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Abstract: Upper and lower matrix bounds for the solution of the discrete time coupled algebraic Lyapunov equation for
linear discrete-time system with Markovian jumps in parameters are developed. The bounds of the maximal,
minmal eigenvalues, the summation of eigenvalues, trace and determinant are also given.

1 INTRODUCTION ior can be determined by examining certain bounds on
the parameters of the solution instead of the full solu-

It is well known that algebraic Lyapunov and Riccati ton. _ _ .
equations are widely applied to various engineering  Considering the linear dynamical systems with
areas including different problems in signal process- Markovian jumps in parameter values, which have re-
ing and, especially, control theory. In the area of cently attracted a great deal of interest, instead of one
control system analysis and design, these equations2guation a set of coupled algebraic equations arises.
play crucial role in system stability and boundedness They are called coupled algebraic Riccati and cou-
analysis, optimal and robust controllers and filters de- Pled Lyapunov equation. All the reasons mentioned
sign, the transient behavior estimates, etc. During the 8b0ve could be repeated to show how the bounds for
past two decades many bounds for the solution of var- coupled algebraic Lyapunov equations can be used.
ious types of algebraic Lyapunov and Riccati equation Bounds for the coupled Riccati equation have been al-
have been reported. The surveys of such results can béeady obtained in (Czornik and Swierniak,2001a) and
found in (Mori and Derese, 1984), (Komaroff, 1996), (Czornik and Swierniak, 2001b). To our knowledge
(Kwon et al., 1996), (Czornik and Nawrat, 2000). The this paper is the first whgre the bounds_ for coupled
reasons that the problem to estimate upper and loweralgebraic Lyapunov equations are established.
bounds of these equations has become an attractive T1he eigenvalues\; (X), wherei = 1,...,n, of
topic are that the bounds are also applied to solve & Symmetric matrixX € R"*" are assumed to be
many control problems such as stability analysis (Lee arranged such that

et al., 1995), (Patel and Toda, 1980), time-delay sys- MX) > X)) > ... >\ (X).

tem controller design (Mori et al., 1983), estimation When we consider the discrete time jump linear sys-

ofthe mina cost e he suboptal convoler - tem e folowing disrets coupled algebric Lya
gorithms (Allwright,1980), robust stabilization prob- punov equation (DCALE) arises (Chizeck et al.,

lem (Boukas et al., 1997). Eigenvalue bounds can be 1986): . I

, P = Qi + A Fi A, 1)
also used to determine whether or not the system un- h
der consideration possesses the singularly perturbed’v ere P P 5
structure (Gajic and Qureshi, 1995). An excellent mo- C Zpij J ©
tivation to study the bounds for Lyapunov equation is j€s

given in (Gajic and Qureshi, 1995) (Section 2.2). The and4;, @Q;, P; € R™™, py; € [0,1], >, opij =
authors advocated the results in this area by sayingl, i € S, S is a finite set. The numbegs; are the
that sometimes we are just interested in the generaltransitions probabilities of a Markov chain.
behavior of the underlying system and then the behav- We need the following lemma.
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Lemmal (Marshall and Olkin, 1979)LetX,Y €
R with X = X', Y =Y’, X,Y > 0. Then the
following inequalities hold

Nijot (XY) S NN (V) i+ < nt1 (3)

I
)+ D> e (Y
k=1

l

l
DMK HY) <Y N (X
k=1

k=1

l

Z M-kt (X +Y) >
k=1

l l
D Akt (X) 4D A (V). ()
k=1 k=1

2 MAINRESULTS

The next theorem contains the main result of the pa-

per.

Theorem 2 For the eigenvaluesiy (P;), k =
1,...,n,1 € S of positive definite solutioR;, i € S of
DCALE (1), the following inequalities hold

l

l
DoM(P) <Y M@+ <maSX Pij) A1 (AiA])-
k=1 k=1 7€
] Eies Zi::l Ak (Qi) h
1— I}leaéc A\ (AjA;) 1§1€a§( Ziespij

=a(l,i), @)

fori =1,...n,if max A1 (A A ) max Mics Pij <
J

1, and

l
> Xk (P
k=1

Z)\n k1 (

>ics ket Anir1 (Qi)
1- melgl An (A;A” ) mln Y ics Pij
j

(mln pm> Ijnelg An (AjA;.)

=p(l1), (8)
forl =1,...,n,if I]I’élgl An (AjAS) rjrggl Y icg Pij <

1.
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Proof. From (1) it follows, by using (5) and (3), that
l

l
S M(P) <D (@

k=1 k=1
1 l
= Z i (Qi) + Z M (F3 A A7)
=1 k=1
< Z)\k

Applymg (5) to (2) leads to
l
SaE) <Y <pUZ/\k ) . (10)
k=1

jeSs
Combining (9) with (10) yields to

STIE SAC!

k=1

l
+ max Ay (A;AD D | pig DM (Pj)> . (11
JES k=1

Summing the above inequality ovee S we have

YD)DINIAES 3) SENLY

l
) M (AFA) =
k=1

D+ A (44D Z)\k (9)
k=1

1€S k=1 i€S k=1
+ max Ar (4;47) ) > (p”ZAk );
i,j€S
ZZ)\k +max)\1(A A’)~
ieS k=1
=550
jeS i€S

I
DI
i€S k=1
!
: (max Zpij> Z Z Ak (P
i€8 s i€S k=1
inequality

—|—max A (4 A’)-

Solving this respect to

Sies i Ak (P;) and taking into account
that
max A1 (A A max Zp” <1
€S
we obtain l
Z Z /\k (Pz) S
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ZieS 22:1 Ak (Qi)

. 12
1= max Ay (A;47) max > ies Pij (12)
(9) implies also that
l l
DM N
k=1 k=1
l
(AiA) | < Z )
jes =1
l
; A (Qi) + (I;fleag pij) :
L(AADD Z A (P (13)

JjES k=1
Applying (12) on the right hand side of (13) we have
(7).

To proof (8) let's observe that the use of (6) and (4)
to (1) to gives

Z >\n k+1

l

Z M—it1 (ASFA;) =
=1

l

§ n— k+1

k=1

1 l
Z An—kt1 (@) + Z An—kr1 (FiAi A7) >

k=1 k=1

l
Z Ankr1 (Q
ZAn k+1

l

§ n— k+1

!
mig An (AjA;) Z n—k+1 (Fi) .

7€
k=1
Summing (14) ovet € S we have

1 l
Z Z >\7L7k+1 (PZ) > Z Z )\nkarl (Q )+

(14)

€S k=1 €S k=1
mln )\n Aj A’ ZZA” k1 ( (15)
i€S k=1
Applying (6) to (2) leads to
l
Z >\n7k+1 > szj Z )\n kJrl (16)
k=1

JES

Combining (15) with (16) yields to

YD) IMTIES ) S W

€S k=1 i€S k=1
min A, (4;45) -
Z szg Z An— k:+1 =
i€S \JjES

ZZM b

)+ mln An (AjA;-) .

<<> ).

YD) I

)+ mln P (A A’) .

€S k=1
l
: gfgg Zpij Z Z An—ks1 (P,
€S i€S k=1
Solving this inequality with respect to

Yics 22:1 An—k+1 (P;) and taking into account
that
rjnln/\ (A A mln Zp” <1
ZGS
we obtain

l
Z Z )‘n—k'—i-l (P
i€S k=1

l
Zz‘ES Zk:1 )‘nkarl (QZ)
1= min Ay (4;45) min > e Pij

(17)

Combining (14) and (16) we conclude that

l
Z An—k+1 (B (ngg pij> .
k=1 !

l

Z n—k+1 Qz

k=1

- min A\, A A/
JES

ZZM k1 (

i€S k=1

Applying (17) to the right hand side of the above in-
equality we obtain (8)Hl

Using the Theorem 2 we can establish the follow-
ing general matrix bound for the solution of DCALE
).
Theorem 3 For the positive definite solutioR;,: €
S of DCALE (1) we have

P < (Zp”

jES

) AjAi + Qi (18)
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if max Ay (A;A)) max Y, o pi; < 1and Now we have bounds of; (P;) andtr (P;) in The-
jes jes orem 2 and in Corollary 1 similar for the lower bounds
of \,,(P;) andtr (P;) , butin general is difficult to say
P, > Zpiiﬁ (L) | A4 +Q (9 which one are better, however the example presented
ics in the next section suggests that the bounds from The-
orem 3 can be better.
if min A, (AjA;-) min ) . ¢ pi;< 1, wherea (1, 5)
JjES jes
andg (1, j) are given in Theorem 2.

. 3 NUMERICAL EXAMPLE
Proof. In (Rugh, 1993) it has been shown that for any

symmetric matrixl' € R"*" andz € R" Consider the following fourth-order jump linear sys-
/ / ’ tem with three switching modes (Gajic and Qureshi,
A(T)z'e < 2'Tex < \(T)z'z. 1095):5 — {1,2,3}

Using this inequality to (1) we have 01 03 06 1

[pisl; jes = [ 0.5 025 0.25

D piiAa(Py) | AjAi+ Qi < P < .
jes [ 0.0667 0.0665 0.0844 —0.2257 ]
4 | 01383 —0.1309 0.0797  0.1162
L=
< iy . "'A. y 0.0658 0.0298 0.0645 —0.1018
- ;p”Al(Pj) Aidi+ Qs —0.2283 0.2438  —0.1990 0.2997
j L i
Combining this inequality with (7) and (8) fdr= 1 0.1885 ~ —0.3930 —0.0894 —0.1919
we get the conclusions of the theorelih. & - 88;3452030 0'35199850 _8}32‘; _8}8‘113
From Theorem 3 on the obvious way the bounds 09648 :0'2440 :0'0542 60484
for det (P;), tr (P;), A;(P) can be obtained and they L ’ : : .
are collected in the next Remark. C 02746 0.0634 03414  —0.0692
Remark 1 For the positive definite solutioR;,i € S Ao | 00796 04167  0.0283  —0.1207
of DCALE (1) we have 37| —0.1607 0.0344  —0.2227 0.1617
i 0.1175 —0.2969 0.4149 0.3314 i
tr(P) < | Y pija (L)) | tr (AA) +trQs, Q1=Q:=Qs =11
jes For the solution?;, P, P; we have
. / A (Pr) = 1.3533, A2 (P1) = 1.1182, A3 (P1) = 1.0124,
det (F;) < det Zpija (1,7) | (4iA:) +Q: |, Aa(Pr) = 1.0000,
jes AL(P2) = 17003, Ao (Ps) = 1.2309, As(Ps) = 1.0979,
. / Aa(P2) = 1.0104,
Me (P) < X [ [ Do piger(1,5) | (AjA) + Qi A1 (P3) = 1.6385, \a(Ps) = 1.3763, As(Ps) = 1.0665,
j€s Aa(P3) = 1.0019,
if max A (45A%) max > iegPij < land (7) and (8) give the following bounds
J J
A (Pr) < 3.5806, \(P1) > 1
tr(P) > [ Y piiB(1,4) | tr(AA) +tr (Qi) M (P) < 4.7421, A\ (P,) > 1
JjeS )\1(P3) < 62760,)\4(P3) >1
- which are not satisfying. However (18) and gives
det (P;) > det Zpijﬂ (1,5) | (A4 + Qs 1.0000 < A4(Pp) < 1.0000,1.0101 < Az(Py) < 1.0562,
ics 1.0809 < Ax(Pp) < 1.4486,1.2928 < A (Py) < 2.6237,
i 1.0098 < Au(P2) < 1.0445,1.0807 < A3(P2) < 1.3667,
Ak (Py) > Mg sz‘jﬁ (1,7) | tr (ALA;) + Qi , 1.2054 < Aa(P») < 1.9334,1.5095 < A1(P2) < 3.3156,
jes
i min A (A A/ ’ ) Wh - 1.0014 < Au(P3) < 1.0082,1.0550 < A3(P3) < 1.3196,
! THg An (45 A7) min 32, qpi; < 1. Wherea (1, ) 1.3130 < Ag(P3) < 2.8202,1.5134 < A1 (P3) < 3.9861.

jes
and( (1, j) are given in Theorem 2.
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4 CONCLUSION

Upper and lower matrix bounds for the solution of

DCALE have been developed. By these bounds, the
corresponding eigenvalue bounds (i.e. for each eigen-
values including the extreme ones, the trace and the

determinant) have been defined in turn.
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