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Abstract: In this paper we try to define a collectivity, to model and to measure it. Because N. Bourbaki names "collec-
tivizing relation” the relation defining a set, we name collectivities only the sets selected or built by the help
of the relations. The orthogonal interconnections model very well the collectivities. The behavior (structural
self-organization) around the origin is different for homogenous and non-homogenous interconnections. How
can we measure this behavior? A way is by locality and globality. The locality measures analytically by neigh-
borhoods, neighborhood reservigorereserves and synthetically by diameters, degrees, average distances.
The globality is the behavior of an interconnection around a property. The globality vs. symmetry measures
by the compactity, efficiency and interconnecting filling. The locality and the globality are among primary
manifestations of the self-organization. In this way, collectivities modeled by self-organizing interconnections
can contribute to changing our fundamental view of computers by trying to bring them nearer to the nature.

1 INTRODUCTION STRUCTURE What propertiesare behind the relations who tie

AND ARCHITECTURE the collectivities? Maybe is the gravity, the symmetry
or the survival instinct? In a wordstructural self-
organization. The self-organization can be structural
and functional. Our paper refers to the structural self-
organization applied to the collectivities.

A complexity system modelling means firstly the per-
ception of aself-organizatiorof the system and then
the proper modelling.To perceive a complex, said i i . )
Wittgenstein,means to perceive the relations of its  First let us define the collectivity. For this we must
constituent parts in a determined way. On the other @nSWer to another question: what is&t? A set "can
hand, one of the characteristics of the nature is the P& selected by a membership or byetation which
collectivity. Through the computing terrain, Professor Substantiate the memberstupby bringing in the set
Moshe Sipper said in the foreword to a recent book, fi€ld elements which fulfill the relation” (ganescu,
during the past few years a new wind has been Sweep,1985_)- "Because_ N. Bourbaki names "collectivizing
slowly changing our fundamental view of computers. r.ella.tlon the relation defining a set, we name collec-
We want them, of course, to be faster, better, more tivities only the sets selected or built by the help of
efficient - and proficient - at their tasks. But, more therelations. Ther_efore, we exclude the sets sele_c_ted
interestingly, we are trying to imbue them with abili- PY the membership, the most general. A collectivity
ties hitherto found only in nature, such as evolution, N0t means a set made, for example, of a star, a planet,
learning, development, growth, acdllectivity (Cas- & crystal, an ant, a bee and a man.

tro and Zuben, 2005). We can observe collectivitiesin  The relation which substantiates the membership
the not living world (universe galaxies, solar systems, of a collectivity is connected with its functionality:
crystalline units) as in the living world (ant hills, bee a collectivity is made of the leastinctional entities.
swarms, nations). For example, an interconnecting is made of nodes and
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links which is equivalent with the graph definition (a stein writes inTractatusthat themanner in which the
setX of nodes and an applicatidhof X in X which objects depend some on the others in the state of af-
gives the set of connections). Tkacryption collec-  fairs constitutes the structure of the state of affairs
tivity means a sef of signs and an application (key) Having in view the above, thstructure of a col-

K of S'in S which gives encryptions. lectivity can be self-organizetbcally and globally.
In this paper we try to begin to study the collec- For example, an interconnecting structure estimates
tivities structural and by the help of tharchitec- locally by neighborhoods. Thus, thexality is the be-

ture concept, a connection concept toward the rela- havior (structural self-organization) of a collectivity
tion/function. We start with the definition of the con- around an origin The origin can be temporal or spa-
cept of structure (Nemoianu, 1967). The word struc- cial. The locality definition refers to the first mean-
ture comes from the Latin where there are the noun ing of the structure concept (the connection between
structura with the meaning of building, and the verb parts). Theglobality is the behavior (structural self-
struere(to build) with the past participlstructus In organization) of a collectivity around a propertiFor
English and French the word has the same meaning:example, the interconnections can be estimated and
edifice, way to build. The abstraction of the word designed by the help of treymmetryproperties. The
makes slowly: only in the XVII-XVIIF" centuries ap-  globality definition concerns to the second meaning
pears in the sense oéciprocal relation of the parts  of the structure concept at which referred Wittgen-
or the constitutive elements of a whole, determining stein (total interdependence system of each part with
its nature, its organization The initial meaning of  all other parts).

building maintains till now but abstracter sense will On the other hand, theollectivity architecture
be dominated more and more. During the XiXen- a connection concept between the structure and the
tury, structure is generally opposite to function, like function, gives aglobal meaningto the collectivity
static to dynamic. with the aim to better understand the connection be-

The end of the XIX" century brings a new mean- tween the structure and the function of this collectiv-
ing of the structure concept. It will begin to represent ity. Thus, we can speak of the universe architecture,
not a simple configuration, a "static” organization, but a crystallographic system architecture, a house archi-
awhole made by solidary elements, in which every- tecture, a town architecture, a computer architecture,
one depends on all other ones and can not be what it an interconnecting architecture, a communication ar-
is than in and through thenEvidently, it is astep for-  chitecture. Thearchitecture measures by the degree
ward. Theconnection between par(the first mean- ~ of membership to global propertieshe symmetry is
ing) is something less necessary, less outlined, morea global property.
approximately, more vaguely and more generally than  Helping the interconnection as a collectivity model
thetotal interdependence system of each part with all we try to prove that the dichotomy locality-globality
other parts(the second meaning). If the first meaning covers mathematically one of the structural meanings
is asum the second is avhole This turning point  of the collectivity: the localization and the globaliza-
coincides with the penetration of the structure con- tion, i.e. astructural potential of a collectivity dy-
cept in the humanities. The term has been changednamics a structural self-organization of a collectiv-
by a synonymGestalt understood as form, pattern, ity. The dynamics of an encryption collectivity can
structure, the making of parts which are determined help us to the decryption process.
by wholg system of its behavioran not equal with
the sum of the partsGestaltis not related to organi-

zation or to plan, but with an organism, a whole, an 2 INTERCONNECTION AS A

entelechy Theentelechyis a term introduced by the
Austrian psychologist Ehrenfels appointing the fea- COLLECTIVITY MODEL
tures (of geometric figures or melodies) by which they
exceed thesumcharacteristics. A geometric figure re- The interconnections made &f nodes andl. links
mains itself even represented in other coordinate sys-model very well the collectivities. The nodes are the
tem, decreased, enlarged, color modified. This invari- members of the collectivity which are tied by links.
ance of the transposing calls aisomorphism If there are the encryption collectivities the nodes are
The linguistic researchers contribute resolutely to signs and the links are the set of encryption keys (a
the understanding and to the using of the structure key is included in the sef). We shall limit, with-
concept unifying both meanings: tlwherent, co-  out losing too much of generality, to the orthogonal
agulated globalityand therelations system between interconnections (Duato et al., 1997). The algebraic
local partsor, in few words, theglobality and thelo- representation of an orthogonal interconnection can
cality. This step in the evolution of the structure term be made in amixed radix humber systenMRNS.
opens a path to the identification between structure Any number N can be represented in MRNS as a
and essence of an object or a phenomenon. Wittgen-product of whole numbersy = m, m,_1 ... my.

487



ICINCO 2006 - ROBOTICS AND AUTOMATION

Figure 1: AGHT withN = mgo - m1 =5 - 4.

On the basis of this representation, to each node of
an interconnection we can associate an addpéss

0 < X < N -1, made ofr digits. Afterwards,
we present some orthogonal interconnections as col-
lectivities, i.e. sets selected or built bglations

A generalized hypercubeGHC, is a collectivity
with N = m, m,_; ... m; nodes interconnected in
r dimensions. In every dimensiani = 1,2, ..., 7,
the m; nodes are interconnected all by all, i.e. ev-
ery nodeX = ({L‘T Typ_1 oo Tixl Tj Ti—q .. 331)
is connected with the nodes addressed by =
(Tp Tpo1 v Tig1 X 41 ... x1), Wherel < ¢ <7,

0 < 2} < my_; andzx, # z;. From GHC de-
rives the hypercube HC, with N = m", the bi-
nary hypercubeBHC, with N = 2" nodes, and the
completely connected structur€CS, withN = m
nodes. Ageneralized hypertorysGHT, haveN =
m, my_1 ... my nodes inr dimensions, in every di-
mensioni, ¢« = 1,2,...,r, them; nodes being inter-
connected in a torus, i.e. every nofleis connected
with the nearest neighbor nodes addressed&by=
(.’L’T Tp—1 o Tjg1 J?; T 4., a:l), wherel < i <,
x; = |z; £ Umoduio m;- From GHT derives théy-
pertorus HT, with N = m", the binary hypercubes
also, and thdorus T, with N = m. A generalized
hypergridhave N = m,. m,._; ... my nodes inr di-
mensions, in every dimension = 1,2, ..., r, them;
nodes being interconnected ilaain i.e. every node
X is connected in grid with the nodes addressed
by X' = (LCT Tp—1 oo Tig1 l’; Li—q1 - 1’1), where
1<i<ra=ux+1z; #0andz; #m; —1;
xi =z, + 1l|a; = 0; 2}, = x; — 1|z; = m; — 1. From
GHG derives théypergrid HG, with N = m", the
chain, C, with N = m nodes and BHC again.

These ardhomogenousat links) interconnections.
As example ofnon homogenousnterconnections
we gave a variation of non-homogenous orthogo-
nal interconnections, th@eneralized hyper struc-
tures GHS (Lupu, 2002). A GHS is an inter-
connection in which every nod& is connected in
the dimensioni, 1 < ¢ < r, to the nodes ad-

dressed by an interconnecting vec(aw?;lX i ) =
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Figure 2: A GHS withN = m2 -m1 = 5-4. The intercon-
necting vector i.X*', X'') and GHS is coded”'CS, T').

(I‘T Tr—1 oo Tit1 a?; Tioq ... 371). <U§;1Xij> spec-
ifies that a node of GHS is connected byextor of
unions of elementary interconnection structyras
stead of asingle elementary interconnection struc-
ture in the homogeneous interconnections. This
terconnecting vectonasr elements1 < 7 < r. So,
this interconnecting vectois defined, on one hand,
by the number of dimensiong, and, on the other
hand, byk; elementary interconnection structures,

i = 1,2,...,r, for which the unions(uf;lX”) are

specified,j = 1,2, ..., k;. X* are homogeneous in-
terconnections, like tori, T, grids, G, and completely
connected structures, CCS, and must not be disjoint
for a dimension.

In the figures 1 and 2 we give two examples of
simple homogenous and non-homogenous intercon-
nections. At homogenous regular interconnections,
as the GHC or HT, the origin position does not mat-
ter. The interconnections aspherical the diameter
is the same. At irregular networks, as the general-
ized hypergrids and other non-homogenous intercon-
nections, it matters where the position of the origin is.
The "structural” behavior around the origin is differ-
ent for homogenous and non-homogenous intercon-
nections. How can we measure this behavior? One
way is by locality and globality.

3 LOCALITY: A FIRST SENSE OF
COLLECTIVITY STRUCTURE

The collectivities having as a model the interconnec-
tions made of nodes and links can be estimated by
locality andglobality. Thelocality is the spatial be-
havior of interconnection around an originAs in
physics, where the gravity characterizes attraction of
the objects, the localitglefines the interconnection
nearer objects communicate better or nearer nodes in-
terconnect easier. As we told above, the locality defi-
nition refers to the first meaning of the structure con-
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cept, the connection between parts (links of nodes).
The locality measures analytically by neighborhoods,
neighborhood reservelloore reserves and syntheti-

and afunctional volume neighborhop&V N,(O) =

S% ®6(i) x N;(O). For the functional locality,
there is also a synthetic measure like diameter, the

cally by diameters, degrees, average distances (Lupufunctional average distanceThe functional average

2004a). We consider the locality to be classified
firstly as structural (topological), and, secondly, as
functional Therefore, the locality of an interconnec-
tion will be defined by two localities: atructural lo-
cality and afunctional locality

The structural localities can be appreciated by
neighborhoods The neighborhoods can be classified
assurface(radial) neighborhoodsndvolume(spher-
ical) neighborhoods The surface neighborhood of
an interconnection is the number of nodes at a dis-
tanced, SN4(O) = N4(O), whereO is the ori-
gin chosen arbitrarily. The volume neighborhood is
VN4(0) = Y% N4(O). By neighborhoods, the
structural locality can be evaluated analytically. An-
other measure, more synthetically, of the structural lo-
cality is the diameter: at the same number of nodes,
the smaller diameter is the bigger locality is.

A problem, as we told above, is that the neighbor-
hoods and the diameters depend on dhigin posi-
tions At homogenous regular interconnections, as
the generalized hypercubes or hypertori, the origin
position does not matter. At irregular interconnec-

tions, as the generalized hypergrids and other non-
homogenous structures, it matters where the position

of the origin is. The topographic model presented in
(Lupu, 2004b) helped us to study the description and
the behavior of the direct interconnections, homoge-

nous and, especially, non-homogenous. The proper-

ties of interconnecting locality can be better "read” by
the diameter contour patternim the structural relief
of the interconnection

We introduced a measure that helps us to revea
the interconnection relief, thetate of agglomeratian
The structural localities are more or leagglomer-
ated as in reality. The depth of thealley (minimum
diameter) informs us abouhaximum agglomerated
locality, and the height of thpeak(maximum diame-
ter) about theninimum agglomerated localityThus,
structural state of agglomeration of an interconnec-
tion node is given by the interconnection diameter
computed with the origin in the corresponding node
The contour patternf structural states of agglom-
eration (of the diameters computed with the origin in
every node) constitute a map with thieuctural relief
of the interconnection

The structural locality is an invariable information
depending on the topology. A functional point of view
on the interconnection locality can take into consider-
ation the message routing distributiofs; (d), where
O is the origin and! is the distance.

As the structural locality, the functional locality
measures also by neighborhoodsfuactional sur-
face neighborhoadF' SN, (O) = ®o(d) x Ng4(O),

distance helps the next definition: thanctional state

of agglomeration of an interconnection node is given
by the functional average distance of the intercon-
nection computed with the origin in the correspond-
ing node Shorter the functional average distance is,
greater the state of functional agglomeration is! Us-
ing thecontour pattern®f the functional states of ag-
glomeration we can draw a map depicting foac-
tional relief of the interconnectio(see next section).

The surface and volume neighborhoods, on the
one hand, and the diameter or degree, on the other
hand, are analytical and synthetic evaluation means
of the intercommunication capability of interconnec-
tions, measuring thetructural locality. By functional
neighborhoods and, indirectly, by functional average
distance, it expresses which part of the structural lo-
cality is used by communication process implemented
on the network. In other words, the functional neigh-
borhoods and the functional average distances express
thefunctional localityof the interconnections.

Obviously, for a given interconnectiotfN; >
FSN;andV N, > FV N,. The difference between
the two types of neighborhoods represents what we
named theneighborhood reservelhe neighborhood
reserve is oburface SNR; = SN, — FSN, or of
volume VNRy; = V Ny — FV N,. Using the neigh-
borhood reserve, we introduced a design/evaluation
criterion of a topology by enunciating the following
conjecture:the intercommunication structural poten-
tial of an interconnection is optimally used in a com-

Imunication process characterized by a routing distri-

bution @ if the neighborhood reserve is minimal

To evaluate the structural locality of an intercon-
nection, besides the neighborhoods and neighborhood
reserves, we proposed a simple measure:Mbere
reservebased on théloore bound As it is known,
the Moore bound is given as thenaximum number
of nodeswhich can be present in a graph of given
degreel and diameterD: Npjoore = 1+ 1(((I —

1)P —1)/(1—2)). This bound is deduced from a com-
pletel-tree with diameteiD and is anabsolute limit

for a diametrical volume neighborhop® N,;(O) =
Zle N4(0), in any graph (interconnectiorgf [ de-
gree andD diameter. Except for the completeary
trees, this bound is rarely reacheBetersengraph,
completely connected structures and rings with odd
number of nodes are interconnections that reach the
Moore bound. Therefore, it makes sense to com-
pute for an interconnection how far is this bound: the
farther away theMoore bound, the structural local-
ity properties are worse. This is implemented by the
Moore reserves
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Thesurface Moore reservis defined by the differ-

ence between the number of nodes in a correspond-

ing Moore tree at the distancd, with the degree in
considered interconnection, and the surface neigh-
borhood in considered interconnectio®M R; =

I(l — 1)4=1 — N4. The Moore reserveis defined

by the difference between tHdoore bound at the
distanced and the volume neighborhoody/ R,
N]\/[oore(d) -V Ng.

4 HOMOGENEITY AND
SYMMETRY

Based on the topographic model we estimate three
bidimensional interconnections more and mooms-
homogenousnd asymmetrical Let us draw, in the
first example, the functional relief fauniform dis-
tribution of bidimensional interconnection having 20
nodes on a dimension.

The unidimensionalelementary interconnection
structure non-homogenoug1Sl, is the same in both
dimensions being composed of a completely con-
nected structure (nodds - 8), a grid (nodes8 +
11) and, again, of a completely connected structure
(nodesl1-+19). EISL has, in this way, 20 nodes "sym-
metrically arranged”.

In the figure 3 we give theontour patterndor the
uniform distribution. First, we notice the perfect sym-
metry in both dimensions thanks to the symmetry of
the EIS, the same in both dimensions. According to
this symmetry, we observe that the biggest part of the
functional relief is formed of four tablelands having
the same height, 5.5 nodes, orientated to the daur
dinal points In the middle of the interconnection, like
a cross 4 nodes wide, foeanyonsdeepen, with the
average distance of 4.5 nodes. Right in the intercon-
nection center there is a valley, the most agglomer-
ated part of the structure, with a depth of 3.5 nodes.
The biggest slope of the average distardgegO), to

555.04.545506.5

Figure 3: The functional relief for the bidimensional inter-
connection with the non-homogenoEESL for the uniform
distribution. Thecontour pattern®f the functional average
distancedy (O) are drawn.

tour patterns of this interconnection for uniform dis-
tribution. The bidimensional interconnection is sym-
metrical too, though it has in the making of the el-
ementary interconnection structuré&d 2 andEIS3,
different homogenous sub-interconnections. The re-
lief of this interconnection isnore varied four peaks,
rather small tablelands, 7.5 nodes height, and a larger
valley, of four nodes, separating the network in two
alongz, dimension and in the middle af; dimen-
sion, 5.5 nodes depth. Still there are two saddles 6.5
nodes height between the peaks and, in the middle of
the network, as in the previous example, the deepest
valley (the most agglomerated part), 4.5 nodes depth.

The symmetry is not the same on the two intercon-
nection axes, like in the first example. The symmetry,
in present exampldiffers from an axis to the other
and, therefore, isveaker

In the last example is given a non-homogenous in-

the interconnection middle, is 2 nodes, and the slopesterconnection with a marked characteristicasfym-

crossing the canyons are 1 node.

The functional reliefs for the other distributions
(structural and exponential) look likewise. The
heights or the slopes are the difference.

Let us draw, in the second example, the functional
relief of a bidimensional hon-homogenous structure
which has in the first dimension an elementary in-
terconnection structur&lS2 being composed of a
completely connected structure (nodes- 8), of a
grid (nodes8 + 11) and, again, of a completely con-
nected structure (noded -+ 19) and in the second
dimension, the elementary structlts3 being com-
posed of a torus (nodds-—- 8), of a completely con-
nected structure (nod&s: 11) and, again, of a torus
(nodes1l =+ 19). In the figure 4 we give the con-
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metry Let us draw the functional relief of a non-
homogenous bidimensional interconnection with 20
nodes per dimension. On the first dimension there
is an elementary interconnecting structi&es4 be-

ing composed of a completely connected structure
(nodes0 = 5), a grid (nodess + 12) and a torus
(nodesi2--19). On the second dimension the elemen-
tary interconnecting structuelS5 is composed of a
torus (node®-+-10), a completely connected structure
(nodesl0-15) and, again, atorus (nodés—+19). In

the figure 5 we give the contour patterns of this asym-
metrical on both axes interconnection. The structure
presents only partial symmetries on certain areas.

We presented three bidimensional interconnections
with the same number of nodes per dimension and
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Figure 4: The functional relief for the bidimensional non-

13.012.512.011.511.010.510.010.010.511.011.512.012.513.012.512208P25%12.5

o o
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2.51P20872

Q8§ 90 & 5 9.0 9.5 9.5 9.5 9.5
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Figure 5: The functional relief of the bidimensional inter-

homogenous interconnection with the elementary structures connection with elementary structure$4 andEIS5 for

EIS2 andEIS3. Thecontour pattern®f the functional aver-
age distancéy (O) for the uniform distribution are drawn.

uniform distribution. Theontour patternsf the functional
average distancé; (O) are drawn.

with elementary interconnection structures more and mutations) included irt,,;. Therefore, symmetrical

morenon-homogenoudThe functional reliefs proved

groupsS,,; model the symmetry of a space defined by

these three interconnections have a more and moren nodes and inversely. The total symmetry of a space
markedasymmetrythe structures having a more and is represented by a total interconnection, a completely

more emphasized "structural dynamisnstructural
self-organization Thisstructural dynamisnteads to a
more and more powerfidtructural self-organization

connected structure with! nodes.
As an example, the plane figures have as constitu-
tive symmetries only the identity, rotation, translation,

property. Therefore, the non-homogeneity leads, on reflection and reflection-translation. It is known that a

the one hand, to thasymmetry and, on the other
hand, to thenore intense structural self-organization

5 GLOBALITY: A WAY FROM
THE STRUCTURE TO THE
ARCHITECTURE

One of the most importamropertiesof any physical
space structure is th®ymmetry The transformation
that keeps the structure of the space is nasuet-

rectangle has the following four symmetries: the iden-
tity, I; the two reflectionss; and.S; vs. non-parallel
sides perpendicular bisectordg, and Ag,; the ro-
tation with 180°, R. The four automorphisms can
be represented by an interconnection, the vertexes of
which are noted 1, 2, 3 and 4. With this, we equate the
symmetries of the rectangle with following permuta-
tions (generators)? = (1234), 51 = (214 3),

Sy =(4321)andR = (341 2). The four sym-
metries form a commutative group to the composition
operation but, equating them with permutations, we
notice that these symmetries form onlg@bgroupof

the symmetric group of order 4. In this way, we

morphism Giving a space configuration, a structure, can examine the symmetry properties of plane figures,
a form, aninterconnectionwe can emphasize a set which divide the symmetric groups,,; in different

of space automorphisms, which leave unchangeablesubgroups. Let us note lfys the groups (subgroups)
this interconnection. Thus, the emphasizing automor- of symmetries which divide the symmetric grofip.

phisms form agroup which describes precisely the

symmetry of the giving configuration.
The amorphous space hasosal symmetrycorre-
sponding to the group of all automorphisms.

We defined at the beginning of the paper
that the globality is the behavior (structural self-
organization) of a collectivity around a property

The How does it define the globality of the plane figures

symmetry of an interconnection will be described, as vs. symmetry property? A quantitative appreciation,
we have told, by a subgroup of all automorphisms. a measure of thglobality vs. symmetrywhich we

The total symmetry of the space defined/bypoints
(nodes, permutations) will be described ®y, while

noteT,, is given by the ratio of the order of group
of symmetries and the order of symmetric group:

apartial symmetrys expressed by a subgroup (of per- T',, = |Gs|/|Sn|. The inverse of',, we denominated
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group locality, L,,, (Lupu and Niculiu, 2005).

The globalities must be compared at the same num-

ber of interconnecting nodes (san%g;). For ex-
ample, the globalities vs. symmetry of the tetragon

and rectangle are the same for they refer to the same

symmetric group,Sy, while we can not say any-
thing about globalities of the isosceles triangle and
the square for they refer to the different symmetric
groups,Ss; and.Sy. The maximum globality will be
obtained whetdzs = S,,; = 1. Let us give three plane
figures, an isosceles triangle, a trigon and an equi-
lateral triangle, all having 3 interconnecting nodes,
so referring toSs. The isosceles triangle has two
symmetries,/ and S, its globality being the least,
Gg/S3 = 1/3. The trigon has three symmetries,
R, andRs. Its globality is equal to 1/2. The equilat-
eral triangle has 6 symmetries, R, R», S1, S2 and

Ss. Its globality is the biggest,.

Instead of relying on the logic distances between
the nodes (locality), we want to evaluate/design a in-
terconnection (collectivity) based gmoperties The
globality put the properties, a constructive, synthetic
principle, anarchitectural principle before the dis-
tances, an analytic principle, especially tied to the
locality. The logic distances "disappear” into a
globality, which displays the properties. The local-
ity principle helped us to design/evaluate new non-

homogenous interconnection networks, as general-

ized hyper structures, and the globality principle
helped us to imagine@ew interconnection paradigm

based on symmetrical morphemes and ensembles a”%t

that we will shortly introduce in next paragraphs.

The morphological interconnectigrnthat we pro-
pose as a new model for @llectivity, have toen-
semblein S, elementary entities We shall nhame
these entitiesnorphemesand the tying interconnec-
tion, morphological interconnection If we use the
architectural principle of globality vs. symmetry we
shall namesymmetrical morphemgsymmetrical en-
semblegandsymmetrical interconnection

The symmetrical morphemes, helping us to build
symmetrical ensembles, are bidimensional or tridi-
mensional forms emphasizing in a symmetric group
Sy by theCayleygraphs (Akers and Krishnamurthy,
1989) of (sub)groups of symmett§,s. These groups
of symmetry represent the symmetries of plane or
tridimensional figures. For example, the symmetries
of theright line segmengare the identityl = (1 2)
and the reflectiort = (2 1). Gs has aCayleygraph
with a transposition. The symmetries of tisesceles
triangle are the same, the identify= (1 2 3) and the
reflectionS = (1 3 2). TheCayleygraph associated
to the symmetries of the isosceles triangle is also with

Kgr Kgp
— 1 1
== 055 A
/.—.\ 0.333 <H> 0.111
0.027

e
A A

Figure 6: Compactity of the ensembl&s; realized by sim-
ple symmetric morphemes in architectural spége

I 0.166

/N

—— o +—2 +—

0

rotationskR; = (23 1) andRy = (3 12). Thecom-
plete (Lupu, 2004a)Cayleygraph of the trigon sym-
metries subgroup is a directed graph. It is an overlap
of two hamiltonian circuits (cycles as permutations)
in the opposite direction, representingnimal Cay-
ley graphs of the trigon symmetries. The symmetries
of theequilateral triangleare the identity’ = (1 2 3),

the rotation with180° R; = (2 3 1), the rotation with
240° Ry = (31 2) and the reflections; = (1 3 2),

Sy = (321)andS; = (21 3). The symmetric
morpheme of the equilateral triangle has the globality
I' = Gg/Ss 1. The morpheme of the right line
segment is dinear morphemeof the triangle and the
square arglane morphemes and the morphemes of
the pyramid and the prism aspatialmorphemes.

A first symmetric ensemble characteristic appreci-
es itscompactity The maximal compactity of an
ensemble will be obtained when all morphemes will
have all nodes, links, surfaces and volumes intercon-
nected. There are four basic rules of morphemes in-
terconnecting: common node¢CN), common links
(CL), common surfaceéCS) andcommon volumes
(CV). In this way, the compactity is a measure of mor-
phemes interconnecting in an ensemble. The com-
pactity is minimal for CN interconnecting and maxi-
mal for CV interconnecting. Let us note the ensem-
bles compactity withz and it will express different
for the three types of morpheme&ip;, = FQ%\?,

J— 1"3 S-m-n v-s-m-n

— 4
Kpp — 7 Lu-Nu and KES =T NSy -La-Nar’
whereTl is the globality;n is the number of nodes

interconnectedy = 0... NIM : m is the number of link

interconnectedy = 1.5 (m = 1 for no link in-
terconnected)s is the number of surfaces intercon-
necteds = 1...23% (s = 1 for no surface intercon-
nected);v is the number of volumes interconnected,
v = 1% (v 1 for no volume interconnected);
N, is the nodes number of the morphente;; is
the edges number of the morphemésS), is the sur-

2 nodes and a transposition, the only difference being faces number of the morpheme. In the figure 6 we

the defining automorphisms symmetric groups;
for segment and’;, for isosceles triangle. The sym-
metries of therigon are identity/ = (1 2 3) and two
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give some examples of symmetric ensembles struc-
tured in the architectural spacs, with linear and
plane morphemes. It also mentions the compactity
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0 o1 02 03 o4 05 06 o7 08 09 o110 oi1 o012 the collectivity, measures by the degree of member-
ship to global properties, like symmetry. Helping with
0 11 1z 13 14 13 16 17 18 19 1m0 112 112 these concepts, self-organization, structure, architec-
Figure 7: A GHG build by the rule CL in architectural space ture, function, interconnection, locality and globality,
S, from the 12 symmetrical morphemes of the tetragon. ~ We tried to model and to measure a collectivibis-
covering the rules that govern the future interconnec-
K1, for linear ensembles anki p for plane ensem-  tion environment is a major challeng&huge, 2005)
bles. About the other ensembles characteristics, the@nd. maybe, one of the future interconnection envi-
interconnecting efficiency in pure ensembdesl the ~ ronments is the collectivity model.
capacity of filling we shall write in another paper.
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