
MODELING STRATEGIC ACTOR RELATIONSHIPS TO
SUPPORT RISK ANALYSIS AND CONTROL IN SOFTWARE

PROJECTS

Subhas C. Misra, Vinod Kumar, Uma Kumar
Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada

Keywords: Conceptual Modeling, Risk Analysis, Software Project Management.

Abstract: In this paper, we present an approach that project managers could use to model and control risks in software
projects. There are no similar approaches on modeling software project risks in the existing pieces of
literature. The approach is, thus, novel to the area of software risk management. The approach is helpful to
project managers for performing means-end analysis, thereby uncovering the structural origin of risks in a
project, and how the root-causes of such risks can be controlled from the early stages of the projects. We
have illustrated this approach with a simple example typical of software development projects. Though
some attempt has been made to model risk management in enterprise information systems using
conventional modeling techniques, like data flow diagrams, and UML, the previous works have analyzed
and modeled the same just by addressing “what” a process is like, however, they don’t address “why” the
process is the way it is. The approach addresses this limitation of the existing software project risk
management models by exploring the strategic dependencies between the actors of a project, and analyzing
the motivations, intents, and rationales behind the different entities and activities in a project.

1 INTRODUCTION

Analyzing risks from the early stages of software
projects is essential for ensuring their success. Early
project risk assessment helps managers to make
speculative decisions, predict the causative agents of
project failure, and thereby undertake remedial
actions to control different project parameters (viz.,
resources, and external interfaces) from the early
phases of the project. The technique described in this
paper can be used by project managers to investigate
the structural origin, and the root causes of the risks
of a project, and thereby control risks from the early
stages of the projects.

There have been a few remarkable studies on
model-based software risk management. Two
important ones are the Riskit Method (Freimut et al.,
2001, Kontio, 1997), and Boehm’s Win-Win
approach (Boehm and Bose, 1994). In addition to
the above, there are other pieces of literature
available on the topic (e.g., Charette, 1989, Fairley,
1994, Gemmer and Koch, 1994), but we have listed
some of those important ones that set our problem in
the proper context.

In contrast to the previously proposed modeling
techniques, in this paper, we show how we can use
the concepts of modeling intentional dependencies
between actors to explore the structural origins of
risks in a software project. Although the concept of
actor-dependency is not new, the way we use these
concepts to analyze software project risks is novel to
our work, and requires ingenuity of the modelers.

Since the problem that we embark on in this
study has broad scope, before we proceed to Section
2, let us acknowledge some of the “in-scope” and
“out-of-scope” items of this paper. In this paper, our
goal is not to propose a fully functional risk
management framework as that of Riskit (Kontio,
1997). Rather, we propose a novel approach that can
be used in software project risk management by
leveraging the modeling of dependencies between
strategic actors, and thereby trying to explore the
structural origins of project risks. In this paper, we
focus on only the two important phases (risk
analysis and risk control) of typical risk
management lifecycle frameworks (e.g. Riskit, or
Win-Win). But, we believe, our approach can be
extended for exploring similar “means-end”
relationships in other risk management phases. In

288
McLeod D. (2005).
SEMANTICS-BASED SIMILARITY DECISIONS FOR ONTOLOGIES.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 288-293
DOI: 10.5220/0002554402880293
Copyright c© SciTePress

this paper, we restrict ourselves to conceptual
modeling only, by proposing the model, and
illustrating the approach with a small “toy example”,
by keeping with the trend followed by most of the
papers published on conceptual modeling in other
areas (see the references to other conceptual
modeling papers mentioned in Section 1). Finally,
the approach discussed in the paper has been
designed keeping software project environments in
mind. However, we believe that the approach can be
used, with minimal or no changes, for studying risk
management in other application domains.

2 MODELING DEPENDENCIES
BETWEEN STRATEGIC
ACTORS

In this paper we discuss the actor dependency
concept using i* (Yu, 1997). i* explores “why”
processes are performed in the existing way.
Moreover, it is much easier to obtain real and
understandable requirements using i* modeling.
Expected behavior of the software and its rationale
could also be modeled using i*. Furthermore, i*
does not take directly into account precision,
completeness, and consistency as UML does. In
contrast, i* principally takes into account actors’
interests, goals, rationale, tasks and concerns.

In this work, we have used i* to model both
requirements, and risk management elements which
help managers to identify, monitor, analyze and
control risks, all from the point of view of project
goals. i* provides a qualitative analysis of project
viability under several scenarios. In our context, this
analysis will allow for verifying if all required
actions to control risks have been taken into account
(i.e., if project goals can be satisfied in all the
studied scenarios). The strongest relation between
requirements and risks are project goals. For any
project, requirements can be modeled as goals and
softgoals to be reached during project development.
On the other hand, risks can be conceived as a set of
“risky goals” and “risky tasks” performed by some
actors in a particular role. Goals and tasks
undertaken in a project often have some degrees of
risks associated with them. The risks associated with
these goals can be of varying degrees. The
terminologies “risky goals” and “risky tasks” are
used to signify those goals and risks that have
associated high risk factors. The risky tasks may be
perceived as undesirable tasks that may lead to a
risky output (a “sub-optimal” goal). The reader
should note that it is very common in software
projects to knowingly undertake high-risk goals and

tasks. What is important for a project manager is to
analyze the structural origin of the risks, and
vulnerabilities associated with those goals, and
tasks. This is what we advocate in this paper. For
example, a development team with poor java
knowledge will have “risky goals” like developing
the product without considering the quality, and
“risky tasks” like the introduction of bugs due to
poor development skills of the team. Because of
other factors (such as, limited project budget, and
lack of human resources), it might still be required
for a project manager to proceed with a project, even
after knowing the risks associated with having an
inexperienced project team. What is rather important
for the project manager is to model and analyze the
root causes of the risks, their structural origin, and
how the known risks can be controlled from the
early stages of the project.

Those “risky goals”, and “risky tasks” are
actually risks that have to be reduced by other tasks
performed by actors like a quality manager. “Risky
goals”, and “risky tasks” might pose substantial risks
for achieving the project goals. In consequence, new
tasks have to be defined to reduce those risks. Once
the model is concluded, a simple algorithm is
performed to mark project goals as either satisfied or
denied, taking into account effects of tasks
mentioned above. Finally, denied high-level goals
indicate affected requirements. This is considered as
risky, which means there are some missed defensive
tasks in order to guarantee project success.

In order to model, and solve this problem, two
actor-dependency diagrams are used: the Strategic
Dependency Model (SD), and the Strategic
Rationale Model (SR). In the interest of brevity,
only a brief introduction of SD and SR is provided.
Interested readers are referred to the literatures
mentioned in Section 1 for learning further details.
SD diagrams are used to model dependencies
between actors, while SR diagrams are used to
model internally why each actor has those
dependencies. In other words, SD describes
dependencies at a higher level of abstraction than
SR, since SR shows an internal description of an
actor and supports those dependencies.

All dependencies comprise of a “depender”, a
“dependee”, and a “dependum”. “Depender”
depends on a “dependee” to get “dependum”. The
most important elements in SD diagrams are:

Goal dependency: It is used to model when one
actor depends on another to make a tangible
condition come true. Dependee has freedom to
choose how to achieve this goal.

Task dependency: It is used to model when one
actor depends on another to perform an activity. In
this case, there is an implicit (usually not shown)

MODELING STRATEGIC ACTOR RELATIONSHIPS TO SUPPORT RISK ANALYSIS AND CONTROL IN
SOFTWARE PROJECTS

289

depender’s goal, which explains why this task must
be performed.

Resource dependency: It is used to model when
one actor depends on another for the availability of
an entity. Depender assumes that obtaining this
resource will be straightforward.

Softgoal dependency: It is used to model when
one actor depends on another to realize a fuzzy
condition. In this case, fuzzy means there is no clear
criteria for such a condition to be true. In this case
dependee collaborates, but depender will decide how
to achieve the softgoal.

Actors can be modeled as a generalized
relationship among agents, position and role (Dubois
et al., 1998). In general, agents represent physical
manifestation of actors. Agents occupy a position in
SD diagrams. In fact, a position is a generalization
of an agent. Furthermore, positioned agents can have
or cover several roles. For example, IT department is
an agent, which occupies development team
position. Also, development team can cover the role
of development team with poor java knowledge.

On the other hand, SR diagrams focus inside
actors. In fact, SR diagrams show both external and
internal information. External information is
modeled using the same elements of SD diagrams
(e.g., goals, softgoals, resources and tasks). Internal
information is represented basically using the same
elements but arranged hierarchically in either a
means-end or a task-decomposition relationship.

Internal elements of SR respond to external
dependency relationships among actors. In general,
external goals, tasks, softgoals, and resources are
attached to internal tasks. Internal tasks might be
decomposed into subtasks, subgoals, and
subsoftgoals (task-decomposition relationships).
Moreover, internal goals might depend on other
subtasks (means-end relationships). Finally, internal
softgoals might obtain either negative or positive
contribution from tasks, and other subsoftgoals.
 In the context of performing risk analysis, risky
tasks performed by a particular role are linked to
external goal and softgoals. This link will have a
negative contribution to those external goals, and
softgoals, which can be qualified as “some-“, “hurt”,
“break”, and so on, depending on the magnitude of
contribution. On the other hand, tasks intended to
help minimize the risk in identified risky tasks will
have a negative contribution over links mentioned
above. Again this contribution will be qualified as
“some-“, “hurt”, “break”, and so on. The stronger is
the negative impact to the contribution to those
links, the weaker is the effect of risky tasks on
project goals. Finally, goals viability can be
estimated by executing an algorithm to propagate
contributions of tasks to project goals. Goals will be
qualified as satisfied, weakly satisfied, weakly

denied, and denied, depending on total effects on
such a goal from the above mentioned tasks.

3 MODELING RISK ANALYSIS
AND CONTROL IN SOFTWARE
PROJECTS: THE PROPOSED
APPROACH

In this section, we provide a very simple example to
demonstrate our approach of using actor-
dependencies to analyze and control risks.
Suppose a development team is composed of several
members. John Doe is a member of the development
team, and his position is a documenter. Also, he
could cover several roles such as users manual
documenter, and requirements documenter.

If it is needed to perform risk management
focusing on documenters, new roles can be added
which will represent documenter role introducing
such risks. For example, a documenter could be one
with poor writing skills. Suppose there is a client
occupying the position of user, and covering the role
of users manual reader. This user definitely depends
on documenter to achieve goals like having a good
users manual. A model describing the above
concepts is shown in Figure 1.

Now, risks of this simple example can be
analyzed using i*. When the documenter acts as one
with poor writing skills, he will have some goals that
can turn out to be “risky goals” – such goals are
included into the SR diagram. Moreover, those goals
might be the result of some “risky tasks”. The risk of
having a documenter with poor writing skills must
be managed by another development team member,
who will act as a quality assurance engineer with the
role of guaranteeing the user manual quality. In this
role, this member will have some goals and perform
some tasks to minimize the risk effect. Figure 2
shows SR diagram, which analyzes the risks
mentioned above.

Documenter covers the role of DOCUMENTER
WITH POOR WRITING SKILLS, in order to model
the risk associated with this situation. The effect of
this risk is modeled as the risky goal USER
MANUAL BY A POOR DOCUMENTER. This
impact could be achieved by two risky tasks:
ALLOW GRAMMAR ERRORS IN THE
MANUAL, and ALLOW MANUAL DIFFICULT
TO READ. Those bad tasks definitely will have
impact on the goal HAVE GOOD USER
MANUAL. The impact is modeled as a BREAK
contribution, which implies a severe impact on such
goal. Indirectly, impacting this goal will affect the

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

290

user covering the role of USER MANUAL
READER. Of course, this situation affects project
success.

In order to avoid this effect on the project
success, a quality mechanism is implemented. In
fact, the position QUALITY ASSURANCE
ENGINEER covering the role USER MANUAL QA
ENGINEER will have the goal of ASSURE USER
MANUAL QUALITY. This engineer will achieve
its goal by performing two tasks: REVIEW AND
IMPROVE USER MANUAL, and USE
AUTOMATIC GRAMMAR CORRECTOR.
The task USE AUTOMATIC GRAMMAR
CORRECTOR has an effect against the effect of the
risky task INCLUDE GRAMMAR ERRORS. Since
correctors usually find, and correct all grammar
errors, using automatic correctors will BREAK the
effect of the risky task. In other words, correctors
definitely will eliminate risky task effects.
 On the other hand, REVIEW AND IMPROVE
USER MANUAL will have an effect against the
effect of the risky task ALLOW MANUALS
DIFFICULT TO READ. However, in this case,
corrective task will only HURT the risky task effect.
In other words, there is a contribution to avoid the
effect of ALLOW MANUALS DIFFICULT TO
READ but this risk is not completely eliminated.
Once risk dependencies and corrective actions are
modeled, the next step is to verify if analyzed goal
named HAVE GOOD USER MANUAL can be
satisfied. One can model several satisfaction levels
for diagram elements, i.e. satisfied (√), weakly
satisfied (√•), weakly denied (X•), undecided (?•)
and denied (X).

The first step is to mark leaves in our graph with
a satisfaction level, depending on its viability. In
general, such leaves are tasks, because tasks do not
have incoming links. In order to mark goal with its
satisfaction level and verify goal viability, the effect
of associated tasks is propagated between links
taking into account the contribution of such links.
Figure 3 shows SR diagram including satisfaction
level, which represents viability of each element.

Tasks USE AUTOMATIC GRAMMAR
CORRECTOR, ALLOW GRAMMAR ERRORS IN
THE MANUALS, REVIEW AND IMPROVE
USER MANUAL, and ALLOW MANUALS
DIFFICULT TO READ are marked as satisfied
because all of them can easily be performed. In other
words, they are independently viable. The effect of a
satisfied risky task that can BREAK a goal is to
deny it. On the other hand, the effect of a corrective
task that can BREAK the effect previously
mentioned is to satisfy associated goal. However, the
effect of a corrective task that HURT the effect
previously mentioned is to weakly satisfy associated

goal. In this case, the effect of ALLOW
GRAMMAR ERRORS IN THE MANUALS is
completely eliminated. Nevertheless, the effect of
ALLOW MANUALS DIFFICULT TO READ is
reduced but not eliminated. In consequence,
associated goal named HAVE GOOD USER
MANUAL is weakly satisfied.

After this analysis, project managers could decide
to just include this USER MANUAL QA
ENGINEER if they consider that the weakly
satisfied goal HAVE GOOD USER MANUAL is
acceptable. On the other hand, if managers consider
that the above-mentioned goal has to be satisfied,
they could include other risk control elements
represented as other roles or simply as other tasks
assigned to USER MANUAL QA ENGINEER.
Also, another option is to eliminate the possibility of
having a documenter with poor writing skills, which
can be done by simply replacing him or training him
and improving his writing skills. Unfortunately, this
option cannot be modeled directly by i*, which is a
limitation. i* assumes that roles that insert risks on
the project cannot be easily eliminated.

4 CONCLUSIONS

We have outlined a new technique for modeling the
analysis and control of risks in software projects
using the concept of actor-dependency, and
extending its scope to the domain of risk
management. The approach presented in this paper
can be used to model intentional relationships
among the strategic actors. The technique can reason
about the opportunities, vulnerabilities, changes, and
risks that are associated with software projects, and
can incorporate prominently the issues related to risk
in the process of system analysis and design.

REFERENCES

Boehm, B.W. and Bose, P., 1994. A Collaborative Spiral
Software Process Model Based on Theory W. In
Proceedings of the 3rd International Conference on
Software Process, IEEE Computer Society,
Washington DC, 1994.

Charette, R.N., 1989. Software Engineering Risk Analysis
and Management, McGraw Hill, New York.

Fairley, R., 1994. Risk Management of Software Projects,
IEEE Software, Vol. 11, pp. 57-67.

Freimut, B., Hartkopf, S., Kontio, J. and Kobitzsch, W.,
2001. An Industrial Case Study of Implementing
Software Risk Management, In Proceedings of the 9th
ACM SIGSOFT International Symposium on

MODELING STRATEGIC ACTOR RELATIONSHIPS TO SUPPORT RISK ANALYSIS AND CONTROL IN
SOFTWARE PROJECTS

291

Foundations of Software Engineering, Vienna, pp.
277-287.

Yu, E, 1997. Towards Modeling and Reasoning Support
for Early-Phase Requirements Engineering, Proc. of
the 3rd Intl. IEEE Symp. Requirements Engineering,
January 6-8, 1997, Washington D.C., pp. 226-235.

Gemmer A. and Koch, P., 2003. Rockwell Case Studies in
Risk Management, Proceedings of the 3rd SEI
Conference on Software Risk Management, SEI,
Pittsburgh, PA.

Kontio, J., 1997. The Riskit Method for Software Risk
Management, Version 1.00, Technical Report, CS-TR-
3782/UMIACS-TR-97-38, University of Maryland,
College Park, MD, USA.

APPENDIX

The Appendix contains all the figures referred to in
the paper.

Figure 1: SD diagram with roles, agents and positions for a simple software project.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

292

Figure 2: SR diagram showing poor writing skills risk.

Figure 3: SR diagram showing poor writing skills risk and satisfaction levels.

MODELING STRATEGIC ACTOR RELATIONSHIPS TO SUPPORT RISK ANALYSIS AND CONTROL IN
SOFTWARE PROJECTS

293

