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Abstract: Discrete event systems involving synchronization and delay phenomena can be described by a linear state rep-
resentation ovefmax, +) algebra. Some discrete event systems involving choice phenomena could be trans-
formed, under some conditions, into switching max-plus linear systems modeled as automata. The switching
between states of these automata is governed by a switching variable. This paper deals with the just in time
control of these switching max-plus linear systems. The control problem we propose is optimal under just in
time criterion when the switching variable is given on the study horizon.

1 INTRODUCTION state representations. They are an adequate tool to

model DES in which several modes of operation take

The class of Discrete Event Systems (DES) essen-eﬁeCt' Bes@e max-plus "”e’?‘F models, switching al-
low to take into account additional phenomena such

tially consists of man-made systems that contain a fi- baNks of hronizati 4 ch ; ;
nite number of ressources (such as machines, commu&S Préaks of synchronization and changes in events
ccurrences order. In (van den Boom and de Schutter,

nications channels, or processors) shared by severa -
users (such as product types, information packets, 0r§004), authors have proposed a model predictive con-
trol for such systems to optimize their behavior. In

jobs) all of which contributing to the achievement of thi tack] th trol orobl |
some common goal as the assembly of products, the IS paper, we tackie another control problem, hamely

end to end transmission of a set of information pack- the output tracking problem with respect to just in

ets, or a parallel computation, (Baccelli et al., 1992). ime criterion. This control have been extensively
In general, models of DES are nonlinear in conven- studied for max-plus linear systems notably in (Cohen

tional algebra. However, there exists a class of DES etal., 19:.89)’ (Meng#y etﬂ?l't' 20(.),{0)“. Under palrticul!ar
which have been shown to be linear in a particular al- 8SSUMPUONS, we show that switching max-pius in-
gebraic structure, nametpax-plus algebrgBaccelli ear systems adrmt representations and a Just-in-time
et al., 1992) Thé so-calleniax-plus linear systems control solution inspired by those of max-plus linear
involve only synchronization and delay phenomena {IMme-varying systems (Lahaye et al., 1999). The con-

(but no conflict) which are basically modeled by max- tribution I_ies in the possibility to tak_e into account
imization and addition operations. Regarding Timed ;:hanges in th_e ?%stte_m structure while only parame-
Petri Nets (TPN) which enable to model (and partly er_?hr_nay vary inthe me—;aryn;g"case. s "
analyze) a wide variety of DES, max-plus linear sys- IS paper 1S organized as 1ollows. Some results
tems mainly fit to the subclass of Timed Event Graphs used in the sequel are recalled In th_e second section.
(TEG) A general presentation about switching max-plus lin-

Several studies have attempted to widen the class systems is given in the third section. We expose

of DES likely to be analyzed thanks to max-plus al- the JIT contro_l problem of_ SU(_:h systems in the fo_urth
; -~ . section. We give two applications in the fifth section.

gebraic tools. Among those works, we focus in this
paper on the so-callesivitching max-plus linear sys-
temswhich have been introduced in (van den Boom
and de Schutter, 2004). They can be seen as an au-
tomaton switching between several max-plus linear
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2 PRELIMINARIES

(i) fisresiduated.

(i) There exists a unique isotone mappifiy: F —

2.1 Algebraic Tools
211 Dioid

See (Cohen et al., 1989), (Baccelli et al., 1999,for
an exhaustive presentation of dioid theory.

A dioid (D, @, ®) is an idempotertsemiring, neu-
tral elements ofp and® are denoted ande respec-
tively. The symbolg is often omitted.

A dioid D is completeif it is closed for infinite
sums and if the product distributes over finite and in-
finite sums. The upper bound of a complete dioid,
denotedT (for Top), is the sum of all dioid elements
and it is absorbing for the addition.

An order relation noted>, can be associated with
a dioid D by the following equivalenceVa,b €
D,a = b < a = a®b. This order relation con-
fers upon complete dioid a structure of complete lat-
tice. So, we can introduce an operaforf, denoted
A, verifying: Va,beD,a>b&b=aAb.

Example1l The setZ U {—occ, 400}, endowed with
the max operator as additive law and the classical

D, called residual, such thaf o f* <+ idr and
ftof »p idp whereid s andidp are identity map-
pings inF and D respectively.

Example 2 Mappings L, x — a® z and
R, : z — x ® a defined over a complete diofd are
both residuated. Their residuals are usually denoted
by L! (z) = ajx and Rf, (x) = z¢a respectively.
These 'quotients’ satisfy the following formulae:
a® (ayz) 2z, (zda) ®a <z, (i
ad(zAy) = (ayz) A (aly),
(z Ay)da = (zda) A (yda),
(a®@b)yz = by(adz), z¢(a®@b) = (zfb)fa.

3 LINEAR SYSTEMS

3.1 Max-plusLinear Systems

It has been shown that DES involving synchronization
and delay phenomena (but no choice phenomenon)
can be described by a linear state representation over

sum as product, is a complete dioid, usually denoted dioid Z,,.. (see (Baccelli et al., 1992) for a detailed

DY Znax, Withe = —co,e =0 and T = +oc.

If D is a dioid, the setD™ ™ of n x n matri-
ces with coefficients inD is also a dioid. Sum
and product are defined in the following way:

(A® B),;; = Ai; ® Bij, (A® B),; = @ Air ® Bu;.
k=1

Theorem 1 Over a complete dioidD, the implicit
equationz = ax @ b admitsa™b as least solution

wherea* = @, o’ witha® = e.

2.1.2 Residuation Theory

A complete presentation of this theory is given in
(Blyth and Janowitz, 1972), see (Baccelli et al., 1992,
§4.4) for a specialization to dioid.

presentation):

A(k)z(k — 1) ® B(k)u(k),

C (k) (k). @

Such systems are usually referred to(asx, +)
linear systems The indexk is called the event
counter. Entries of state vecto(k) aredaters func-
tionsexpressing the time instants at which the internal
events occur for thé-th time. Similarly, vectors.(k)
andy(k) containdatersassociated respectively with
input and output events.

3.2 Switching Max-plus Linear
Systems

We now consider so-callezvitching max-plus linear

Residuation theory provides, under some assump-gysiemantroduced and studied in (van den Boom and

tions, thegreatestsolution to inequalityf(xz) < b,
wheref is an isotone mappirgiefined over ordered
sets.

An isotone mapping’ : D — F, where(D, <p)
and(F, =) are ordered sets, igesiduated mapping
if for all b € F the upper bound of the subsgt ¢
D|f(z) = b} exists and belongs to this subset.

Theorem 2 Let f : D — F be an isotone mapping
from the complete dioidD, <p) into the complete
dioid (F, <#). The following statements are equiva-
lent:

WaeD,a®a=a.
2f is an isotone mapping f < b = f(a) < f(b).
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de Schutter, 2004). This class of systems corresponds
to DES that can switch between different modes of
operation. In each mode= 1, ..., ¢, the system is
described by &max, +) linear state space model:

{ z(k) AV (k)2 (k — 1) @ BY (k)u(k),
y(k)

O (k)z(k).
in which the matricest), B®) andC'® are the sys-
tem matrices for thé-th mode. In general the switch-
ing allows to model a change in the structure of the
system, such as breaking a synchronization or chang-
ing the events occurrences order (several examples are
proposed in (van den Boom and de Schutter, 2004)).
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The moments of switching are determined by a 4.1 Representations
switching mechanism. A switching variable(k)

is defined, which may depend on the previous state _ o .
z(k — 1), the previous mod&(k — 1), the input vari- In the following, we assume that switching variable

ableu(k) and/or an external decision variahbigk): o(k) is known on the study horizon. Referring to
equation (3), this may happen in particular if:

o(k) = ®(z(k = 1),k = 1), ulk), v(k) €R™. (&) o o(k) = ®(v(k)), in which the external decision

SetR" is partitioned ing subsetZ® i = 1...q. variablev(k) is supposed to be given on the study
The model(k) is now obtained by determining in horizon.
which subset (k) is for eventk. Soifo(k) € Z%, 2 (k) = ®(I(k — 1)), where functiori(k), stating

theni(k) = i. We represent on figure 1 a simple  the mode at step according to the previous one, is
switching max-plus linear system with two modes. supposed to be given on the study horizon.

— So the first equation of (2) can be written flor>

ko:
2(k) = AV(R) @ 2(k — 1) @ BOR) @ u(k) 0 K p WY
o) = OO (k) @ (h) (k) = @k ko)a(ho) & D @(kis) B G)uls)
- where®(k, ¢) is thetransition matrixgiven by:
not defined ifi >k,
o(k) e Z® ®(k,i) = {Id if i =k,
AD)AD (k —1)...AD (i +1) otherwise

Then, we deduce the output:

AP (k) @ z(k — 1) @ BA (k) @ u(k)

k
y(k) = D m@k, ko)zko) ® D P m@k, )HBY (G)u(s)
y(k) = CO (k) @ x(k)

j=ko+1

4
) ) o d Remark 1 The state-transition matrix satisfies the
Figure 1: A simple switching max-plus linear system. composition property

O(k,i) = ®(k,j) ® ©(4,1), wherek > j > i,
and in particular fork > ¢ + 1
®(k,i) = AD(k)®(k—1,i) = ®(k,i+1)AD (i +1).

4 REPRESENTATIONSAND JUST Proposition 1 The least solution of equations (2) is

INTIME CONTROL OF given byVk € Z,y(k) = 69 h(k, j)u(j) with
S\NlTCH | NG MAX-PL US h(k,j) —_ C(l)(k)(ﬁ(k,j)B(l)( ) fOf] <k
LINEAR SYSTEMS h is called the impulse response of the system.

Proof By tendingk, towards—oo in equation (4),

In this section, we first focus on representations of It iS clear that any solution is greater than
switching max-plus linear systems. Assuming that  Settingy(k) = CV(k)z (k) with

the switching variable is known on the study hori- z(k) = @ ®(k, j)BY (j)u(j),

zon, we explicit the solution of state equation (2) and i<k

identify its impulse response. The obtained represen- We show thatr satisfies the first equation of (2):

tations are reminiscent of those @hax,+) linear (k) = @ o(k,j)BY3G)u(y),
time-varying systems (Lahaye et al., 1999), except Ik N o
that structures of implied matrices may vary along = j<?71‘1)(k’7)3 (G)u(j) ® B (k)u(k),
evolution in the switching case, while only parame- = AVR)] @ k- 1,/)BOG)ul)]
ters may vary in the time-varying case. j<k-1

From these representations, we can next tackle a @BY (k)u(k), (thanks to remark 1)
control problem for switching max-plus linear sys- = A(”(k‘) (k—1) & BY (k)u(k). O

tems, namelythe output tracking problem with re-
spect to just in time criterion
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4.2 Just In Time Control of strong analogy with the adjoint-state equations of
S\Nitching M ax-plus Linear optimal control theory. Firstly let us remark using
(iv) that:
Systems

Uopt (k) = /\h(L k) xz(j)

4.2.1 Description — /\(c<l>() (j, k)BO (k)X z(5)

Strong analogies appear between the classical linear = /\ BY(E)X[(CWD(5)®(5, k) §2(5))
system theory and thémax, +) linear system the- m
ory. In particular, the concept @bntrolis now well - B (k)%

defined for these systems. gkeatest contrglbased ~ When setting

on residuation theory (Blyth and Janowitz, 1972), has £(k) = A (CY(7)® (4, k)) k2 (j).

been proposed in (Cohen et al., 1989), (Menguy et al., izk

2000). For a given reference inpuie(, desired dates  Proposition 3 The greatest solution of equation:
of occurrence for output event8) = {z(k)}r—o,.. x,, o o

the control yields thdatest dates of occurrence for §(k) = AV (k+1)8¢(k+1) ACV (k) Rz(k)  (5)
input eventsU' = {u(k)}x=o,...x, in order that the is given by:

output events” = {y(k)}r=o,..., occur before the k)= N\ (COG DG, K))xz(5).

reference input. Such a greatest control is called >k

Just In Time (JIT) control. In a production context, Proof

it amounts to satisfying the customer demand while Let us first show that is solution of equation (5)
minimizing the stocks. Using representations pro- =" c7 '
posed at section 4.1, we propose a JIT control for A(l)(lH’- DAEGk + 1) A CO (k) Nz (k)

switching Max-plus linear systems. — AOG+ DN A (COE)DBG, k+1)) k()] A

4.2.2 Control Problem for Switching Max-plus 2fih
Linear Systems CO (k) kiz(k(;)
o 4>{€\+1(C (D)2, k + DAD(k + 1)) 8=(i) A

Proposition 2 From proposition 1, the outpuf of a

O] ii i
switching max-plus linear system can be written as (k) &z(k) (thanks to (ii) and (iv))

y = H(u) where[H(w)] (k) = @ h(k, j)u(j). F Z>{C\H(C(“(i)@(i7 k)Rz(@) A

Then the JIT optimal control denoted,, (k), is CO(k)®(k, k) §2(k) (seeremark 1)
given by: = N\ (CO()®(i, k) }2(i) (thanks to (ii))
uopt (k) = [HF(2)] (k) = /\ h(j, k) az(j)- :?(Z)

Proof We denote the. S|gnal defined by: 2. Let{¢(k)}rez a solution of equation (5), we have
Vk € Z,w(k) = A\ h(j,k)Rz(j)- VEk € Z

7=r k) = @k + ko, k)NE(E + ko) A

. Letz satisfyi x lently, ktko—1
]W$2§2§%g3&>zgiﬁffTi<@ R COGBG )R 21

Yk, i€ i€f< k;h(k,i)x(i ) j z(k) Withkg — oo, itis clear thatvk, &(k) < (k). O

h(k,i)yz(k)

szeZz<k¢(z)j
k

Vi€ Z,z(i) = N\ h(k,i)z(k) = w(i) So finally, {w.p:(k)}rez can be computed us-

2. Using (i)Vk:eZ ing the following backward iterative procedure:

Ek) = AD(k+ 1Rk +1) ACU(K) Rz (k),
@ lioeli) = @ rkALA RGNS SO = A

1E€EL
@ Ak, DIk, ) &2( )} = EB z(k) = 2(k) which
shows thatv is solution ofH( ) =X Z. O 5 APPLICATION

51 Examplel
In the following, we show thatu,,; is solution
of a system of recurrent equations which proceed This is a generic example because in much industrial
backwards in event index. These equations offer a applications (specially in flexible manufacturing sys-

82



ON JUST IN TIME CONTROL OF SWITCHING MAX-PLUS LINEAR SYSTEMS

tems) we find shared resources (as a welding or paint-
ing robot shared between production lines). Output
parts of this stage are processed by the machiise

Table 1: Numerical data and optimal control for system rep-
resented on figure 2.

Using Petri nets to model shared resources leads to a k 0| 112138145617
structure of choice represented by a pl&tésee fig- 7(5) 221 212 214 215 229 313 325 329
ure 2) with an input fork of arcs and another one out- u (t’)(k) P P 20
going. The three machines us@dl, M2, M3 have v () || 0 16 o4 | 28
one server each, which means that each one treats one y(i) 11151 19] 23| 27| 31| 35| 39
product at once. Processing times on machihgs
M, and M3 are respectively 3, 1 and 3 units of time.
g £ g €
" - cw® = | 2522
: e € 3 ¢
rrrrrrrrrrrrrrrrrrr 1 3
By (k i) By(k) = i
: : € €
Now using theorem 1, we get
: : : : gl € ¢
AOK) = (e )®am = | ; é N
e 9 € 4
e 1 € ¢
AP(k) = (@ @az = | o ] S
e 7 ¢ 4
1
& _ . — 4
BY(k) = (an)’)®Bn) = 6 |-
9

D W

in the same way we get: B® (k) =

9
Considering that the switching variable(k) is
known on the horizon of study, and consequefthy)

Figure 2: Petri net model for example 1.

Ifi(k) = 1thenu(k) = Us(k), will be known too, so we can apply the proposed
mgg §é8§% method for a just in time control. Table 1 shows a
z(k) = (k) = X5(k) else numerical experimentationz(k) corresponds to the
(k) X6(k) desired delivery date for the-th finished piecei (k)
a1 (k) X2(k) gives the machine number which treats theh part,
o) = P ) \= k)| _ [ X4k) Uopt, (+) @Nd ugp, (-) are the computed optimal in-
x3(k) X5(k) |- puts, andy(-) is the output response t@,, (-) and
z4(k) X6(k) Uopt, (+). We verify that for allk we havey(k) =<
Considering the first case which medis) = z(k).
we will give how we can extract the state space
% (k) = loa(k—1)® lu(k), Pace 52 Example 2
) za(k) = 3zi(k),
equations: z3(k) = 2z2(k) © lza(k — 1), We consider a manufacturing system consisting of
za(k) = 3z3(k), three machines. It is supposed to produce one kind
Yk) = walk), of piece by assembling two kinds of raw parts de-
€ € € ¢ noted P, and P,. Two modes can be chosen along
am (k) = i ; i i 7 production. In a first mode, part®, (resp. P)
c : 3 are preprocessed on machihg (resp. Ms) .and fi-
c 1 e & nally assembled and processed on machifie In
c et & & the second mode, part§ and P, are assembled and
ap (k) = e e e 1 | preprocessed on machin®;, and then processed
c £ e ¢ successively by machine&/; and M3;. Routings
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Mode 1 Mode 2

of parts are depicted on figure 3. When a switch

between modes occurs, we assume that semi-finite p, = M Y M M
pieces preprocessed by machines 1 and 2 (stocked in P-Q_g_g'
their downstream buffers) can be processed indiffer- P, P
ently by downstream machines in the new mode. Fur- 7
thermore, we assume that there are no set-up-times :
on machines when they switch from one mode to an- Figure 3: Routings of parts along machines according to
other. Processing times on machinds, M, and M3 modes of production.
are respectively 3, 4 and 5 units of time.

Functioning of the system can be represented by
a max-plus linear state equation (2) specific to each Table 2: Numerical data and optimal control for example 2.

mode. In both modes, we associate two ingaters kk 105 210 325 fs 540 755 :0 975 130

denoting dates at which raw parf3 and P, are 7((k)) 11|22 21]2]1]|">2

released in production. Six statiatersare used to uomg:; TR E T2
. - Uopt

respectively represent input and output dates of parts | "% 15 | 20 | 35 | 45 | 60 | 75 | 80 | 95 | 100

on machines\/;, M, and M3. Finally, one output
dater denotes delivering dates of finished parts. We

get the following representations: 6 CONCLUSION

€ € € £

In this paper we have considered the just in time con-
, trol problem of switching max-plus linear systems.
The proposed control is optimal under just in time
criterion in the case where the switching variable is
given on the study horizon. In futur work, we will
consider a different switching variable more general
which is not necessarily given from the beginning.

AM (k) =

m m M M M O
© O,
m m ®m M o

g o m O M

BM (k) =
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