
Architectural Framework for Web Services
Authorization

Sarath Indrakanti, Vijay Varadharajan, Michael Hitchens

INSS Research Group, Department of Computing
Macquarie University, Sydney, NSW 2109, Australia

Abstract. This paper proposes an authorization architecture for Web services. It
describes the architectural framework, the administration and runtime aspects of
our architecture and its components for secure authorization of Web services as
well as the support for the management of authorization information. The paper
also describes authorization algorithms required to authorize a Web service
client. The architecture is currently being implemented within the .NET
framework.

1 Introduction

In general, security for Web services is a broad and complex area covering a range of
technologies. At present, there are several efforts underway that are striving to
provide security services for Web services. A variety of existing technologies can
contribute to this area such as TLS/SSL and IPSec. There are also related security
functionalities such as XML Signature and XML Encryption and their natural
extensions to integrate these security features into Web service technologies such as
SOAP [1] and WSDL [2].

WS-Security specification [3] describes enhancements to SOAP messaging to
provide message integrity, confidentiality and authentication. The WS-Trust [4]
language uses the secure messaging mechanisms of WS-Security specification to
define additional primitives and extensions for the issuance, exchange and validation
of security tokens within different trust domains. While there is a large amount of
work on general access control and more recently on distributed authorization [5],
research in the area of authorization for Web services is still at an early stage. There is
not yet a specification or a standard for Web services authorization. There are
attempts by different research groups [6-9] to define authorization frameworks and
policies for Web services. Currently most Web service based applications, having
gone through the authentication process, make authorization decisions using
application specific access control functions that results in the practice of frequently
re-inventing the wheel. This motivated us to have a closer look at authorization
requirements for Web services and propose an authorization architecture.

In the next section, we describe our Web Services Authorization Architecture
(WSAA). Section 3 discusses the benefits of the proposed architecture. We compare
our architecture to related work in section 4 and then give some concluding remarks
in section 5.

Indrakanti S., Varadharajan V. and Hitchens M. (2005).
Architectural Framework for Web Services Authorization.
In Proceedings of the Joint Workshop on Web Services and Model-Driven Enterprise Information Systems, pages 97-106
DOI: 10.5220/0002565800970106
Copyright c© SciTePress

2 Web Services Authorization Architecture (WSAA)

Fig. 1. Web Services Authorization Architecture (WSAA)

WSAA (figure 1) comprises of two domains - an administrative domain and a runtime
domain. We manage Web services in the administration domain by arranging them
into collections and the collections into a hierarchy. We provide administration
support to manage a collection of Web services. We also provide support for the
arrangement (adding, removing) of Web services within the collections and the
movement of Web services within collections. Authorization related components such
as authorization policy evaluators, trusted certification authorities (provide
authentication and authorization credentials) and dynamic attribute services (provide
attributes required for authorization) can be managed in the administration domain.
Also security managers can assign a set of authorization policy evaluators to authorize
requests to Web services.

To make the authorization process efficient, we have a runtime domain where the
authorization related information such as what credentials are required to invoke a
particular Web service and how to collect those credentials, is compiled and stored.
This information is automatically compiled from time to time when necessary using
the information from the administration domain and it can be readily used by
components in the runtime domain.

The Registry Server located anywhere in the Internet is responsible for maintaining
relations between services and their service providers. When a client requests the
Registry Server for a specific service, the latter responds with a list of Web services
that implement the requested service.

98

2.1 System Components

Client Proxy (CP) collects the required authentication and authorization credentials
from the respective authorities on behalf of the client before sending a Web service
request and handles the session on behalf of the client with a Web service’s security
manager.
Security Manager (SM) is an automated component responsible for both
authentication and authorization of the client. A client’s CP sends the necessary
authentication and authorization credentials to the SM. SM is responsible for
managing all the interactions with a client’s CP.
Authentication Server (ANS) receives the authentication credentials from SM and
uses some mechanism to authenticate the client. We treat ANS as a black box in our
architecture as our focus in this paper is on authorization of the client. We included
this component in the Web services security layer for completeness.
Authorization Server (AZS) decouples the authorization logic from application
logic. It is responsible for locating all the authorization policy evaluators involved,
sending the credentials to them and receiving the authorization decisions. Once all the
decisions come back, it uses the responsible authorization decision composers to
combine the authorization decisions. Where required, AZS also collects the
credentials and attributes on behalf of clients from the respective trusted certification
authorities and dynamic attribute services.
Authorization Policy Evaluator (APE) is responsible for making authorization
decision on one or more abstract system operations. Every APE may use a different
access control mechanism and a different policy language. However, an APE defines
an interface for the set of input parameters it expects (such as subject identification,
object information, the authorization credentials and dynamic attributes) and the
output authorization result.
Trusted Certification Authority (TCA) is responsible to provide authentication
and/or authorization credentials required to authenticate and/or authorize a client. For
example, a TCA may provide public key certificates or authorization related
certificates such as a Role Membership Certificate (RMC) [10].
Dynamic Attribute Service (DAS) provides system and/or network attributes such as
bandwidth usage and time of the day. A dynamic attribute may also express properties
of a subject that are not administered by security administrators. For example, a nurse
may only access a patient’s record if s/he is located within the hospital’s boundary. A
DAS may provide the nurse’s ‘location status’ attribute at the time of access control.
Dynamic attributes’ values change more frequently than traditional static
authorization credentials (also called privilege attributes). Unlike authorization
credentials, dynamic attributes must be obtained at the time an access decision is
required and their values may change within a session.
Authorization Decision Composer (ADC) combines the authorization decisions
from authorization policy evaluators using an algorithm that resolves authorization
decision conflicts and combines them into a final decision.

The Authorization Manager (AZM) for an organization is responsible to manage
the APEs, TCAs, DASs and ADCs. S/he uses the Authorization Administration API
for this purpose. The related data is stored in the Authorization Administration
Database (AAD). See figure 1.

99

2.2 Web Services Model

We consider a Web service model based on the model defined in [7], where Web
Service, Web Service Method and Web Service Collection are viewed as objects. Web
service collections are used to group together a set of related Web service objects.
Authorization related information can be managed in a convenient way if a set of
related Web service objects is grouped together in a hierarchy of collections. Figure 2
shows an example of a hierarchy of Web service collections.

Fig. 2. Web Service Collection Hierarchy

2.3 Web Services Administration

A Web Service Manager (WSM) manages Web Services and Web Service Methods
and a Web service Collection Manager (WCM) manages Web Service Collections
using the Administration API (see figure 1). These objects are stored in the Web
service Administration Database (WAD).

To effectively manage the collections, we arrange a set of related Web Service
Collection (WSC) objects in a tree-shaped hierarchy as shown in figure 2. Each WSC
in the hierarchy has a responsible Web service Collection Manager (WCM). There is
only one Security Manager for a hierarchy of WSCs. In a WSC hierarchy tree, the
root WSC’s manager is called the Root Web service Collection Manager (RWCM). A
RWCM is responsible for providing the Security Manager details (such as its
location) in the WSDL statement of every Web service located under the collections
s/he manages.

Let us consider an organization with a single hierarchy (such as the one shown in
figure 2) of Web service collections. In figure 2, the root WSC is WSC1 and the
RWCM is WCM1. We can consider a newly initiated system to simply consist of the
root WSC, WSC1 and a few Web Service (WS) objects under it managed by WCM1.
WCM1 can add new WS objects from WAD into WSC1. S/he can delete or move WS
objects within the collections s/he is responsible for. There are other issues to
consider such as 1) Who decides the location of a WS object (and how is the location
changed)? 2) Who decides the shape of the tree itself? There are various design

100

choices to consider to answer these questions. Due to space limitations, we have not
included the discussion on such design choices in this paper. We will describe these
design aspects in a separate paper.

2.4 Authorization Data Administration and Policy Evaluation

A Web Service Manager (WSM) is also responsible to manage the authorization
related information for the Web services s/he is responsible for. We consider a Web
service method to be a high-level task that is exposed to clients. Each task (method) is
made up of a number of system operations. These operations can be of different
abstract types. For instance, each method of a Purchase Order service may perform
one or more of these three operations - Web operation, Database operation and Mail
operation. Each of these operations has a responsible authorization policy evaluator. It
is reasonable to assume a WSM knows the set of tasks a Web service under his/her
control performs. Similarly a WSM knows the set of operations each of these tasks
(methods) perform. Using the authorization policy evaluator definitions from
Authorization Administration Database (AAD), WSM associates authorization policy
evaluators to Web services and their methods. This association is made in the Web
Service Authorization (WSA) and the Web Service Method Authorization (WSMA)
objects. WSM uses the Authorization Administration API to create and manage these
objects. Similarly, a Web service Collection Manager (WCM) manages (using
Authorization Administration API) authorization policy evaluator and authorization
decision composer information in a separate object called Web Services Collection
Authorization (WSCA) for all the collections s/he manages. These objects are stored
in AAD.

Similar to Web service methods, a Web service can also have one or more
authorization policy evaluators responsible for the Web service itself. Web service
level policies are first evaluated before its method level authorization policies are
evaluated. A Web service’s authorization policy evaluators evaluate Web service
level authorization policies. These policies will typically not be as fine-grained as
method level authorization policies. A WSM may choose to create a new
authorization decision composer for one or more Web services s/he manages or may
decide to use one from the set of existing authorization decision composers from
AAD if it serves the purpose.

Similar to Web services and their methods, a Web service collection can also have
one or more authorization policy evaluators responsible for authorizing access to the
collection itself. Collection level policies are first evaluated before a Web service’s
authorization policies are evaluated. A Web service collection’s authorization policy
evaluators evaluate collection level authorization policies. These policies will
typically be course-grained when compared to Web service and Web service method
level policies. Every root Web service collection has an authorization decision
composer associated with it responsible for combining the decisions from all
authorization policy evaluators involved. The coarse-grained authorization policies
for all the relevant ancestor Web service collections (of an invoked Web service) are
first evaluated, followed by the Web service level authorization policies and finally
the fine-grained Web service method level policies are evaluated. The course-grained
policies are first evaluated before the finer-grained policies as it helps reduce the

101

computing cost. If the client is not authorized by a course-grained policy, access can
be denied straight away. For example in figure 2, when a client invokes WS1’s
method M1, WSC1’s authorization policies are first evaluated by APE1 and APE2,
followed by WSC2 (APE3) and then WSC3 (APE4) policies. If APE1, APE2, APE3 and
APE4 give out a positive decision, WS1’s authorization policies are evaluated by
APE6. If APE6 gives out a positive decision, then finally M1’s authorization policies
are evaluated by APE7 and APE8. WS1’s authorization decision composer, ADCWS1
combines the decisions from APE6, APE7 and APE8 and if the final decision is
positive, WSC1’s authorization decision composer, ADCWSC1 combines the decisions
from APE1, APE2, APE3, APE4 and ADCWS1. If the final decision from ADCWSC1 is
positive, the client will be authorized to invoke WS1’s method M1.

2.5 Runtime Authorization Data

We addressed who assigns (and how) authorization policy evaluators and
authorization decision composers for Web services and Web service collections. The
next question is, how does a client know, where necessary, how to obtain the required
authorization credentials and dynamic runtime attributes before invoking a Web
service? What are the responsible authorization policy evaluators (and the credentials
and attributes they require), trusted certification authorities (the credentials they
provide) and the dynamic attribute services (the attributes they provide)? How does
the Authorization Server (AZS) know what the set of responsible authorization
decision composers for a particular client request is?

To answer these questions, we have an Authorization Runtime Database (ARD) in
the runtime domain. ARD consists of the runtime authorization related information
required by clients and the Authorization Server. This information is exposed to
clients in the form of authorization assertions defined in a WS-Authorization Policy
statement attached to a Web service’s WSDL statement. We define an XML schema
for WS-Authorization Policy statement. The statement contains information about
what credentials and attributes to collect and where to collect them from. However,
we do not show the schema in this paper due to space limitation.

Credential Manager (CRM) is an automated component that creates and stores the
authorization runtime information, in the form of objects in ARD, using the
information from WAD and AAD databases. This makes the authorization process
efficient as the information in ARD is streamlined for the runtime domain. CRM is
invoked from time to time, when a Web service object is added or deleted to a
collection, moved within a hierarchy of collections or when the shape of the tree itself
changes, to update the runtime authorization information (objects) in ARD.

When a Web service object is placed and/or moved within a Web service
collection in a tree, the set of authorization policy evaluators responsible for
authorizing a client’s requests changes. Similarly, the set of trusted certification
authorities and dynamic attribute services responsible also changes. For example, in
figure 2, when WS1 moves from WSC3 to WSC5, the set of responsible authorization
policy evaluators for WS1’s method M2 changes from {APE1, APE2, APE3, APE4,
APE6, APE7, APE9} to {APE1, APE2, APE3, APE5, APE6, APE7, APE9}. Once the
change is made, CRM is automatically invoked and it updates ARD with the
necessary runtime object entries for each method of WS1. The responsible

102

authorization decision composers before and after the move will still be ADCWSC1 and
ADC WS1.

2.6 Authorization Algorithms

WSAA supports three algorithms. The first, push-model algorithm supports
authorizations where a client’s Client Proxy, using WS-Authorization Policy, collects
and sends the required credentials (from trusted certification authorities) and
attributes (from dynamic attribute services) to a Web service’s Security Manager. The
second, pull-model algorithm supports authorizations where the Authorization Server
itself collects the required credentials from trusted certification authorities and
authorization policy evaluators collect the required attributes from dynamic attribute
services. The third, combination-model supports both the push and pull models of
collecting the required credentials and attributes.

 An organization must deploy one of these algorithms depending on the access
control mechanisms used. If all the access control mechanisms used by the set of
authorization policy evaluators are based on a pull model, then the organization must
deploy the pull-model algorithm. If all the access control mechanisms used are based
on a push model, then the organization must deploy the push-model algorithm.
However, when some of an organization’s authorization policy evaluators use the
pull-model and others use the push-model, the combination-model algorithm must be
deployed.

3 Discussion - Benefits of the Proposed Architecture

Some of the key advantages of the proposed architecture are as follows:
(a) Support for various access control models: WSAA supports different access
control models including mandatory access control, discretionary access control, role-
based access control, and certificate based access control models. The access policy
requirements for each model can be specified using its own policy language. The
policies used for authorization can be fine-grained or coarse-grained depending on the
requirements. Access control mechanisms can either use the push-model or pull-
model or even a combination of both for collecting client credentials.
(b) Support for legacy applications and new Web service based applications: Existing
legacy application systems can still function and use their current access control
mechanisms when they are exposed as Web services to enable an interoperable
heterogeneous environment. Once again different access policy languages can be used
to specify the access control rules for different principals. They could adopt a push or
a pull model for collecting credentials. At the same time WSAA supports new Web
service based applications built to leverage the benefits offered by Web services. New
access control mechanisms can be implemented and used by both legacy and new
Web service applications. A new access control mechanism can itself be implemented
as a Web service. All WSAA requires is an end-point URL and interface for the
mechanism’s authorization policy evaluator.
(c) Decentralized and distributed architecture: WSAA allows a Web service to have
one or more responsible authorization policy evaluators involved (each with its own

103

end-point defined) in making the authorization decision. The authorization policy
evaluators themselves can be defined as Web services specializing in authorization.
These features allow WSAA to be decentralized and distributed. Distributed
authorization architecture such as ours provides many advantages such as fault
tolerance and better scalability and outweighs its disadvantages such as more
complexity and communication overhead.
(d) Flexibility in management and administration: Using the hierarchy approach of
administering Web services and collections of Web services, authorization policies
can be specified at each level making it convenient for Web service collection
managers (WCM) and Web service managers (WSM) to manage these objects as well
as their authorization related information. Another benefit of WSAA is that the
credential manager component automatically generates runtime authorization objects.
(f) Ease of integration into platforms: Each of the entities involved both in
administration and runtime domains is fairly generic and can be implemented in any
middleware including the .NET platform as well as Java based platforms. The
administration and runtime domain related APIs can be implemented in any of the
available middleware.
(g) Enhanced security: In our architecture, every client request passes through the
Web service’s security manager and then gets authenticated and authorized. The
security manager can be placed in a firewall zone, which enhances security of
collections of Web service objects placed behind an organization’s firewall. This
enables organizations to protect their Web service based applications from outside
traffic. A firewall could be configured to accept and send only SOAP request
messages with appropriate header and body to the responsible security manager to get
authenticated and authorized.

4 Related Work

Kraft proposes a model based on a “distributed access control processor” for Web
services [7]. The main components in the authorization model are the gatekeeper,
which intercepts SOAP requests to a Web service and one or more Access Control
Processors (ACPs) that make the authorization decisions for the Web service. The
gatekeeper itself can be an ACP. It also has the responsibility of authenticating the
requesting client, combining the decisions from individual ACPs and to make the
final access control decision. The advantage of this model is it supports decentralized
and distributed architecture for access control. The model is generic enough to
support different models of access control. This model however, does not provide
support for administration of authorization related information. It also does not
provide support to manage Web service collections and their authorization related
information using standard APIs, which our architecture provides.
Yague and Troya [8] present a semantic approach for access control for Web services.
The authors define a Semantic Policy Language (SPL). SPL is used to create metadata
for resources (Secure Resource Representation (SRR)) and generic policies without
the target resource in them. A separate specification called Policy Applicability
Specification (PAS) is used to associate policies to target objects at run time
dynamically when a principal makes a request. The architecture is based on the

104

integration of a Privilege Management Infrastructure (PMI) and the SPL language
features. At run time, depending on the Source of Authorization Descriptions
(SOADs) that the Source of Authorization (SOA) in the PMI is willing to provide to
the client and the SRRs, the Policy Assistant component streamlines the SPL policies
and the PAS. What is interesting in this model is that the authorization policies can be
attached dynamically based on the metadata of the resource being accessed and also
be streamlined dynamically to the SOADs the SOA is willing to send, through the
PMI client. The disadvantage with this model is that authorization policies can only
be written in SPL and is based on one model of access control – the PMI, which
means this model is not generic enough to support different access control
mechanisms required by applications in a heterogeneous environment. This means
unlike our architecture, legacy applications (using their own access control
mechanisms) are not supported by this model. The model also does not provide
management and administration support for Web service objects.
Agarwal et al [6] define an access control model that combines DAML-S [11], an
ontology specification for describing Web services and SPKI/SDSI [12], used to
specify access control policies and to produce name and authorization certificates for
users. Access Control Lists (ACLs) are used to specify access control policies of Web
Services. Each ACL has the properties keyholder, subject, authorization, delegation
and validity. Access control is defined as a pre-condition to access a Web service.
When trying to access a Web service, a user sends the set of credentials needed to
access the Web service. The user does this by using the ACL provided in the access
control precondition of the Web service provider. The user calculates the set of
certificates needed by making use of a chain discovery algorithm. If the client is
authorized with the certificates provided, the Web service returns the functional
outputs sought by the client. This model is a certificate based access control model
and so is not generic enough to support multiple access control models. This means
legacy applications exposed using Web services cannot use different models of access
control they have already been using. The ACLs in this model are simple and one
cannot specify fine-grained and complex authorization policies using this model. The
model also does not provide management and administration support for Web service
objects.
Ziebermayr and Probst discuss their authorization framework [9] for “simple Web
services”. Their framework does not consider distributed authorization and assumes
that Web services provide access to data or sensitive information located on one
server and not distributed over the Web. The framework uses a rule based access
control model where simple rules are written for components (in which Web services
reside), Web services and parameters of a Web service method. A rule consists of a
reference to a service definition, another reference to a user and additional rule
information for parameters where necessary. When an access request comes in, the
rules at these various levels are checked and an authorization decision is made. This
framework uses simple rule based access control and so does not support different
models of access control. This means legacy applications cannot be exposed as Web
services. Another disadvantage with this framework is that it cannot support
authorizations for distributed Web services, which have access to data and/or
information over a number of Web servers. Unlike our architecture, there is no
abstraction of each Web service method’s function into a set of operations. This
abstraction makes it easy to perform authorization administration as discussed earlier.

105

5 Concluding Remarks

We proposed an authorization architecture for Web services - WSAA. We described
the architectural framework, the administration and runtime aspects of our
architecture and its components for secure authorization of Web services as well as
the support for the management of authorization information. WSAA supports push-
model, pull-model and combination-model authorization algorithms.

The architecture supports legacy applications exposed as Web services as well as
new Web service based applications built to leverage the benefits offered by Web
Services; it supports old and new access control models and mechanisms; it is
decentralized and distributed and provides flexible management and administration of
Web service objects and authorization information. We believe that the proposed
architecture is easy to integrate into existing platforms and provides enhanced security
by protecting exposed Web services from outside traffic. We are currently
implementing the proposed architecture within the .NET framework.

References

1. World Wide Web Consortium (W3C), "SOAP v1.2, http://www.w3.org/TR/SOAP/," 2003.
2. World Wide Web Consortium (W3C), "Web Services Description Language (WSDL) v1.1,

http://www.w3.org/TR/wsdl," 2001.
3. B. Atkinson et al, "Web Services Security (WS-Security) Specification, http://www-

106.ibm.com/developerworks/webservices/library/ws-secure/," 2002.
4. S. Anderson et al., "Web Services Trust Language (WS-Trust), http://www-

106.ibm.com/developerworks/library/specification/ws-trust/," 2005.
5. V. Varadharajan, "Distributed Authorization: Principles and Practice," in Coding Theory

and Cryptology, Lecture Notes Series, Institute for Mathematical Sciences, National
University of Singapore: Singapore University Press, 2002.

6. S. Agarwal, B. Sprick, and S. Wortmann, "Credential Based Access Control for Semantic
Web Services," American Association for Artificial Intelligence, 2004.

7. R. Kraft, "Designing a Distributed Access Control Processor for Network Services on the
Web," presented at ACM Workshop on XML Security, Fairfax, VA, USA, 2002.

8. M. I. Yagüe and J. M. Troya, "A Semantic Approach for Access Control in Web Services,"
presented at Euroweb 2002 Conference. The Web and the GRID: from e-science to e-
business, Oxford, UK, 2002.

9. T. Ziebermayr and S. Probst, "Web Service Authorization Framework," presented at
International Conference on Web Services (ICWS), San Diego, CA, USA, 2004.

10. J. Bacon and K. Moody, "Toward open, secure, widely distributed services,"
Communications of the ACM, vol. 45, pp. 59-64, 2002.

11. M. B. A. Ankolekar, J. R. Hobbs,O. Lassila, D. McDermott, D. Martin, S. A. McIlraith, S.
Narayanan, M. Paolucci, T. Payne, K. Sycara, "DAML-S: Web Service Description for the
Semantic Web," presented at 1st International Semantic Web Conference (ISWC), Sardinia,
Italy, 2002.

12. C. M. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. M. Thomson, and T. Ylonen, "Simple
public key certificate, http://theworld.com/~cme/html/spki.html," 1999.

106

