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Abstract: In general, navigation systems estimating a vehicle position is done either by using the Global Positioning 
System (GPS) or the Dead Reckoning (DR) systems. Other modern estimations are based on the 
combination of the two systems (GPS/DR). However, the position of a vehicle determined by GPS/DR is far 
from being perfect since it produces many errors. To solve this problem, a map-matching method is 
proposed in order to reduce the errors of localization caused by GPS/DR. This algorithm, which uses a 
digital road map, allows the detection of the correct road where a vehicle moves. In this paper, we introduce 
a new map-matching algorithm that employs the Transferable Belief Model (TBM). The TBM presents a 
general justification of belief theory and provides a flexible and adapted representation for the measured 
beliefs. Experimental results show the effectiveness of the utilization of the TBM to the vehicle navigation 
system. 

1 INTRODUCTION 

The car navigation systems promise to be a valuable 
aid for traveler’s drivers of vehicles who need to 
reach a variety of destinations as quickly and 
efficiently as possible. The main role of a car 
navigation system is to find the car position as 
precisely as possible. The Global Positioning System 
(GPS) sensor is the most attractive one. This is 
because the position can be calculated on the globe 
if more than four satellites are detected (Parkinson, 
1996). Nevertheless GPS suffers from satellite 
masks occurring in urban environments, such as 
under bridges, tunnels, etc. GPS appears then as an 
intermittent positioning system that demands the 
help of a DR system. This last estimates the position 
by integrating the displacements at every sampling 
time. Since this method is subject to major 
accumulation of errors caused by wheel slippage, 
surface roughness, etc.  
In our work, we use the odometer sensor. We 
integrate GPS with odometer by employing a 
Kalman filter (Chui, 1991; Zhao, 2003). The 
estimated position by Kalman filter is proved to be 

optimal if the system is linear and the noise is white 
Gaussian (Grewal, 1993). It should be noted that as 
the noise of the GPS is not white Gaussian and the 
system is not linear, the estimated position from 
Kalman filter is not optimal. It leads to position 
errors. To reduce the error, we suggest using a map-
matching approach (Bernstein, 1998; Greenfeld, 
2002). It is a method of using digital map data and 
integrated GPS/odometer to locate the vehicle on 
proper road relative to digital map. Conventionally, 
map-matching is performed using either a geometric 
approach or a statistical approach. Geometric map-
matching, as the name suggests, is based on pure 
geometric criteria identifying the road segment on 
which the vehicle is traveling (Lee, 1998). Statistical 
map-matching, is based on curve fitting onto a road 
network based on the history of motion (Hummel, 
2005). It uses a conditional probability (Taylor, 
2001). In this paper, we present a new map-
matching method. This method provides an accurate 
position of a vehicle relatively to a digital road map 
using the TBM and the Kalman filter. The TBM is a 
model that represents quantified beliefs based on the 
use of belief functions, as initially proposed by 
Shafer (Dempster, 1967; Shafer, 1976). This map-
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matching method is composed on four steps. Firstly, 
a Kalman filter fuses the GPS and the odometric 
measurements to estimate a position of the vehicle. 
Secondly, we use the estimated position and the 
variance-covariance information given by Kalman 
filter in order to define a zone in which 
Geographical Information System (GIS) will use it 
and we preselect the segments on which the vehicle 
is likely to be. Thirdly, we select among the 
candidate segments the most credible segment one 
using the TBM. Finally, we build a map observation 
starting from the most credible segment then to 
integrate it, in the formalism of Kalman as a second 
equation of observation. Here, we are interested in 
the second and the third steps of this method which 
represent our contribution. 
The paper is organized as follows. In section 2, we 
recall the main concepts of Belief theory and their 
interpretation in the setting of TBM. In section 3, we 
present the adaptation of this model for the segment 
selection problem. Finally, experimental results will 
be presented in section 4. 

2 THE TRANSFERABLE BELIEF 
MODEL 

The Transferable Belief Model (TBM) provides a 
flexible and very powerful representation of 
quantified beliefs. The model was introduced by 
Smets (Smets, 2002) and based on the belief 
function theory developed by Shafer (Shafer, 1976). 
But, it is completely unrelated for any underlying 
probabilistic constraints as it is the case with the 
model of Dempster (Dempster, 1967) and for the 
hint model (Kohlas, 1995). In the TBM, two-level 
model for belief has been proposed: a credal level 
where belief is entertained, and a pignistic level 
where beliefs are used to make decisions.  

2.1 Credal Level: Modeling of 
Knowledge 

At the credal level, belief is quantified by belief 
functions. Let Θ  be a finite set of elements called 
the frame of discernment. It is composed of mutually 
exclusive elements called hypotheses. By definition, 
the mapping bel: Θ→[0,1] is a belief function if 
and  only if there exists a basic belief assignment 
function (bba) m: 

                                 m: Θ2 →[0,1]                         (1) 

 such that: 
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The values m(A), are called the basic belief mass and 
represent the minimal (necessary) support for A and 
cannot be associated with any of the sub-
propositions on the basis of available evidence 
(Smets, 1994). The belief  (bel(A)) of a proposition 
A is therefore a sum of all the belief masses 
allocated to sub-propositions B. If further the piece 
of evidence brought by a source of information 
(sensor, agent, etc) shows that AB ⊆  is true, then 
the belief mass m(A) initially allocated to A is 
transferred to BA∩  that is where the name of 
TBM comes from. So far we assumed that only one 
of the propositions in Θ  is true (“close-world” 
assumption) this can be generalized by letting that 
none of the propositions considered inΘ could be 
true (“open-world”). In this case, a positive basic 
mass can be given to an empty setφ . The term )m(φ  
represents a degree of belief that cannot be given to 
any of the propositions in Θ . The conjunctive rule 
of combination of two pieces of evidence on 
Θ represented by the two bba m1 and m2 is: 
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The value )(21 φmm ⊕  represents the incoherence 
between the different sources of information. It can 
be interpreted as a measure of the conflict between 
the sources. 

2.2 Pignistic Level: Decision Making 

At the pignistic level, belief is quantified by 
probability functions. For most applications, a 
decision is generally, to be taken in favor of a simple 
hypothesis. Within the context of the TBM, Smets 
defines and justifies the use of the pignistic decision 
rule (Shafer, 1976; Smets, 1994). Let BetP be the 
pignistic probability distribution derived from the 
basic belief assignment (bba) m. BetP is defined by: 
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where card(A) is the cardinality of A. 

3 SELECTION METHOD OF 
SEGMENT 

Vehicle tracking on a given road segment is known 
as map-matching (Bernstein, 1998; Greenfeld, 
2002). Indeed to localize oneself on a network road, 
it is necessary first of all to select the segment on 
which the vehicle is actually traveling (Zhao, 1997). 
In literature, there are many techniques of selection. 
Such as the method proposed by (El Najar, 2005) 
which fuses two criteria using Belief theory. Each of 
these criterions is characterized by belief function. 
In this paper, we propose a method of estimation 
treating these belief functions more explicitly than 
proposed in (El Najar, 2005). This proposition 
allows the reduction of both the position errors (see 
figure 6.d) and the conflict (by the addition of a 
factor of weakening or discounting see Eq. 9 and Eq. 
11) computed in the Dempster-Shafer fusion rule.  

3.1 Preselection of the Road 
Segments  

The first step is to determine which road segments 
are candidates for the localization of the vehicle. For 
this, the basic characteristic of our algorithm is the 
use of an elliptical confidence region around an 
estimated position based on error models which are 
associated with GPS and odometer sensors. Road 
segments that are within the confidence region are 
taken as the pseudo candidate segments. These ones 
represent the frame of discernment in TBM. If the 
confidence region does not contain any segment, 
then, it is assumed that the vehicle is not on a 
cartographic road. In such a situation, the derived 
positions GPS/odometer are used as the final 
locations of the vehicle. Many methods are available 
for calculating the error region around a fixed 
position. Variance-covariance information 
associated with GPS receiver outputs is often used to 
define an error ellipse. According to (Zhao, 1997), 
the error ellipse can be derived as:  
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where 
2

xσ and 
2

xσ  are the positional error 

variances from the integrated GPS/odometer, xyσ  is 
the covariance, a, b are the semi-major axis and 
semi-minor axis of the ellipse, γ is the orientation of 
the ellipse relative to the North, and k is the 
expansion factor. The expansion factor k is a term 
that compensates for the errors associated with GPS, 
odometer and digital roadmap sensors. For 
simplicity, an error circle can be used instead the 
error ellipse. The centre of the circle is the estimate 
of the current position and radius R of this one is 
equal to the semi-major axis a (R=a). The road 
segments obtained, thus, form our frame of 
discernment { }nSegSegSeg ,........,, 21=Θ  or n is the 
total number of the pseudo candidate segments. In 
order to select the good road segment up on which a 
vehicle moves, we propose a method of selection 
based on the Transferable Belief Model (TBM). 

3.2 The Proposed Selection Method 

The proposed selection method is based on the 
fusion of two criteria (proximity and bearing) using 
the TBM. The frame of discernment is then 

{ }nSegSeg ,........,,1=Θ . In this section, we present the 
proximity and the bearing criteria. 

 

1) Proximity criterion: The proximity criterion is 
essentially, based on the measure of the Euclidian 
distance lying between the estimated position and 
each pseudo-candidate segment. Being given the 
estimated position jP , the belief assignment function 
that characterizes this criterion can be obtained as 
follows: 
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with proximityα is the normalized factor given by: 

ICINCO 2006 - ROBOTICS AND AUTOMATION

12



     )(/ Θ= cardproximityproximity βα            (10) 

where )(Θcard  is the cardinality of Θ  and proximityβ  

( 10 ≤≤ proximityβ ) represents the confidence to the 
proximity criterion: it reflects our a priori knowledge 
on the quality of the GPS and the odometer sensors. 
R is the radius of the circle of preselection of the 
road segments and ijd  the distance between the 

estimated position jP and the candidate segment iSeg . 
The distance ijd  corresponds to the minimal 
distance among the three distances specified in 
Figure 1. 

Let jθ  the estimate of the heading of the vehicle, 

and then the belief assignment function 2m which 
characterizes this criterion is defined by: 
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where bearingα  is the normalized factor defined by:

           )(/ Θ= cardbearingbearing βα         (12) 

which bearingβ  ( 10 ≤≤ bearingβ ) represents the 
confidence to the bearing criterion: that value 
depends essentially on the speed (Figure 2); and ia  

is the bearing factor of the segment iSeg .  

This way of affecting the belief assignment function 
is known under the name of "separate sources" 
(Denoeux, 1997). 

 

 

Figure 1: Distance between the point and the segment. 

2) Bearing criterion: The fusion of GPS and 
odometer sensors by Kalman filter provides an 
estimate of the probable direction of a vehicle which 
would be relevant for the quantification of bearing 
criterion. The difference between the heading of a 
vehicle and the corresponding value from each 
pseudo-candidate segment is used to formulate a 
new belief assignment function. 

 
Figure 2: Confidence of the bearing criterion. 

In Figure 2, V_threshold represents the threshold of 
the speed above of which the bearing criterion is 
reliable. That value is determined by the 
experimental tests. 

3) Fusion and decision: According to the two 
criteria, we are in the presence of two belief 
assignment functions 

1m  and 2m . We apply the 
conjunctive rule of combination (Eq. 3) in order to 
determine a single belief assignment function which 
results from the aggregation of these two assignment 
functions. Next, we calculate the conflict given by 
Eq. 4. If the conflict is lower than 0.5, we calculate 
the pinistic probability (Eq. 5), then we choose the 
segment which represents the maximum probability.  
If it is higher than 0.5, it is not possible to make a 
decision.  
The choice of threshold 0.5 is obtained through the 
following steps: first, we have simulated many 
routes given in Figure 3.a, second, we have tested 
our algorithm with different threshold values which 
vary between 0.1 up to 0.9, and third, we have 
calculated the rate average of selection for each 
threshold (see Figure 3.b). According to Figure 3.b, 
we notice that threshold 0.5 represents a better 
solution in term of rate average of selection 85 %. 
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Figure 3.a: Simulation of many routes. 

 
 
 
 
 
 
 

 
Figure 3.b: The variation of the rate average of selection according to the thresholds. 
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4 EXPERIMENTAL RESULTS 

For the testing of the algorithm, a comprehensive 
field test was carried out in Calais (France). A test 
vehicle was equipped with a navigation platform 
consisting of a 12-channel single frequency GPS 
receiver (ProPak-G2), the interfaces require to be 
connected to the vehicle Speed sensor (odometer) 
and to the digital road map which is used as a 
reference that had a resolution of 3.5m. The duration 
of collecting data was about 1hr. As already 
mentioned, the purposed algorithm is developed in 
two steps: the first step is to seek the road segment 
where the vehicle moves, and the second step is to 
determine the vehicle location on that road segment. 
Figure 4 illustrates the results of the algorithm for 
the sample routes. The symbols + (red) and o (black) 
respectively represent the vehicle position before 
and after the application of the algorithm.  

In order to evaluate the performance of our 
algorithm, we take the case of a problematic 
situation standard for example a junction of two 
roads (Figure 5). In this figure the circle presents the 
zone of preselection that contains three segments 

(Seg1, Seg2 and Seg3) which define our frame of 
discernment. The two belief assignment functions 
which characterize the proximity criterion and the 
bearing criterion are defined on this frame.  

The figures (Figure 6.a, Figure 6.b, and Figure 6.c) 
represent a variation of belief assignment functions 
within this frame of discernment. The proximity 
criterion (Figure 5.a) shows that the Seg2 is the most 
credible. The bearing criterion (Figure 5.b) affirms 
that the segments Seg1 and Seg2 are the most 
credible. The combination of both criteria (Figure 
5.c) confirms that Seg1 and Seg3 are the most 
credible. Such an ambiguous situation can be 
resolved if we take into account the information that 
Seg1 and Seg3 represent the same road.  

Figure 6.d shows the variation of error sigma 
(northing) with time for both the integrated 
GPS/odometer and the proposed algorithm. The 
error sigma associated with the integrated 
GPS/odometer is much higher than that associated 
with the proposed algorithm. The average standard 
deviation before the application of the algorithm is 
10 to 15m whereas it is 3 to 4m after its use.   

 

 

 

 

 
 

Figure 4: The results of the sample routes. 
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Figure 5: Candidates segments at a given moment. 

 
 
 

 
 
 
 
 
                     

Figure 6.a: Proximity criterion.                                         Figure 6.b: Bearing criterion. 

               
 
 
 
 
 
                 
                        
 

Figure 6.c: Combination of the two criteria.                         Figure 6.d: Comparison of error sigma. 

 
5 CONCLUSION 

In this paper, an algorithm based on the Transferable 
Belief Model (TBM) has been developed. This 
algorithm has proved to be very efficient, particularly 
in difficult operational environments such as 
junctions and intersections. In fact, it can be 
considered as an excellent tool to quantify the 
ambiguousness of a situation. This work has as a 
prospect to develop other criteria in order to treat the 

ambiguous situations efficiently (for example 
problematic situation of two 2 parallel roads). 
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