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Abstract: Takagi-Sugeno (T-S) fuzzy models are usually used to describe nonlinear systems by a set of IF-THEN 
rules that gives local linear representations of subsystems.  The overall model of the system is then formed 
as a fuzzy blending of these subsystems. It is important to study their stability or the synthesis of stabilizing 
controllers. The stability of TS models has been derived by means of several methods: Lyapunov approach, 
switching systems theory, linear system with modeling uncertainties, etc. In this study, the uniform stability, 
and uniform exponential stability of a discrete time T-S model is examined. Moreover, a perturbation result 
and an instability condition are given. The subsystems of T-S models that is studied here are time varying 
and a new exponential stability theorem is given for these types of TS models by examining the existence of 
a common matrix sequence. 

1 INTRODUCTION 

Fuzzy systems can approximate a wide class of 
nonlinear systems as accurately as required with 
some number of fuzzy IF-THEN rules. They are 
known as universal approximators, and their use 
offers many advantages (L.X.Wang, 1996). Stability 
is the most important concept for analysis and 
design of a control system. Stability analysis of 
fuzzy systems has been difficult because fuzzy 
systems are essentially nonlinear systems (Tanaka 
1996, Calcev, 1998, Kim, 2001). The issue of the 
stability of fuzzy control systems has been studied 
using nonlinear stability frameworks (Tanaka, 
1990).    

Takagi-Sugeno (T-S) fuzzy models (Takagi, 
1985) are nonlinear systems in nature. In this type of 
fuzzy model the consequent part of a fuzzy rule is a 
mathematical formula, representing local dynamics 
in different state space regions (subsystems) as 
linear input-output relations (Tanaka, 1996). Thus, 
T-S fuzzy systems are considered as a weighted 
average of the values in the consequent parts of the 
fuzzy rules. The overall model of the system is 
consequently a fuzzy blending of these subsystems.  

Recently, fuzzy control and modeling is being 
used in many practical industrial applications. One 
of the first questions to be answered is the stability 
of the fuzzy system. Tanaka and Sugeno (Tanaka, 

1992), have provided a sufficient condition for the 
asymptotic stability of a fuzzy system in the sense of 
Lyapunov through the existence of a common 
Lyapunov function for all the subsystems.  

A system is said to be stable in the sense of 
Lyapunov if its trajectories can be made arbitrarily 
close to the origin for any initial starting state. When 
a system is stable and initial states that are close to 
the region of origin converge to the origin, the 
system has asymptotic stability. A stable system in 
Lyapunov sense does not guarantee asymptotic 
stability because asymptotic stability is stricter than 
Lyapunov stability. 

Additionally, one needs to know how fast the 
system converges to the equilibrium point.  On the 
other hand, exponential stability is used to estimate 
how fast the system trajectory approaches and 
converges to the equilibrium point as time goes to 
infinity. Since exponential stability is stricter than 
asymptotic stability it guarantees both Lyapunov 
stability and asymptotic stability but not vice versa. 

The preliminaries were presented in Section 2. 
Section 3 discusses the main results on the uniform 
stability, uniform exponential stability and 
instability. Moreover, a perturbation result is 
presented. Finally, Section 4 contains some 
concluding remarks. 
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2 PRELIMINARIES 

A T-S fuzzy model of a plant with r rules can be 
represented as 
 
Plant Rule i:    
IF x1(t)is Mi1 AND ... AND xg(t)is Mig   
THEN ( ) ( ) ( ) , 1,...,i ix t A x t B u t i rδ = + =        
                                   
where x(t)∈ n  is the state vector, u(t)∈ m  is the 
control input, the matrices iA  and iB  are of 
appropriate dimensions, ijM  (j=1,2,…, n) is the jth 
fuzzy set of the ith rule, and, xk(t) (k=1,2,…,g) are 
the premise variables. It should be noted that 

( ) ( )x t x tδ = for the continuous-time T-S fuzzy 
model and ( ) ( 1)x t x tδ = + for the discrete time T-S 
fuzzy model. 

Given a pair of (x(t), u(t)), the resulting fuzzy 
system model is inferred as follows: 
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( ( ))ij jM x t  is the grade of membership of 
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consequent equation given by ( ) ( )i iA x t B u t+  is 
called a subsystem. The free system of Eq.(1) is 
defined as 
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In this paper, it is also assumed that Ai matrices 
are time varying, where the coefficients are real 
matrix sequences defined for all integer t, from –∞ 
to +∞. Therefore, the consequent part of each IF-
THEN rule has a linear time varying state equation. 

Tanaka and Sugeno (1992) proposed a theorem 
on the stability analysis of a T-S fuzzy model, which 

was an important breakthrough in the field of fuzzy 
control. They proved that finding a common 
symmetric positive definite matrix P for all the 
subsystems could show the stability of a T-S fuzzy 
model. This sufficient condition for ensuring 
stability of Eq.(2) is given as follows. 
 

Theorem: The equilibrium of the continuous-
time (discrete-time) T-S fuzzy model (namely, x=0) 
is globally asymptotically stable if there exists a 
common symmetric positive definite matrix P such 
that ( i = 1, ..., r ∀ )  
                           0T

i iA P PA+ <                       (3) 
                           ( 0T

i iA PA P− < )                        (4) 
 
     Proof: See (Tanaka, 1992). 
 

Note that Eq.(3) and Eq.(4) depends only on iA . 
In other words, it does not depend on ( ( ))iw x t . It is 
clear that this theorem reduces to Lyapunov stability 
theorem for continuous-time (discrete-time) linear 
systems when r =1. It should be noted that the total 
system might not be stable even if every subsystem 
is stable. Eq.(3) and Eq.(4) are sufficient conditions 
for stability, but are not necessary conditions. To 
satisfy these conditions most of the time a trial and 
error type procedure has been used.  

In recent years, the stability analysis and control 
design problems of fuzzy systems are reduced to 
linear matrix inequality (LMI) problems 
Numerically, LMI problems can be solved very 
efficiently using the interior point algorithms (Boyd, 
1994). However, the problem of finding a common 
P matrix becomes a very difficult job even by the 
LMI method as the number of fuzzy rules increases.  

 
Definition: The discrete-time linear state 

equation  
                   ( 1) ( ) ( ) , ( )o ox t A t x t x t x+ = =            (5) 
 
is called uniformly stable if there exists a finite 
positive constant γ such that for any to and xo the 
corresponding solution satisfies 
 

( ) ,o ox t x t tγ≤ >  
Definition: Eq.(5) is called uniformly 

exponentially stable if there exists a finite positive 
constant γ and a constant 0≤λ<1 such that for any to 
and xo the corresponding solution satisfies 
 

( ) ,ot t
o ox t x t tγλ −≤ >  
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It is called uniform when γ does not depend on the 
choice of initial time (Rugh, 1996). 
 

Lemma: If P is a positive definite matrix such 
that TA PA-P<0 and TB PB-P<0 where A, B, and P 
are n×n matrices, then T TA PB+B PA-2P<0               
(Jamshidi, 1997) . 

3 MAIN RESULTS 

Theorem: The equilibrium point of the fuzzy system 

                 
1

x(t+1) ( ( )) ( ) ( )
r

i i
i

h x t A t x t
=

= ∑              (6) 

is uniformly exponentially stable if there exists a 
common n×n matrix sequence P(t) that for all t is 
symmetric and such that 
 

( )I P t Iη ρ≤ ≤                                                        (7)                                        
( ) ( 1) ( ) ( ) , 1,...,T

i iA t P t A t P t I i rν+ − ≤ − =       (8) 
 
where η, ρ and ν are positive constants.    
 
  Proof: Suppose P(t) satisfies the requirements of 
the theorem. Multiplying both sides of Eq. (7) and 
Eq. (8) by ( )Tx t  and ( )x t for any to and xo, one 
obtains the following relations for t≥ t0 

 

             2 1( ) ( ) ( ) ( )Tx t x t P t x t
ρ

− ≤ −                       (9) 

 2( 1) ( 1) ( 1) ( ) ( ) ( ) ( )T Tx t P t x t x t P t x t x tν+ + + − ≤ −     (10) 

                                                                                  
Furthermore, by the combination of Eq. (9) and 

Eq.(10) one gets        
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ρ
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Then, substituting Eq.(6) in Eq.(11) one obtains   
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Eq. (12) implies 
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                                                                              (13) 
Using Eq.(7) and Eq.(8) one obtains the 

following inequalities: 
 

 [ ( ) ( 1) ( ) (1 ) ( )] ( ) 0T T
i ix A t P t A t P t x tν

ρ
+ − − ≤        (14) 

[ ( ) ( 1) ( ) (1 ) ( )] ( ) 0T T
j jx A t P t A t P t x tν

ρ
+ − − ≤         (15) 

 
Using Lemma (Jamshidi, 1997), Eq.(14) and Eq.(15) 
the following relation   
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+ + + − −  (16) 

 
can be rewritten as 
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                                                                              (17) 

Since P(t+1) is positive definite, it is obvious that 
 

( ( ) ( )) ( 1)( ( ) ( )) 0T
i j i jA t A t P t A t A t− − + − ≤  

and 

( ) ( 1) ( ) (1 ) ( ) 0, ,T
i iA t P t A t P t i jν

ρ
+ − − ≤ ∀ . 

It follows from Eq. (17)  

  ( ) ( 1) ( ) ( ) ( 1) ( ) 2(1 ) ( ) 0T T
i j j iA t P t A t A t P t A t P tν

ρ
+ + + − − ≤                             

                                                                              (18) 
This proves that Eq. (13) is valid.  It can be easily 
seen from Eq.(7) and Eq.(8) that ρ≥ν, so the 
following inequality can be stated 

                                 0 (1 ) 1ν
ρ

≤ − <                      (19) 
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Setting 2 1 νλ
ρ

= − in Eq.(11) and iterating it for t≥to 

one obtains for t≥to, 
 
               2( )( ) ( ) ( ) ( )ot tT T

o o ox t P t x t x P t xλ −≤           (20) 
 
Using Eq. (7), the following expression can be 
obtained for t≥to,  
 
                      2 22( )( ) ot t

ox t xη ρλ −≤                 (21) 
      
If one divides both sides of Eq.(21) by η  and takes 
the positive square root, the uniform exponential 
stability condition is obtained.                                  � 
 

Theorem: The fuzzy system given in Eq.(6) is 
uniformly stable if there exists a matrix sequence 
P(t) that for all t is symmetric and such that  
 
              ( )I P t Iη ρ≤ ≤           
              T

i iA (t)P(t+1)A (t) - P(t) 0  , i = 1, ..., r≤  
 
where η and ρ are finite positive constants. 
 

Theorem: Suppose the fuzzy system given in 
Eq.(6) is uniformly exponentially stable. Then there 
exists a positive constant δ such that if 

( )iA t δΔ ≤ for all t and i=1,…, r, then  
                                                                                                  

1
x(t+1) ( ( ))[ ( ) ( )] ( )

r

i i i
i

h x t A t A t x t
=

= + Δ∑  

is uniformly exponentially stable. 
 

Theorem: Suppose there exists a matrix sequence 
P(t) which for all t is symmetric and such that 
 
              ( )P t ρ≤  

              ( ) ( 1) ( ) ( ) i = 1, ..., rT
i iA t P t A t P t Iη+ − ≤ −  

 
where ρ and η are finite positive constants. Suppose 
that there exists an integer tu such that P(tu) is not 
positive semidefinite. Then the fuzzy system given 
in Eq.(6) is not uniformly stable.     

4 CONCLUSIONS 

The exponential stability is used to estimate how fast 
the system trajectory approaches and converges to 

the equilibrium point as time goes to infinity, and it 
is stricter than asymptotic stability. Therefore, 
exponential stability guarantees both Lyapunov 
stability and asymptotic stability but not vice versa. 

     In this study, some theorems for the stability and 
instability of the Takagi-Sugeno fuzzy systems are 
introduced.  The consequent part of each T-S rule 
studied here are time varying. The uniform stability 
and uniform exponential stability theorems are given 
for these types of T-S models by examining the 
existence of a common matrix sequence. Moreover, 
a perturbation result is presented. 

REFERENCES 

Boyd, S., 1994. et al. Linear matrix inequalities in systems 
and control theory. Philadelphia, PA, SIAM. 

Calcev, G., 1998. “Some remarks on the stability of 
Mamdani fuzzy control systems”, IEEE Trans. Fuzzy 
Syst., 6(3), 436–442 

Jamshidi, M., 1997. Large Scale Systems. Prentice Hall.  
Kim, E., Kim, D., 2001. “Stability analysis and synthesis 

for an affine fuzzy systems via LMI and ILMI: 
discrete case”, IEEE Trans. Syst. Man Cybern. B. 
Cybern., 31(1), 132–140 

Takagi, T., Sugeno, M., 1985. “Fuzzy identification of 
systems and its applications to modeling and control”, 
IEEE Trans. on Systems, Man, and Cybernetics, 
vol.15(1), 116-132. 

Tanaka, K., Sugeno, M., 1990.  Stability analysis of fuzzy 
systems using Lyapunov's direct method, Proc. of 
NAFIPS'90, 133-136. 

Tanaka, K., Sugeno, M., 1992. “Stability analysis and 
design of fuzzy control systems”, Fuzzy Sets Systems, 
vol.45(2), 135–156. 

Tanaka, K., Ikeda, T., Wang, H. O., 1996. “Quadratic 
Stability and Stabilization of Fuzzy Control Systems”. 
Fuzzy Information Processing Society. NAFIPS. 

Rugh, W. J., 1996. Linear System Theory, 2nd ed., Prentice 
Hall. 

Wang, L.-X., 1996. A Course in Fuzzy Systems and 
Control, Prentice Hall. 

ICINCO 2006 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

216


