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Abstract: The primary advantages of high performance associative memory model are its ability to learn fast, store 
correctly, retrieve information similar to the human “content addressable” memory and it can approximate a 
wide variety of non-linear functions. Based on a distributed associative neural network, a Bayesian 
inference probabilistic neural network is designed implementing the learning algorithm and the underlying 
basic mathematical idea for the adaptive noise cancellation. Simulation results using speech corrupted with 
low signal to noise ratio in telecommunication environment shows great signal enhancement. A system 
based on the described method can store words and phrases spoken by the user in a communication channel 
and subsequently recognize them when they are pronounced as connected words in a noisy environment. 
The method guarantees system robustness in respect to noise, regardless of its origin and level. New words, 
pronunciations, and languages can be introduced to the system in an incremental, adaptive mode.  

1 INTRODUCTION 

Associative neural networks show great potential for 
modeling nonlinear systems where it is difficult to 
come up with a robust model from classical 
techniques. There have been a number of associative 
memory structures proposed over the years (Palm 
1980; Willshaw and Graham 1995; Palm, 
Schwenker et al. 1997), but, as far as the authors 
know, there have been no fully functional 
commercial products based on best-match 
association. In this paper we present what we feel 
are the first few steps to creating such a structure in 
Bayesian inference. Bayesian inference learning 
based associative neural networks can be trained to 
implement non-linear functional memory mappings. 
This best-match associative network can be viewed 
as two outside layers of neurons and multiple inside 
hidden layers of neurons, and hence, its operation 
can be decomposed into two separate mappings 
outside. The input vector is transformed to a vector 
of binary values, which in turn produces the sum of 
weights that link itself to the corresponding input 

vector of value one. As with any training of 
perceptron, given an input vector, the desired output 
at the output layer can be approximated by 
modifying these connection weights through the use 
of Bayesian inference learning (Zeng and Dan, 
2002). In the output, a match is defined as a bit for 
bit, or exact match (though “don't care” positions 
are generally allowed), OR the best match if there is 
no exact match by approximation. Best-match 
association then finds the “closest” match according 
to some metric distance between the data we 
provide and the data in the memory. A number of 
metrics are possible. A simple and often used metric 
is Hamming distance (number of bits which are 
different). However, more complex vector metrics 
can be used. A common example of best match 
processing is Vector quantization, where the metric 
is usually Euclidean distance in a high dimensional 
vector space. 

There are a number of interesting technical 
problems involved in creating a functioning 
best-match associative memory system. An 
important part of this process that is essential in 
many of the potential applications is to be able to 
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formally describe the operation of this memory. 
Bayesian Networks and Decision Graphs have been 
proposed techniques for modeling intelligent 
processes. And there are a number of “intelligent” 
applications that are based on Bayesian Networks. 

In this paper we propose that Bayesian inference 
is an appropriate model for best-match associative 
processing. The designed neural network adaptive 
learning system is applied to improve the 
intelligibility of the speech signal for automatically 
adjusting the parameters of the adaptive filter in 
order to improve the corrupted speech signal and to 
optimize the output signal of the system. The input 
signals are stochastic and the information obtained 
from the inputs used by the adaptive algorithm is to 
adjust the weights and to achieve parameter 
adjustments close to optimum. Most of the 
conventional work towards canceling noise to 
improve the corrupted speech signal uses the Least 
Mean Squared (LMS) algorithm, or Recursive Least 
Square (RLS) algorithm to cancel of the unwanted 
noise under the assumption that a reasonably good 
model of the actual unwanted signal is available. 
The noise estimate, or sometimes referred to, as the 
reference signal, could not be correlated to the 
speech signal to be recovered, as this will cancel the 
actual speech as well.  

The simulation results show an increased 
performance of the Bayesian Networks compared to 
the conventional RLS adaptive algorithm. 

2 NEURAL NETWORK FOR 
NOISE CANCELLATION 

Figure 1 shows a conventional adaptive noise 
cancellation scheme where  )(tx  represents a 
noiseless signal and )(tn a superimposed noise.  
 

 
Figure 1: LMS/RLS Based Adaptive Noise Cancellation. 

An adaptive filter in the feedback loop tailors a 
noise-correlated input )(tp and outputs the estimate 

)(tm of the noise )(tn . The error function is then 
given by 

)()()()( tmtntxt −+=ε  

With a mean-square deviation  
))()()((2))()(()()( 222 tmtntxtmtntxt −+−+=ε

 
That yields the expectation function 

))]()()((2[]))()([()]([)]([ 222 tmtntxEtmtnEtxEtE −+−+=ε  
If )()( tntx ⊥ ,  )()( tmtx ⊥ , one has 

]))()([()]([)]([ 222 tmtnEtxEtE −+=ε  
Since )]([ 2 txE isn’t affected by the adaptive 

mechanism itself, ]))()([( 2tmtnE − can be 
minimized for a given )(tp  by the Least Mean 
Squared (LMS) algorithm, or Recursive Least 
Square (RLS) algorithm; i.e., 

0]))()([( 2 ≈− tmtnE so we will have 
)]([)]([ 22 txEtE ≈ε , then )()( txt ≈ε . 

The proposed neural network noise cancellation 
is a Bayesian inference based distributed associative 
neural network (shown in Figure 2 where the 

output )()(
^

txty = , )(
^

tx is the signal estimate). It 
constructs a Bayesian inference associative memory 
(BIAM) neural network to suppress noise and to 
output the signal estimate. The BIAM neural 
network consists of multiple clusters of 
self-organizing feature maps. The weights in the 
BIAM neural network are effectively the 
coordinates of the locations of the neurons in the 
map. The output of the winning neuron can be 
directly obtained from the weight of a particular 
output neuron. Instead of storing the signal estimate, 
BIAM memory only stores the weight, which 
represents the functions of the outputs of the 
estimate signal and the estimate noise spectra in the 
association engine. 

 
Figure 2: BIAM Neural Network Noise Suppression. 

3 PALM ASSOCIATION 

For the first association engine, we want an 
algorithm that is reasonably well understood and 
performs robust best-match association 
computation. Figure 3 shows the architecture of 
BIAM for noise cancellation. 

In Figure 3, TDL is a tapped delay line. The 
input signal such as the primary 

ICINCO 2006 - SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL

178



signal )()( tntx + and the noise-correlated input 
)(tp enters into a TDL, and passes through N-1 

delays for the primary signal and M-1 delays for the 
noise-correlated input. The output of the tapped 
delay line (TDL) is an (N+M)-dimensional vector, 
made up of the input signal at the current time, the 
previous input signal, etc.  MIAM competitive 
learning will output the signal winner neuron 
through the weights of the cluster of neurons. It 
separates the noise winner neuron in the noise 
cluster. The learning only occurs in the output 
neurons. 

 
Figure 3: Architecture of BIAM for Noise Cancellation. 

As a first pass, we have chosen to use the simple 
associative networks of Günther Palm (Palm, 1997 
#82). Part of the purpose of using Palm is as a driver 
for the design methodology. We have no intention 
of limiting ourselves to that model and feel that 
many more interesting and powerful models will be 
available for us. 

The algorithm stores mappings of specific input 
representations ix  to specific output 

representations iy , such that i ix y→ . The network 
is constructed via the input-output training 
set ( , )i ix y , where ( )i iF x y= . The mapping F is 
approximative or interpolative in the sense that 

( )i iF x yε δ+ = + , where ix ε+  is an input 

pattern that is close to input xμ  being stored in the 

network, and ii xy =  with 0))()((
^

→−= tntnε  
and 0→δ . This definition also requires that a 
metric exists over both the input and output spaces. 

We are using a simplified auto-association 
version of Palm’s generic model, where the input 
and output are the same. Furthermore, all vectors 
and weights are binary valued (0 or 1) and have 
dimension N. There is also a binary valued n by n 

matrix that contains the weights. Output 
computation is a two step process. First an 
intermediate sum is computed for each node (there 
are also n nodes). 

[ , ] '[ ]
N

j
k

s w j k x k= ∑  

In the notation, a vector x’ is input, an inner 
product is computed between the elements, k, of the 
input vector and each row, j, of the weight matrix. 
For auto-association the weight matrix is square and 
symmetric. 

The node outputs then are computed 
ˆ ( )j j jx f s θ= −  

The function, f, is a non-linear function such as a 
sigmoid. We are currently assuming a simple 
threshold function whose output ˆ jx  then is 1 or 0 

depending on the value of the node’s threshold jθ . 
The setting of the threshold is complex and will be 
discussed in more detail below. Initially we shall 
assume that there is one global threshold, but we 
will relax that requirement as we move to modular, 
localized network structures. 

The next important aspect of these networks is 
that they are “trained” on a number of training 
vectors. In the case of auto-association, these 
represent the association targets. In the Hopfield 
energy spin model case, these are energy minima. 
There are M training or memory patterns. In the 
auto-associative memories discussed here the output 
is fed back to the input so that X=Y. 

The weights are set according to a “Hebbian” 
like rule. That is, a weight matrix is computed by 
taking the outer product of each training vector with 
itself, and then doing a bit-wise OR of each training 
vector’s Hebbian matrix. 

1

( )
M

i j i jw x yμ μ

μ =

= ∪  

The final important characteristic is that only a 
fixed number of nodes are active for any vector. The 
number of active nodes is set so that it is a relatively 
small number compared to the dimensions of the 
vector itself – Palm suggests (log( ))a O N= . It is 
worth noting that the LMS algorithm operates in 
O(N) operations per iteration, where N is the 
number of tap weights in the filter, whereas RLS 
uses O(N^2) operations per iteration. Although 
reducing theoretical capacity somewhat, small 
values of a lead to very sparsely activated networks 
and connectivity. It also creates a more effective 
computing structure. Training vectors are generated 
with only nodes active (though in random 
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positions). Likewise, we have assumed that test 
vectors, which are randomly perturbed versions of 
training vectors, are passed through a saturation 
filter that activates only a node. This is also true of 
network output, where the global threshold value 
(which is the same for all nodes),θ , is adjusted to 
ensure that only the K nodes with the largest sums 
are above threshold— this is known as K 
winners-take-all (K-WTA). Palm has shown that in 
order to have maximum memory capacity, the 
number of 1s and 0s in the weight matrix should be 
balanced, that is p1 = p0 = 0.5, that is 

0ln ln 2Mpq p= − ≤ . In order for this relationship to 
hold, the training vectors need to be sparsely coded 
with log n bits set to 1, then the optimal capacity 

69.02ln = is reached. 

3.1 Palm Association as Bayesian 
Inference  

Message xi is transmitted, message 
)()()(' tntxtx +=  is received, and all vectors are 

N bits in length, so the Noisy Channel only creates 
substitution errors. The Hamming Distance between 
these two bit vectors is HD(xi, xj). We are assuming 
throughout the rest of this paper that the Noisy 
Channel is binary symmetric with the probability of 
a single bit error being ε, and the probability that a 
bit is transmitted intact is (1-ε). The error 
probabilities are independent and identically 
distributed and  ε < 0.5. 

 
We can now prove the following result: 
Theorem 1: The messages, xi, are transmitted 

over a Binary Symmetric Channel and message x’ is 
received. For all messages, xi, being equally likely, 
the training vector with the smallest Hamming 
Distance from the received vector is the most-likely 
that was sent in a Bayesian sense, 

, min ( , ')i ii st HD x x∀  and 

, max ( | ')i jj st p x x∀ , i=j 
Proof:  This is a straightforward derivation from 

Bayes rule 

1

[ ' | ] [ ][ | ']
[ ' | ] [ ]

i i
i N

j j
j

p x x p xp x x
p x x p x

=

=

∑

 

Since the denominator is equal for all inputs, it 
can be ignored. And since the xi are all equally 
likely the p[xi] in the numerator can be ignored. Let 
xi(h) be a vector that has a single bit error from xi, 
that is HD(xi(h), xi)=h. The probability, p(x(1)) of a 
single error is (1-ε)n-1ε. Note, this is not the 

probability of all possible 1-bit errors only the 
probability of a single error occurring that 
transforms xi into x’. The probability of h errors 
occurring is, p(x(h)) = (1-ε)n-hεh. It is easy to see that 
for ε<0.5 then p(x(1)) > p(x(2)) > … > p(x(h)). And 
by definition HD(x(1)) < HD(x(2)) < … < 
HD(x(h)). By choosing the training vector with the 
smallest Hamming Distance from x’, we maximize 

[ ' | ]ip x x  and thus maximize [ | ']ip x x  
Theorem 2: When presented with a vector x’, 

the Palm association memory returns the training 
vector with the smallest Hamming Distance, if the 
memory output is that vector xi, then we have 
min ( , ')i iHD x x  

The proof is not given here, but this is a 
fundamental property of the Palm network as shown 
by Palm (Palm 1980). 

Going back to Bayes’s rule, using the fact that 
the probability of h errors is p(x(h)) = (1-ε)n-hεh, and 
taking the logarithm we get: 

l n [ ( | ') ] l n [ (1 ) ] l n [ ( ) ]
( , ') ( l n ln (1 ) ) ln ( )

N h h
i i

i i

p x x p x
H D x x p x

ε ε
ε ε

−= − +

= − − +

 

Setting (ln ln(1 ))α ε ε= − − and dividing, we 
get  

( , ') ( , ') ( )i i if x x HD x x f x= +  
Where f is the log of the probability, divided by 

α. 
We can then create a modified Palm network 

‘with priors’ where there is a new input for each 
vector. This input adds to the accumulating inner 
product.   

 
The weights in this modified Palm network are 

calculated according to a “Hebbian” like rule and 
the knowledge of prior probabilities. That is, a 
weight matrix is computed by taking the outer 
product of each training vector with itself, and then 
doing a bit-wise OR of each training vector’s 
Hebbian matrix; and plus an inference-based 
learning item.  η is a learning rate. 

Theorem 3: The message xi is transmitted over a 
Binary Symmetric Channel and message x’ is 
received. For all messages, xi, with probability of 
occurrence p(xi), the training vector with the 
smallest Weighted Hamming Distance from the 
received vector, x’, is the most likely message sent 
in a Bayesian sense, 

, max ( , ')i ii st f x x∀  and 

, max ( | ')i ji st p x x∀ , i=j. 
Proof:  The proof is similar to Theorem 1 
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Based on the given prior probabilities of the 
training messages, the weights are learned by 
inference of the closest stored pattern. It minimizes 

the objective function HD(xi, x’); this gives to 
This means the Palm reference associative 

memory can most likely recall the store xi from 
noised message input x’. It makes the message xi be 
recalled independently to its noise signal. 

4 CONCLUSION 

In our implementation of the BIAM algorithm for 
noise cancellation we modeled the additive noise as 
a random white Gaussian process. We model the 
unknown acoustical system as a randomly generated 
FIR filter. We used sine chirps and a voice 
recording for our input signals. The simulation in 
Figure 4 observed with our experiments, BIAM has 
significantly faster convergence behavior than the 
conventional LMS/RLS. In general, it seems to 
converge within log (N) iterations, where N is the 
number of tap weights having a better steady state 
approximation of tap weights. This significantly 
improves the final noise removal performance. 
These results demonstrate that the Palm memory is 
operating as a Bayesian classifier. 
 

 

Figure 4: Simulation Result. 
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