
CHANGE DETECTION AND MAINTENANCE
OF AN XML WEB WAREHOUSE

Ching-Ming Chao
Department of Computer and Information Science, Soochow University, Taipei, Taiwan, R.O.C.

Keywords: Web warehouse, XML, Change detection, Warehouse maintenance, Mobile agent

Abstract: The World Wide Web is a popular broadcast medium that contains a huge amount of information. The web
warehouse is an efficient and effective means to facilitate utilization of information on the Web. XML has
become the new standard for semi-structured data exchange over the Web. In this paper, therefore, we study
the XML web warehouse and propose an approach to the problems of change detection and warehouse
maintenance in an XML web warehouse system. This paper has three major contributions. First, we propose
an object-oriented data model for XML web pages in the web warehouse as well as system architecture for
change detection and warehouse maintenance. Second, we propose a change detection method based on
mobile agent technology to actively detect changes of data sources of the web warehouse. Third, we propose
an incremental and deferred maintenance method to maintain XML web pages in the web warehouse. We
compared our approach with a rewriting approach to storage and maintenance of the XML web warehouse
by experiments. Performance evaluation shows that our approach is more efficient than the rewriting ap-
proach in terms of the response time and storage space of the web warehouse.

1 INTRODUCTION

The World Wide Web is a popular broadcast medium
that contains a huge amount of information. Infor-
mation on the Web is important not only to individ-
ual users but also to business organizations, espe-
cially for decision-making purposes. Therefore, how
to efficiently and effectively utilize web information
is an important issue. Recently, the concept of web
warehousing was proposed to address this issue (Ng,
1998; Xyleme, 2001). The idea of web warehousing
is to build a web warehouse, which materializes and
manages useful information from the Web, so as to
facilitate utilization of web information. A web
warehouse is a repository of web pages extracted
from remote web sites. It has specific data sources
and is built with a specific theme or purpose that is
of interest to a user community. Because XML has
become the new standard for semi-structured data
exchange over the Web, we study in this paper the
web warehouse of XML data, which will be called
the XML web warehouse thereafter.

If changes occur at data sources, a web ware-
house should be aware of those changes that may
affect the data in the web warehouse. How does a
web warehouse detect such changes is called the
change detection problem. In the traditional data

warehouse environment, data sources are cooperated
with the data warehouse and hence will send mes-
sages about their changes to the data warehouse
(Labio, 1995). However, data sources of a web
warehouse are autonomous web sites and will not
actively notify the web warehouse of their changes.
Previous work on change detection of web data que-
ries data sources for their changes (Bhowmick, 2000;
Lim, 2001), which requires more message transmis-
sion and is inefficient. Therefore, how to efficiently
detect changes of data sources is an important prob-
lem to a web warehouse.

If changes occur at data sources, a web ware-
house may need to be maintained. Deciding whether
and how to maintain a web warehouse is called the
warehouse maintenance problem. The problem of
warehouse maintenance is not a brand new problem
and has been studied for traditional data warehouses.
However, most of the previous work on this problem
was focused on the relational data model and the
traditional data warehouse environment (Agrawal,
1997; Zhuge, 1995; Zhuge, 1996). A web warehouse
can be differentiated from a traditional data ware-
house in terms of its data model and operating envi-
ronment, and hence requires a different maintenance
method. Therefore, how to efficiently maintain a
web warehouse is also an important problem to

52
Chao C. (2005).
CHANGE DETECTION AND MAINTENANCE OF AN XML WEB WAREHOUSE.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 52-59
DOI: 10.5220/0002555700520059
Copyright c© SciTePress

study.
In this paper, we propose an approach to the

problems of change detection and warehouse main-
tenance for an XML web warehouse system. First,
we propose an object-oriented data model for XML
web pages in the web warehouse as well as system
architecture for change detection and warehouse
maintenance. Then, we propose a change detection
method based on mobile agent technology to ac-
tively detect changes of data sources of the web
warehouse. Finally, we propose an incremental and
deferred maintenance method to maintain XML web
pages in the web warehouse. We have implemented
an experimental prototype system for change detec-
tion and maintenance of an XML web warehouse
and have compared our approach with a rewriting
approach by experiments. Performance evaluation
shows that our approach is efficient in terms of the
response time and storage space of the web ware-
house.

The remainder of this paper is organized as fol-
lows. In Section 2 we illustrate the data model of the
web warehouse and the system architecture for
change detection and warehouse maintenance. In
Section 3 we present the change detection method
and algorithm. In Section 4 we present the ware-
house maintenance method and algorithm. Section 5
illustrates the experimental results and states our
observations from the experimental results. Section
6 concludes this paper and gives some directions for
future research.

2 DATA MODEL AND SYSTEM
ARCHITECTURE

2.1 Data Model

Our web warehouse stores XML data from the Web.
Hence, we propose a data model, called the XML
Web Warehouse Data Model (XWWDM), for XML
web pages in the web warehouse. Due to the hierar-
chical structure of an XML web page, we follow the
Document Object Model (Apparao, 1998) to de-
compose an XML web page into a tree structure.
Besides, the design of the XWWDM model is based
on the OEM-like model (Chawathe, 1999) and con-
siders the characteristics of a web warehouse. First,
a web warehouse is like a data warehouse in that it
can store historical data. Therefore, the data model
includes version information to keep track of the
change of data. Second, data in a web warehouse are
sourced from remote web sites. Therefore, the data
model includes source information to identify the
source of data. The XWWDM model is an ob-

ject-oriented model whose class definition is shown
in Figure 1.

class XML_Page {root: XML_Node, version:
Version_Info, source: Source_Info};
class XML_Node
{content: Node_Content, version: Version_Info};
class Node_Content {label: string, value: string, p-node:
XML_Node, child#: integer, s-action: char};
class Version_Info
{version#: integer, update-time: time};
class Source_Info
{url: string, title: string};
class Update
{content: Update_Content, source: Source_Info};
class Update_Content {label: string, value: string,
p-node: XML_Node, detect-time: time, action: char};
Figure 1: The class definition of the XWWDM model

An XML web page is represented as an object of

the class XML_Page, which has three attributes root,
version, and source. The attribute root records the
root node of the tree structure of the web page. The
attributes version and source record the newest ver-
sion information and source information of the web
page, respectively. Each node of a web page is rep-
resented as an object of the class XML_Node, which
has two attributes content and version. The attribute
content records the content, position, and source
action of a node. The attribute version records the
version information of a node. The class
Node_Content has five attributes label, value,
p-node, child#, and s-action. The attributes label and
value record the tag label and data content of a node,
respectively. The attributes p-node and child# record
the parent node and child number under its parent,
respectively. The attribute s-action records the
source action causing the creation of a node, whose
value is I (for insertion), D (for deletion), or M (for
modification). The class Version_Info has two attrib-
utes version# and update-time, which record the
version number and time of last update, respectively.
The class Source_Info has two attributes url and title,
which record the URL and title of the source web
page, respectively.

We adopt a change-centric approach to storage
of all versions of an XML web page. Only the first
version is completely stored. For subsequent ver-
sions, only deltas are stored. As shown in Figure 2,
all frames represent the same web page, in which
each frame represents a specific version at time Ti.
The first frame represents the first version, in which
all nodes of a web page are stored. Other frames
represent subsequent versions, in which only nodes
that are changed are stored. The number and letter
drawn by a node are the child number and source

CHANGE DETECTION AND MAINTENANCE OF AN XML WEB WAREHOUSE

53

action of the node. Different versions of a node have
the same parent node and child number but different
version numbers. The first version of a node has a
value I in the attribute s-action. A value D in the last
version of a node indicates that this node has been
deleted.

Figure 2: All versions of an XML web page

A source update is represented as an object of the
class Update, which has two attributes content and
source. The attribute content records a variety of
information about the update. The attribute source
records the identification information of the web
page in which the update occurs. The class Up-
date_Content has five attributes label, value, p-node,
detect-time, and action. The attributes label, value,
and p-node have similar meaning as in the class
Node_Content. The attributes detect-time and action
record the detection time and type of the update,
respectively. The update type can be I (for insertion),
D (for deletion) or M (for modification). Source up-
dates are detected by mobile agents and transmitted
from data sources to the web warehouse, and are
used for the purpose of maintaining the web ware-
house.

2.2 System Architecture

The system architecture for change detection and
maintenance of the XML web warehouse is shown
in Figure 3, which is divided into three layers: the
storage layer, the system kernel layer, and the mobile
agent layer. The primary components and their func-
tions in each of the three layers are presented below.

2.2.1 Storage Layer

This layer is where the web warehouse is stored. The
web warehouse uses the XWWDM model to store
specific and historical XML data from the Web. The

web warehouse serves as a knowledge base of deci-
sion support systems, providing data for web mining
and on-line analytical processing.

Mobile Agent Monitor System

web warehouse

IntegratorUpdate Storage

Management
ModuleMessage Module

Mobile Agent

Message
Module

Detecttion
Module Mobile Agent Layer

System Kernel Layer

Storage Layer

Register

T 1

T 3 Figure 3: System architecture

2.2.2 System Kernel Layer

This layer is the kernel of the part of the web ware-
house system for change detection and warehouse
maintenance. It includes the Mobile Agent Monitor
System, the Integrator, and the Update Storage. The
Mobile Agent Monitor System further consists of
two modules: the Management Module and the
Message Module. The Management Module is re-
sponsible for producing, dispatching, and tracing
mobile agents. The Message Module is responsible
for sending messages to and receiving messages
from mobile agents as well as placing received
source updates into the Update Storage. The Inte-
grator is responsible for maintaining the web ware-
house according to source updates stored in the Up-
date Storage. The Update Storage is a temporary
storage of source updates sent by mobile agents and
provides the Integrator with required update infor-
mation for warehouse maintenance.

2.2.3 Mobile Agent Layer

This layer includes mobile agents that are operating
in data sources of the web warehouse and are re-
sponsible for detecting and reporting changes of data
sources. Each mobile agent includes three compo-
nents: the Detection Module, the Message Module,
and the Register. The Detection Module is responsi-
ble for detecting changes of the data source. The
Message Module is responsible for sending mes-
sages to and receiving messages from the Mobile
Agent Monitor System. The Register is the storage
for the mobile agent to store the last states of web
pages and detected source updates.

T 2
time

R

3I

3D

2I

1I

3M

2I

2M

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

54

3 CHANGE DETECTION

In this section, we address the issue of change detec-
tion of data sources of an XML web warehouse. Be-
cause a web warehouse system is operating in the
Internet environment and its data sources are remote
and autonomous web sites, it is better for it to ac-
tively detect changes of data sources so as to speed
up data refreshment and reduce network traffic. Mo-
bile agents have the feature of cross platform as well
as the abilities of active detection and rapid report-
ing. Therefore, we propose a change detection
method based on mobile agent technology in order
for the web warehouse system to fully and effi-
ciently obtain changes of data sources. The proce-
dure of our change detection method consists of the
following four steps:
1. The Mobile Agent Monitor System produces

and dispatches a mobile agent to each of the
data sources.

2. When a mobile agent arrives at a data source, it
first sends source information of the data source
back to the Mobile Agent Monitor System. This
source information allows the Mobile Agent
Monitor System to trace the mobile agent.

3. Thereafter a mobile agent will actively and pe-
riodically detect changes of a data source using
the Change Detection Algorithm. If changes are
detected, the mobile agent sends detected
source updates to the Mobile Agent Monitor
System.

4. When the Mobile Agent Monitor System re-
ceives source updates from a data source, it
stores these updates in the Update Storage for
the purpose of warehouse maintenance.

The Detection Module of a mobile agent uses the
Change Detection Algorithm, the CD algorithm for
short, shown in Figure 4 to detect the difference be-
tween the current state and the last detected state of
an XML web page and send a collection of updates
to the Mobile Agent Monitor System through the
Message Module. Here we first give a brief over-
view of the CD algorithm. First, the algorithm
fetches an XML web page from the web site and
finds the last recorded state of the web page from the
Register. Both states of the web page are decom-
posed into tree structures using an XML parser. Then,
these two tree structures are compared level-by-level
in a top-down fashion to detect their difference.
During this process, a collection of updates repre-
senting the difference is accumulated. Finally, the
current state of the web page is recorded in the Reg-
ister and the collection of updates is sent to the Mo-
bile Agent Monitor System. Now we explain the CD
algorithm in detail. The algorithm executes the fol-
lowing steps in sequence:

Algorithm Change Detection Algorithm
 Fetch an XML web page WP.
 Find the last recorded state LP of WP from the

Register.
 Initialize a collection of updates UC to be empty.
 Use an XML parser to decompose WP and LP

into tree structures.
 For each level L of WP and LP do
 For each node WPN of level L of WP do
Find the node LPN of level L of LP such that

LPN.content.label = WPN.content.label
If LPN is found then Mark WPN and LPN.
If WPN.content.value ≠ LPN.content.value then

⇒ Create an update object U whose attributes are
as follows:
content.label ← the tag label of WPN
content.value ← the data content of WPN
content.p-node ← the parent node of WPN
content.detect-time ← current system time
content.action ← ‘M’
source.url ← the URL of WP
source.title ← the title of WP

⇒ Put U into UC.
 For each node WPN of level L of WP do
If WPN is not marked then

⇒ Create an update object U whose attributes are
as follows:
content.label ← the tag label of WPN
content.value ← the content of WPN
content.p-node ← the parent node of WPN
content.detect-time ← current system time
content.action ← ‘I’
source.url ← the URL of WP
source.title ← the title of WP

⇒ Put U into UC.
 For each node LPN of level L of LP do
If LPN is not marked then

⇒ Create an update object U whose attributes are
as follows:
content.label ← the tag label of LPN
content.value ← the data content of LPN
content.p-node ← the parent node of LPN
content.detect-time ← current system time
content.action ← ‘D’
source.url ← the URL of LP
source.title ← the title of LP

⇒ Put U into UC.
 Record the state of WP in the Register.
 Send UC to the Mobile Agent Monitor System.

End Algorithm
Figure 4: The change detection algorithm

1. Fetch an XML web page WP from the web site.

WP is the current state of the web page whose
difference from its last recorded state is to be
detected.

2. Find the last recorded state LP of WP from the

CHANGE DETECTION AND MAINTENANCE OF AN XML WEB WAREHOUSE

55

Register. Because the detected web page is as-
sumed to have been stored in the web ware-
house, it must have the last recorded state.

3. Initialize a collection of updates UC to be
empty. UC represents the difference between
WP and LP.

4. Decompose WP and LP into tree structures us-
ing an XML parser.

5. Compare each level of the tree structures of WP
and LP in a top-down fashion in a loop. For
each level L of WP and LP, there are three inner
loops. In the first inner loop, for each node
WPN of level L of WP, find the node LPN of
level L of LP such that the tag label of LPN is
equal to that of WPN. If such a node is found,
mark WPN and LPN to indicate that this node
exists in both states of the web page. If the data
content of WPN is not equal to that of LPN,
which indicates that WPN has been modified,
create a modification update and put it into UC.
In the second inner loop, for each node WPN of
level L of WP, check if it is marked. If it is not
marked, which indicates that this node has been
inserted to the current state, create an insertion
update and put it into UC. In the third inner
loop, for each node LPN of level L of LP, check
if it is marked. If it is not marked, which indi-
cates that this node has been deleted from the
last state, create a deletion update and put it into
UC.

6. Record the state of WP in the Register. This
state will become the last recorded state next
time this web page is detected.

7. Send the accumulated collection of updates UC
to the Mobile Agent Monitor System.

4 WAREHOUSE MAINTENANCE

In this section, we address the issue of maintaining
an XML web warehouse in response to changes of
data sources. The way to warehouse maintenance
somewhat depends on the way to storage of the
warehouse as well as the way to change detection of
data sources. Our web warehouse adopts a
change-centric approach to storage of historical data
of web pages. Our change detection method utilizes
mobile agents to send actively and periodically
source updates back to the web warehouse. Accord-
ingly, we propose an incremental and deferred
maintenance method to maintain XML web pages in
the web warehouse. Incremental maintenance of a
web page means that only parts of the web page are
updated according to its source updates. It is gener-
ally more efficient in terms of time and space than
rewriting the whole web page. Deferred maintenance

of a web page means that the web page is main-
tained only when it is accessed. It is generally more
time efficient than immediate maintenance in which
a web page is maintained immediately after a source
update occurs. Besides, the user is still able to access
reasonably up-to-date web pages in a relatively short
time. The procedure of our warehouse maintenance
method consists of the following four steps:
1. When the web warehouse receives a request

from a user to access a web page, it notifies the
Integrator to maintain the web page.

2. The Integrator checks the Update Storage to see
if there are source updates relevant to the web
page. The relevant source updates are those that
have the same source location information (i.e.,
URL) as the web page. All updates made to the
source web page of this web page are consid-
ered as relevant source updates.

3. If the web page has relevant source updates,
which indicates that it is out of date, the Inte-
grator maintains it using the Web Warehouse
Maintenance Algorithm.

4. The web warehouse returns the requested web
page to the user.

The Integrator uses the Web Warehouse Mainte-
nance Algorithm, the WWM algorithm for short,
shown in Figure 5 to maintain an XML web page in
the web warehouse according to the relevant source
updates of the web page in the Update Storage. Here
we first give a brief overview of the WWM algo-
rithm. First, the algorithm finds the XML web page
to be maintained in the web warehouse. Then, it gets
and removes the relevant source updates of the web
page from the Update Storage. These relevant up-
dates are sorted by their detection time to reflect
their order of occurrence. Finally, it maintains the
web page for each relevant update in sequence. A
new version of the web page is obtained. Now we
explain the WWM algorithm in detail. The algorithm
executes the following steps in sequence:
1. Find the XML web page to be maintained WP

in the web warehouse.
2. Get and remove a collection of relevant source

updates RU from the Update Storage. RU is the
collection of relevant source updates of WP.

3. Sort the updates in RU by their detection time
recorded in the attribute detect-time to reflect
their order of occurrence.

4. Create a version object V whose attribute ver-
sion# is the current version number of WP plus
one and whose attribute update-time is the cur-
rent system time. V records the newest version
information and will be stored in the next ver-
sion of WP.

5. Change the newest version information of WP
to V.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

56

Algorithm Web Warehouse Maintenance Algorithm
 Find the XML web page to be maintained WP

in the web warehouse.
 Get and remove a collection of relevant source

updates RU from the Update Storage.
 Sort the updates in RU by the attribute detect-time.
 Create a version object V whose attributes are

as follows:
version# ← WP.version.version# + 1
update-time ← current system time

 WP.version ← V
 For each update U of RU do
 If U.content.action = ‘I’ then
⇒ Find the maximum child# MN among all nodes

whose parent is U.content.p-node
⇒ Insert a node whose attributes are as follows:

content.label ← U.content.label
content.value ← U.content.value
content.p-node ← U.content.p-node
content.child# ← MN + 1
content.s-action ← ‘I’
version ← V

 If U.content.action = ‘D’ then
⇒ Find the newest version of node N such that

N.content.p-node = U.content.p-node and
N.content.label = U.content.label

⇒ Insert a node whose attributes are as follows:
content.label ← N.content.label
content.value ← N.content.value
content.p-node ← N.content.p-node
content.child# ← N.content.child#
content.s-action ← ‘D’
version ← V

 If U.content.action = M then
⇒ Find the newest version of node N such that

N.content.p-node = U.content.p-node and
N.content.label = U.content.label

⇒ Insert a node whose attributes are as follows:
content.label ← N.content.label
content.value ← U.content.value
content.p-node ← N.content.p-node
content.child# ← N.content.child#
content.s-action ← ‘M’
version ← V

End Algorithm
Figure 5: The warehouse maintenance algorithm

6. Maintain WP for each update U of RU in se-

quence in a loop. For each update U, check to
see if U is an insertion, a deletion, or a modifi-
cation. If U is an insertion, insert a node whose
parent node is U.content.p-node to WP. The at-
tribute child# of the inserted node is the current
maximum child number among its siblings plus
one. This inserted node represents that a node
was inserted to the source web page of WP. If U
is a deletion, find the newest version of the

node in WP that corresponds to the node that
was deleted from the source web page of WP
and insert a node to WP. This inserted node
represents that a node was deleted from the
source web page of WP. If U is a modification,
find the newest version of the node in WP that
corresponds to the node that was modified in
the source web page of WP and insert a node to
WP. This inserted node represents that a node
was modified in the source web page of WP
and becomes the newest version of the node in
WP. After every update of RU is processed, a
new version of WP is obtained.

5 PERFORMANCE EVALUATION

We have implemented an experimental prototype
system for change detection and maintenance of an
XML web warehouse. The web warehouse is built
on the ObjectStore object-oriented database man-
agement system and programs are written in the Java
object-oriented programming language. Besides, we
adopt the Aglets Software Development Kit (ASDK)
and the Aglets Workbench both from IBM as the
development tool and operating environment of mo-
bile agents, respectively. The hardware platform
consists of several personal computers that commu-
nicate with the Internet.

In the performance evaluation, we compare our
approach with a rewriting approach to storage and
maintenance of an XML web warehouse. In the re-
writing approach, every version of a web page is
completely stored. In our approach, on the other
hand, every version except the first one stores only
its difference from the previous version. As in our
approach, the rewriting approach uses the deferred
strategy to maintain a web page. However, it adopts
a different method for change detection and ware-
house maintenance. While receiving an access re-
quest for a web page, the web warehouse sends a
request to the source web site of the web page for
the current state of the web page. After maintaining
the web page by creating a complete version of the
current state, the web warehouse returns the re-
quested web page to the user. In our approach, on
the other hand, the requested web page is maintained
using updates that have already been sent back by
the mobile agent and stored in the local Update
Storage. We compare our approach with the rewrit-
ing approach in terms of two important performance
criteria: the response time and the storage space.

The response time is the elapsed time starting
from the web warehouse receives an access request
until it returns the requested web pages. From the
point of view of the user of a web warehouse, the

CHANGE DETECTION AND MAINTENANCE OF AN XML WEB WAREHOUSE

57

response time is the most important criterion to
judge the performance of the system. We separately
consider two factors that may affect the response
time, the number of updates to a web page and the
number of accessed web pages. We first compare the
response time of two approaches for accessing a
single web page with different numbers of updates to
the web page. An experimental result of such a
comparison is illustrated in Figure 6(a). In Figure 6
and Figure 7, the abbreviations IM (standing for
incremental maintenance) and RW (standing for re-
writing) represent our approach and the rewriting
approach, respectively. From the experimental re-
sults of this comparison, we observe two phenomena.
First, the response time of our approach increases
with the number of updates to a web page. However,
the response time of the rewriting approach does not
depend on the number of updates. Second, the re-
sponse time of our approach is shorter than that of
the rewriting approach in general, especially when
the number of updates in smaller.

(a)

(b)

Figure 6: Comparison of the response time

We also compare the response time of two ap-
proaches for accessing multiple web pages. In this
comparison, the number of updates to each web page
is fixed and the numbers of updates to these web

pages are small. An experimental result of such a
comparison is illustrated in Figure 6(b). From the
experimental results of this comparison, we observe
two phenomena. First, the response time of both
approaches increases with the number of accessed
web pages. Second, no matter how many web pages
are accessed, the response time of our approach is
always shorter than that of the rewriting approach as
long as the numbers of updates to web pages are
small.

The storage space is the size of the secondary
storage required for storing the historical data of a
web page in the web warehouse. We consider two
factors that may affect the storage space, the size of
a web page and the update percentage of a web page.
We compare the storage space of two approaches in
terms of three different sizes (large, median, and
small) and three different update percentages (30%,
50%, and 80%). An experimental result of such a
comparison is illustrated in Figure 7, which shows
the ratio of the storage space of our approach to the
storage space of the rewriting approach. From the
experimental results of this comparison, we observe
three phenomena. First, the storage space of our ap-
proach is smaller than that of the rewriting approach
in most of the situations. Second, the storage space
of our approach increases with the update percentage
of the web page. Third, our approach is more advan-
tageous to web pages of larger size. It tends to re-
quire more storage space than the rewriting approach
as the size of the web page gets smaller and the up-
date percentage of the web page gets higher.

Accessing a single web page

0
100
200
300
400
500
600
700

2 5 10 20 40
Number of updates

R
es

po
ns

e
tim

e
(m

IM
RW

Storage Space

0%
20%
40%
60%
80%

100%
120%
140%

large median small
Page Size

R
at

io
 o

f s
to

ra
ge

 sp
ac

e

RW IM(30%)

IM(50%) IM(80%)

Accessing multiple web pages

0

5000

10000

15000

2 5 10 15 20 30
Number of web pages

R
es

po
ns

e
tim

e(
 m

IM
RW

Figure 7: Comparison of the storage space

6 CONCLUSION AND FUTURE
WORK

In this paper, we proposed an approach to change

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

58

detection and warehouse maintenance for an XML
web warehouse system. We compared our approach
with a rewriting approach in terms of the response
time and storage space of the web warehouse. In our
approach, mobile agents are dispatched by the web
warehouse to data sources and will actively and pe-
riodically detect and report changes of data sources
back to the web warehouse. Beside, the web ware-
house is incrementally maintained in response to
source updates that have already been stored in the
local storage. These can dramatically reduce the
number of messages transmitted between the web
warehouse and data sources. Therefore, our ap-
proach is more efficient than the rewriting approach
in terms of the response time. With regard to the
storage space, our approach adopts a change-centric
approach in which every version of a web page ex-
cept the first version stores only its difference from
the previous version. This can dramatically reduce
the size of the storage required for historical data of
web pages in the web warehouse. Therefore, our
approach is more efficient than the rewriting ap-
proach in terms of the storage space.

In the future, we will improve our approach in an
attempt to further increase its efficiency. First, with
regard to the storage of all versions of an XML web
page, we will consider storing the current version
completely and only deltas for historical data. Sec-
ond, we will try to improve our warehouse mainte-
nance algorithm so as to handle large number of
updates more efficiently. Besides, more comprehen-
sive experimentation will be performed to extract
conclusive results.

REFERENCES

Agrawal, D., El Abbadi, A., Singh, A., Yurek, T., 1997.
Efficient view maintenance at data warehouses. In
Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, pp. 417-427.

Apparao, V., 1998. Document Object Model (DOM) Level
1 Specification (Version 1.0).

Bhowmick, S. S., Ng, W. K., Madria, S. K., Lim, E. P.,
2000. Detecting and representing relevant web deltas
using web join. In Proceedings of the 20th IEEE In-
ternational Conference on Distributed Computing Sys-
tems, pp. 255-262.

Chawathe, S. S., Abiteboul, S., Widom, J., 1999. Manag-
ing historical semistructured data. Theory and Practice
of Object Systems, Vol. 5, No. 3, pp. 143-162.

Labio, W., Garcia-Molina, H., 1995. Efficient snapshot
differential algorithm for data warehousing. In Pro-
ceedings of the 22nd International Conference on Very
Large Data Bases, pp. 63-74.

Lim, S. J., Ng, Y. K., 2001. An automated change detec-

tion algorithm for HTML documents based on seman-
tic hierarchies. In Proceedings of the 17th IEEE Inter-
national Conference on Data Engineering, pp.
303-312.

Ng, W. K., Lin, E. P., Huang, C. T., Bhowmick, S., Qin, F.
Q., 1998. Web warehousing: an algebra for web in-
formation. In Proceedings of the 1998 IEEE Forum on
Research and Technology Advances in Digital Librar-
ies, pp. 228-237.

Xyleme, L., 2001. A dynamic warehouse for XML data of
the web. IEEE Data Engineering Bulletin, Vol. 24, No.
2, pp. 40-47.

Zhuge, Y., Garcia-Molina, H., Hammer, J., Widom, J.,
1995. View maintenance in a warehousing environ-
ment. In Proceedings of the 1995 ACM SIGMOD In-
ternational Conference on Management of Data, pp.
316-327.

Zhuge, Y., Garcia-Molina, H., Wiener, J. L., 1996. The
Strobe algorithms for multi-source warehouse consis-
tency. In Proceedings of the 4th IEEE International
Conference on Parallel and Distributed Information
Systems, 146-157.

CHANGE DETECTION AND MAINTENANCE OF AN XML WEB WAREHOUSE

59

