 
result of the antecedent for that rule. This number 
will then be applied to the output function. The input 
to the fuzzy operator is two or more membership 
values from fuzzified input variables. The output is a 
single truth value. 
 
 Step 3:  Apply Implication method 
Every rule has a weight (a number between 0 and 1), 
which is applied to the number given by the 
antecedent. Once proper weighting has been 
assigned to each rule, the implication method is 
implemented. A consequent is a fuzzy set 
represented by a membership function, which 
weights appropriately the linguistic characteristics 
that are attributed to it. The consequent is reshaped 
using a function associated with the antecedent (a 
single number). The input for the implication 
process is a single number given by the antecedent, 
and the output is a fuzzy set. Implication is 
implemented for each rule. Two built-in methods are 
supported by fuzzy toolbox of Matlab 7.0, and they 
are the same functions that are used by the AND 
method: min (minimum), which truncates the output 
fuzzy set, and prod (product), which scales the 
output fuzzy set. 
 
Step 4: Aggregate All Outputs.  
Aggregation is the process by which the fuzzy sets 
that represent the outputs of each rule are combined 
into a single fuzzy set. The input of the aggregation 
process is the list of truncated output functions 
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returned by the implication process for each rule. 
The output of the aggregation process is one fuzzy 
set for each output variable.  
 
Step 5 Defuzzify 
The input for the defuzzification process is a fuzzy 
set (the aggregate output fuzzy set) and the output is 
a single number. There are five built-in 
defuzzification methods supported by Fuzzy 
Toolbox of Matlab 7.0: centroid, bisector, middle of 
maximum (the average of the maximum value of the 
output set), largest of maximum, and smallest of 
maximum. 

2.2.1.1 Fuzzification 

Two set of features are used in the fuzzification 
stage:  

1. absolute value of the residual                                                                                                                           
provided by ARRs :  r 

2.  variation |r-rfin| : d  
With rfin is the final value of r. 
The linguistic set {small, large} is used to 

describe the two attributes "r" and "d" which have 
trapezoidal membership functions, the supports of 
the membership functions are the same for "r" and 
"d". 
µ Small = [0, 0, r-max, Rmin ] 
µ Large  = [r-max, Rmin, Rmax, Rmax ] 
with:  
r-max: maximum value of r in fault free context. 
Rmin: minimal value of r when a rectangular fault is 
introduced in a limited interval. 
Rmax: maximum value of r when a rectangular fault 
is introduced in a limited interval. 

Notice: r-max=d-max, Rmin=Dmin and 
Rmax=Dmax. 
 

 
Figure 2: Fuzzy Partition of r and d. 

2.2.1.2 Inference Rules 

We have established a set of inference rules which 
are presented in the following table: 
 

Table 1: Inference rules. 

                  r 
  d          

Small Large 

Small Small Small 
Large Small Large 

 
We have used the method of inference max-min, 

this method consists in using the operator min for 
"AND" and the operator max for "OR". 

2.2.1.3 Defuzzication 

The defuzzification consists in transforming the 
fuzzy information provided in the inference stage in 
a real value. The output of the system is called Fault-
index.   

Three membership classes of Fault-index are 
defined: Small, Medium and Large.  
 

 
Figure 3: Defuzzification of Fault-index. 

The defuzzification provides a fault indicator, if 
Fault-index is close to 0 it means that known 
variables of the residual are in normal state. If Fault-
index is close to 1, that indicates the presence of a 
fault. If Fault-index is in the interval [0.25 0.75], 
then there is a detection problem. 

2.2.2 (C) Residuals 

It is assumed that, if a known variable appears in a 
(c) residual, it appears also in (a) or (b) residuals.  

We are interested now in a (c) residual rj, we 
suppose that the system has m residuals (a) or (b) 
having at least one common known variable with rj. 
These residuals are r1, r2… rm. 

The set of features of the system are: Fault-
index-1, Fault-index-2… Fault-index-m and rj 

2.2.2.1 Fuzzification 

The set {Small, Large} is used to describe all the 
attributes of the system. For rj, we use the 
membership functions presented in figure 2. For 

µ 
Small 

 µ 
Large 1 

      0             0.25              0.5               0.75                1        

 µ Medium 

µ 
1 
 
 
 

µ Small   µ Large 

    0            r-max                Rmin             Rmax r    

ICINCO 2006 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

100



Fault-indexes, we use trapezoidal membership 
functions. The supports of the membership functions 
are as follows:  
µ Small  = [ 0, 0, 0.25, 0.75 ] 
µ Large  = [ 0.25, 0.75, 1, 1 ] 
 

 
Figure 4: Fuzzification of Fault-index. 

2.2.2.2 Inference Rules 

The inference rules are based on the following 
observation:  the cancellation of a fault doesn’t 
appear in a (c) residual because of its divergence, 
(see figure 1). 

 The inference rules are as follows:  
- IF rj is "Small" THEN Fault-index-j is "Small" 
- IF rj is "Large" and Fault-index-i is "Large" THEN   
Fault-index-j is "Large" (Fault-index-i is a fault 
indicator of ri, 0<i<m+1) 
- IF rj is "Large" and Fault-index-1 is "Small" and… 
and Fault-index-m is "Small" THEN Fault-index-j is 
"Small". ({Fault-index-1… Fault-index-m} is the set 
of Fault-indexes corresponding to the residuals {r1, 
r2… rm}).  

2.2.2.3 Defuzzification 

The defuzzification provides a fault indicator for the 
residual rj. The output is called Fault-index-j. The 
fuzzy partition of Fault-index-j is the same as the 
fuzzy partition of Fault-index of (a) or (b) residuals. 

3 FAULT ISOLATION 

3.1 A Signature-based Isolation 
Method 

This method consists in associating each known 
variable with a binary vector. The terms equal to 1 
indicate the presence of the variable in the 
corresponding residual. This binary vector is the 
fault signature of the variable (Tagina M., 95).  

The residual processing provides a coherence 
binary vector which terms equal to 1 indicate the 

presence of a fault. For the fault isolation, the 
coherence binary vector must be compared to the 
various fault signatures as well as the normal 
functioning mode signature.  

3.2 The Proposed Fuzzy Isolation 
Method 

In this paragraph, we propose a fuzzy isolation 
method. The attributes of the system are Fault-
indexes provided in the detection stage. The outputs 
correspond to fault indicators of known variables 
(Fault-j).  

3.2.1 Fuzzification 

The descriptive set {Small, Large} is used to 
describe the Fault-indexes. The fuzzy partition is the 
same as figure 4. 

3.2.2 Inference Rules 

We suppose that we have N residuals and M known 
variables.   

Fault signatures can be rewritten by replacing 1 
by "Large" and 0 by "Small".  

This allows writing inference rules in the form:  
IF Fault-index-1 is ("Small"/"Large") and Fault-
index-2 is ("Small"/"Large")…and Fault-index-N is 
("Small"/"Large") THEN Fault-j is 
("Small"/"Large"), j ∈ {1, 2, ..,M} 

Notice: Fault-j is "Large" in only one rule, this is 
when the coherence binary vector is identical to fault 
signature of the known variable j. 

3.2.3 Defuzzification 

Three membership classes of Fault-j are defined: 
Small, Medium and Large.  

 

 
Figure 5: Fault-j fuzzy partition. 

The defuzzification provides a fault indicator in 
known variable j (Fault-j), a value close to 0 means 
that the variable j is in normal state, a value close to 
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1 indicates the presence of a fault in variable j.  If 
Fault-j is in the interval [0,25  0,75], then there is an 
isolation problem. 

4 ILLUSTRATIVE EXAMPLE 

We illustrate our approach with an RLC circuit: 

 
Figure 6: RLC circuit in sinusoïdal mode. 

With: 
 R = 500Ω, C = 5µF, L=0.2H, ω  =1000 rd /s  et 
  e(t) = 2 10sin (ωt ). 

A procedure described in (Borne et al., 92) and 
(Dauphin-Tanguy G. et al., 95) enables us to 
elaborate its bond graph model shown in figure 7. 
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Figure 7: Bond graph model of the RLC circuit. 

We have placed two sensors in the bond graph 
model:  
   - An effort sensor De 
  - A flow sensor Df 

Variables to be supervised (the known variables) 
are De, Df and Se. 

Analytical redundancy relations consist in 
finding relations between known variables of the 
system. We have elaborated the following analytical 
redundancy relations (ARRs) from the bond graph 
model by course of the causal paths. ARRs are 
written in integral form. 

RRA1 : 
.

Se DeDf
L s
−

=           (1) 

RRA2 : 0
.

DeDf
R De

C s

−
− =     (2) 

 

RRA3 :     0

Se De De
Ls R De

sC

−
−

− =     (3) 

 
The procedure of generating (ARRs) is described 

in (Tagina M.,95). 
 

The fault signature table of the three known 
variables (Se, De, Df) is given by table 2: 

Table 2: Signature Table. 

 Se De Df 
RRA1 1 1 1 
RRA2 0 1 1 
RRA3 1 1 0 

 
The bond graph model is converted into a 

synopsis diagram which is simulated under 
Simulink/Matlab environment. 
 

In normal functioning mode, the residuals have 
to be close to zero. The simulation of the residuals 
gives the following results:  
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Figure 8: residuals in fault free context and without 
uncertainty in the components. 

We verify that the three residuals are null. 
 
Application choices: 
* Uncertainty: We consider uncertainty as a white 
noise added on R, L and C values in the synopsis 
diagram (1% or 5% of each value). We have 
selected uncertainty of 1% and 5% on one hand 
because many components are given with this 
uncertainty; on the other hand because the 
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C 
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identification is possible in this case. For larger 
uncertainties, we can not distinguish between the 
fault and uncertainty.  
* Fault: We have considered fault as a rectangular 
signal added to a known variable, the fault amplitude 
is equal to 15% of the variables amplitude. We have 
selected this amplitude because the noise-to-signal 
ratio should not exceed 10%.   
* Fault Interval length: 
Faults are applied in intervals which length are 
between 0.1s and 8s. 

4.1 Case of 1% Uncertainty 

The following results are obtained by simulation of 
the three residuals r1, r2 and r3 in fault free context 
and when faults are introduced in intervals which 
lengths are between 0.1s and 8s: 

Table 3: Characteristics for 1% of uncertainty. 

r1-max   0.00188  
R1min 0.0307 
R1max 211.5 
r2-max   0.0001615  
R2min 0.001091 
R2max 0.3 
r3-max   19.62  
R3min 1.232e+5 
R3max 2.15e+8 

 
We note that   r1 and r2 are (a) and (b) residuals. 

However r3 is a (c) residual.  
A fault affects respectively Df, De and Se at time 

4s up to 6s. 

4.1.1 Fault Detection and Isolation by 
Binary Logic 

1 st case: (a) and (b) residuals (r1 and r2)  
The fault detection algorithm is as follows:   
IF (ri > threshold-i and di > 
threshold-i)  
THEN Fault-index-i=1 
ELSE Fault-index-i= 0 
 
2 nd case: (c) residuals (r3) 
IF (r3 > threshold-3 and r2 < 
threshold-2 and r1< threshold-1) or 
(r3<threshold-3)  
THEN Fault-index-3 = 0 
ELSE Fault-index-3 = 1   

The following thresholds are used in the 
detection program: r-max, 2*r-max and Rmin.   

We note that the fault detection is perfect for the 
thresholds shown in table 4.  

Table 4: Thresholds retained for 1% of uncertainty. 

Residual Threshold 
r1 2*r1-max 
r2 r2-max 
r3 2*r3-max 
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Figure 9: (a) Fault-index-1, Fault index-2 and Fault-index-
3 when a fault affects De between 4s and 6s. 

We can observe in figure 9 that Fault-index-1, 
Fault-index-2 and Fault-index-3 are equal to 1 in the 
interval where we have introduced the fault. This 
lead to a coherence binary vector equal to [1 1 1] in 
the interval [4s 6s], its comparison with different 
signatures of table 2 locates the fault at the sensor 
De. 

We note that classical logic allows a perfect fault 
detection and isolation if the threshold between 
normal state and defective one is correctly chosen. 

4.1.2 Fault Detection and Isolation by Fuzzy 
Reasoning 

By applying the proposed fuzzy approach to r1, r2 
and r3 in Simulink/Matlab environment, we perform   
good fault detection and isolation results for faults 
affecting De, Se and Df.  

Figure 10 shows detection when a fault affects 
Df between 4s and 6s. Fault-index-1 and Fault-
index-2 are equal to 1 in this interval. 

By applying the fuzzy isolation method (see 
figure 11), we find that Fault-Df is equal to 1, 
between 4s and 6s, whereas Fault-De and Fault-Se 
are null in this interval, so we have perfectly isolated 
fault at sensor Df. 
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Figure 10: Fault-index-1, fault-index-2 and fault-index-3 
when a fault affects Df. 
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Figure 11:  Fault-Df, Fault-De and Fault-Se. 

As a conclusion, in the case of 1% of 
uncertainty, fuzzy approach as well as classical one 
allows a good fault detection and isolation.  

4.2 Case of 5% Uncertainty 

The following results are obtained by simulation of 
the three residuals r1, r2 and r3 in fault free context 
and when faults are introduced in intervals which 
lengths are between 0.1s and 8s. 

Table 5: Characteristics for 5 % of uncertainty. 

r1-max 0.009172 
R1min 0.03643 
R1max 215 
r2-max 0.0008808 
R2min 0.001092 
R2max 0.3 
r3-max 37.33 
R3min 1.20e+5 
R3max 2.16e+8 

A fault affects respectively Df, De and Se at time 
4s up to 6s. 

4.2.1 Fault Detection and Isolation by 
Binary Logic 

We perform good fault detection and isolation 
results for the following thresholds: 

Table 6: Thresholds retained for 5% of uncertainty. 

Residual Threshold 
r1 2*r1-max 
r2 r2-max 
r3 2*r3-max 

4.2.2 Fault Detection and Isolation by Fuzzy 
Reasoning 

In this case, we notice a small problem for faults 
affecting Df.  Figure 12 and figure 13 show that 
Fault-index-1 and Fault-Df are disturbed in the 
interval [4s 6s], however, we can isolate fault at 
variable Df. Fault detection and isolation is good in 
case of Se and De faults.   

We conclude in the case of 5% uncertainty that 
classical logic is more suitable for fault detection 
and isolation.   
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Figure 12: Detection: Fault-index-1, Fault-index-2 and 
Fault-index-3 when a fault affects Df. 
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Figure 13: Isolation: Fault-Df, Fault-De and Fault-Se 
When a fault affects Df. 

4.3 Faulty Estimated Uncertainty 

In practice, this case is very frequent, that is 
generally due to a wear of components. Let us 
consider the case where uncertainty reaches 5% 
whereas the estimated one is equal to 1%. 

4.3.1 Binary Logic  

We apply the retained thresholds in case of 1% 
uncertainty. As shown in figure 14, in the three cases 
of faults, fault–index-1 is very disturbed, it passes 
infinitely between 0 and 1outside the interval [4s 
6s].   
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Figure 14: Fault-index-1 in all cases of faults. 

So binary logic does not ensure good fault 
detection in case of faulty estimated uncertainty.  

4.3.2 Fuzzy Reasoning 

By applying the fuzzy approach, the fault detection 
and isolation is good for faults affecting De, Se and 
Df. Figure 15 and figure 16 show fault detection and 
isolation when a fault affects Df. 
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Figure 15: Detection: Fault-index-1, fault-index-2 and 
fault-index-3 when a fault affects Df. 
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Figure 16: Isolation: Fault-Df, Fault-De and Fault-Se in 
case of a fault affecting Df. 

5 COMPARISON 

Binary logic allows performing good detection and 
isolation results if the threshold is correctly chosen 
and if the values of parametric uncertainty are 
known. However, when uncertainty is faulty 
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estimated, detection with binary logic is not suitable 
whereas the fuzzy proposed approach allows 
performing good fault detection and isolation results.  

6 CONCLUSION 

In this paper, we have proposed a fuzzy fault 
detection and an isolation method for faults affecting 
the sensors and the actuators off-line. A fuzzy 
processing of residuals provided by ARRs is 
followed by fuzzy processing of fault-indexes in 
order to isolate the fault.   
 

We have compared binary approach to fuzzy 
approach through an illustrative example. We have 
noticed that in the case of 1% or 5% of uncertainty, 
binary logic allows a perfect fault detection and 
isolation if the threshold between normal and faulty 
state is correctly chosen, fuzzy approach allows also 
fault detection and isolation in spite of some 
disturbance in case of 5% uncertainty. However, in 
case of faulty estimated uncertainty, the proposed 
fuzzy approach allows good fault detection and 
isolation where binary approach is not suitable for 
fault detection and isolation. 
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