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Abstract: It is well-known that multidimensional indices are efficient to improve the query performance on relational 
data. As one successful multi-dimensional index structure, R*-tree, a famous member of the R-tree family, 
is very popular. The clustering pattern of the objects (i.e., tuples in relational tables) among R*-tree leaf 
nodes is one of the deceive factors on performance of range queries, a popular kind of queries on business 
data. Then, how is the clustering pattern formed? In this paper, we point out that the insert algorithm of R*-
tree, especially, its clustering criterion of choosing subtrees for new coming objects, determines the 
clustering pattern of the tuples among the leaf nodes. According to our discussion and observations, it 
becomes clear that the present clustering criterion of R*-tree can not lead to a good clustering pattern of 
tuples when R*-tree is applied to business data, which greatly degrades query performance. After that, a 
hybrid clustering criterion for the insert algorithm of R*-tree is introduced. Our discussion and experiments 
indicate that query performance of R*-tree on business data is improved clearly by the hybrid criterion.  

1 INTRODUCTION 

More and more applications need processing 
multidimensional range queries on business data 
usually stored in relational tables. For example, 
Relational On-Line Analytical Processing in data 
warehouse is required to answer complex and 
various types of range queries on large amount of 
such data. In order to obtain good performance for 
such multidimensional range queries, multi-
dimensional indices are helpful (V. Markl and Bayer, 
1999a; V. Markl and Bayer, 1999b), in which the 
tuples are clustered among the leaf nodes to restrict 
the nodes to be accessed for queries.  

So many index structures exist. Among them, 
R*-tree (Beckmann and Kriegel, 1990) is one of the 
well-known and successful ones, and widely used in 
many applications and researches (C. Chung and 
Lee, 2001; D. Papadias and Delis, 1998; H. 
Horinokuchi and Makinouchi, 1999; H. P. Kriegel 
and Schneider, 1993; Jurgens and Lenz, 1998). R*-
tree is also used in this study. Anyway, we want to 
note that our proposal in this study can also be used 
to other hierarchical index structures, including the 
other members of R-tree family. 
       In the works (C. Chung and Lee, 2001; Kotidis 
and N. Roussopoulos, 1998; Jurgens and Lenz 1998; 
N. Roussopoulos and Y. Kotidis, 1997; S. Hon and 

Lee, 2001), the aggregate values are pre-computed 
and stored in a multidimensional index as 
materialized view. When required, the aggregate 
values can be retrieved efficiently. In this study, we 
also use a multidimensional index for relational data. 
However, it is completely different from the related 
works in that our study focuses on enhancing R*-
tree to speed up evaluation of range queries 
themselves.  

In this paper, it is pointed out that the clustering 
pattern of tuples among the leaf nodes is a decisive 
factor on search performance. But, there exist many 
very slender leaf nodes when R*-tree is used to 
index business data, which greatly degrades query 
performance.  Slender nodes mean the nodes whose 
MBRs (Minimum Bounding Rectangle) have at least 
one very narrow side (even the side length is zero) in 
some dimension(s). Clearly, slender nodes have very 
small, even 0, areas (volumes in 3 or more 
dimensional spaces. Note that, area and volume are 
used interchangeably in this paper). Some examples 
are those MBRs roughly shaped as line segments in 
2-dimensional spaces and roughly shaped as plane or 
line segments in 3-dimensional spaces. 

According to our discussion in this paper, the 
reason of so many slender leaf nodes existing 
becomes clear.  The insert algorithm of R*-tree, 
especially, its criterion (called clustering criterion) 
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of choosing subtrees for new coming tuples, 
determines the clustering pattern of tuples among the 
leaf nodes.  After that, we make it clear that the 
present clustering criterion in the insert algorithm of 
R*-tree is not suitable to R*-tree applied to business 
data. Instead, a hybrid clustering criterion is 
proposed. Our discussion and experiment indicate 
that query performance of R*-tree on business data 
is improved much by the new clustering creation.  

The rest of the paper is organized as follows. 
Section 2 describes how to use multidimensional 
indices for relational data. Section 3 presents our 
observations when R*-tree is used to business data 
and the reason of our observations is discussed in 
detail. Section 4 is our proposal: a hybrid clustering 
criterion for R*-tree. Section 5 gives experimental 
result, and Section 6 concludes the paper. 

2 INDEXING BUSINESS DATA 
USING R*-TREE 

In this section, let us see how to use R*-tree to 
business data and give some terms. Due to the 
limitation of pages, R*-tree is not introduced in this 
paper. Readers can refer the works (Beckmann and 
Kriegel, 1990, Y. Feng, A. Makinouchi and H. Ryu, 
2004). 

Let T be a relational table with n attributes, 
denoted by T(A1, A2, …, An). Attribute Ai (1 ≤ i ≤ 
n) has domain D(Ai), a set of possible values for Ai. 
The attributes often have types such as Boolean, 
integer, floating, character string, date, and so on. 
Each tuple t in T is denoted by <a1,a2, … ,an>, 
where ai (1 ≤ i ≤  n) is an element of D(Ai).  

When R*-tree is used in relational tables, some 
of the attributes are usually chosen as index 
attributes, which are used to build R*-tree. For 
simplification of description, it is supposed without 
loss of generality that the first k (1≤ k ≤ n) attributes 
of T, <A1,A2, …  ,Ak>, are chosen as index 
attributes. Since R*-tree can only deal with numeric 
data, an order-preserving transformation is necessary 
for each non-numeric index attributes. After 
necessary transformations, the k index attributes 
form a k-dimensional space, called index space, 
where each tuple of T corresponds to one point.  

It is not difficult to find such a mapping 
function for Boolean attributes and date attributes (Y. 
Feng, A. Makinouchi and H. Ryu, 2004). The work 
(H. V.Jagadish and Srivastava, 2000) proposes an 
efficient approach that maps character strings to real 
numeric values within [0,1], where the mapping 
preserves the lexicographic order. This approach is 
also used in this study to deal with attributes of 
character string.  

We call the value range of Ai, [li, ui] (1≤ i ≤  k) 
data range of Ai, an index attribute (in this paper, 
“dimension” and “index attribute” are used 
interchangeably). The length of the data range of Ai, 
|ui-li|, is denoted by R(Ai). The k-dimensional 
hyper-rectangle, [l1,u1]× [l2,u2]×…×[lk, uk], forms 
the index space. Attributes specified in the range 
query condition is called query attributes. 

If R*-tree is used to index business data stored 
in a relational table, all the tuples are clustered in 
R*-tree leaf nodes. See Figure 1. 

leaf nodes  

query range

Figure 1. Leaf nodes and query range. 

tuple  

Figure 1: Leaf nodes and query range  
 

Figure 1 shows an example of leaf nodes and query 
range. Query range, given by user, refers to the 
region, where the user wants to find the result.  
Clearly, from Figure 1, if the tuples are properly 

clustered among the leaf nodes, the number of leaf 
nodes to be accessed for this range query will drop. 
Thus, the clustering pattern is a deceive factor on 
query performance. The question is that who decides 
the clustering pattern? The answer is “clustering 
criterion” in the insert algorithm of R*-tree.  

R*-tree is constructed by inserting the objects 
one by one. In constructing procedure, the insert 
algorithm has to choose a proper subtree to contain 
each new-coming tuple. The criterion that decides 
which subtree should be chosen is called insert 
criterion or clustering criterion in this paper. Of 
course, for a given dataset, this criterion decides the 
final clustering pattern of the tuples among leaf 
nodes. In this paper, it will be pointed out that the 
present clustering criterion of R*-tree cannot lead to 
a proper clustering pattern when R*-tree is used to 
business data. And a novel clustering criterion will 
be proposed. 

3 OBSERVATIONS AND OUR 
EXPLANATION 

In this section is our observations on R*-tree used 
for business data. And, the observations are also 
explained. 
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3.1 Observations 

Just as pointed out in our other work (Y. Feng, A. 
Makinouchi and H. Ryu, 2004), because of the 
particularity of business data, some new features 
occur when R*-tree is used to index business data.  

As a feature of business data, the data ranges of 
attributes are very different from each other. For 
instance, the data range of “Year” from 1990 to 
2003 is only 13 while the amount of “Sales” for 
different “Product” may be up to several hundreds of 
thousands.  

Another typical example of such attributes with 
small cardinalities is Boolean attribute, which has 
inherently only two possible values. Attributes with 
other data type may also semantically have small 
cardinality (e.g., “Weekday” with seven values). In 
LINEITEM table of TPC-H benchmark, 
RETURNFLAG, SHIPINSTRUCT, and 
SHIPMODE have only 3, 4, and 7 distinct values, 
respectively, although their data type is character 
string. 

Figure 2 shows an example in 2-dimensional 
space. 
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Figure 2. Tuples  in inde x space. 
     

In Figure 2, y-axis has only 3 different values. On 
the contrary, x-axis type is floating and has many 
possible values. Thus, the tuples (black dots) are 
distributed in lines. 
In order to investigate the slender nodes in R*-tree 

used in business data, using the LINEITEM table in 
TPC-H benchmark, an R*-tree was constructed and 
all the areas (or say volumes) of the leaf nodes are 
computed.  Totally 200,000 tuples are generated in 
this table having 16 attributes. Six attributes, 
SHIPDATE (date), QUANTITY (floating), 
DISCOUNT (floating), SHIPMODE (character 
string), SHIP-INSTRUCT (character string), and 
RETURNFLAG (character string), are selected as 
index attributes since they are often used as query 
attributes in the queries of the benchmark. The page 
size of our system is 4KB and each leaf node can 
contain at most 77 tuples. The R*-tree has 4 levels 

with 4649 leaf nodes. We observe that, 2930 of these 
4649 leaf nodes have 0-area. Over 60%!  And, there 
are still many leaf nodes have only very-small areas. 

We also use 200,000 6-dimensional synthetic 
data with Zipf distribution to investigate existing of 
slender nodes. The observation is very similar. Zipf 
distribution is often used in the researches related to 
business data (S. Hong, B. Song and S. Lee. 2001). 

Certainly, the basic reason that slender nodes 
exist is he distribution of tuples in the index space. 

3.2 The Existing Clustering Criterion 
in R*-tree 

Since the clustering criterion is so important on the 
clustering pattern of tuples among leaf nodes of R*-
tree (which is one of deceive factors on query 
performance) and this study tries to introduce a new 
clustering criterion, let us briefly recall the present 
clustering criterion of R*-tree as follows. 

A new-coming tuple will be inserted in the 
node (subtree) at the current level with 

1) (for leaf level) the least enlargement of overlap 
area, if tie occurs then  

2) the least enlargement of MBR area, if tie occurs 
again then 

3)  the least MBR area. 

This criterion means that, if the new tuple 
reaches at the leaf level, the new-coming tuple is 
tried to enter each node and the enlargement of 
overlap area in each case among the leaf nodes is 
calculated. And the node with the least enlargement 
of overlap area is chosen to contain the new-coming 
tuple. If several nodes have the least enlargement 
then, the enlargement of MBR area in each case is 
calculated and the node with the least enlargement 
of MBR area is chosen. If tie occurs again then the 
node with the smallest MBR area is chosen. If tie 
still occurs, then arbitrary one of those nodes with 
the smallest MBR area is chosen. For the 
intermediate level, the area enlargement of overlap 
among the nodes is not calculated and only (2) and 
(3) in the criterion are used.  

Figure 2: Tuples index space 

In the next subsection, we will know that the 
existing of slender leaf nodes is a “positive 
feedback”. That is, once some slender leaf nodes 
exist, they will become more and more as the new 
tuples are inserted, which greatly deteriorates search 
performance.  

3.3 Positive Feedback 

Let us consider the insertion algorithm of R*-tree, 
using the example depicted in Figure 3 (a). Node A 
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is a slender node and point p is to be newly inserted. 
Certainly it should be inserted in Node B since it is 
so nearer to Node B than to Node A. However, 
according to the insert algorithm of R*-tree, p will 
be inserted to Node A in this case. This is because 
the area increment of doing so is smaller than that of 
inserting p to Node B. Even if the enlargement of 
overlap area among the nodes at this level is 
considered, Node A also tends to be chosen. After p 
is inserted Node A,   Node A becomes very long, 
which may deteriorate the overlap between Node A 
and the other nodes. 

Node A 

Node B 

p 

Node A Node B 
p 

(a) (b) 
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which greatly destroy search performance. This 
study does not aim at eliminating the existing of 
slender nodes since its existing, basically speaking, 
is from the distribution of tuples (as mentioned 
above). The main purpose of this study is to 
decrease the overlap among leaf nodes by making 
the clustering pattern more proper and reasonable. 
At the same time, the number of slender nodes is 
also decreased and the total space utilization of 
nodes also can be improved. 

4 A HYBRID CLUSTERING 
CRITERION 

Generally speaking, the present clustering criterion 
(mentioned above) of R*-tree is based on area, 
including overlap area enlargement, MBR area 
enlargement, and MBR area, which leads to many 
slender nodes and very heavy overlap among the  

 

A HYBRID CLUSTERING CRITERION  FOR  R*-TREE ON BUSINESS DATA
re 3. Slender nodes exist. Figure 3: Slender nodes exist
to see another case shown in Figure 3 (b). 
o MBRs shaped as line segments, A and 
e p is a new tuple to be inserted. Where 
? Intuitively, p should be included in 

ctually, p may be inserted in Node A, 
s enlarges the overlap (between A and 
leads to a long node A. This is because 
 algorithm of R*-tree cannot determine 

, A or B, should be selected since both 
a increment and area increment of 
and selecting B are 0. As a result, either 
Node B is selected as default without 
n of actual overlap. Here, we assume 
 loss of generality Node A is selected. 
 previous case, after p is inserted Node A,   
omes very long, which may deteriorate 
between Node A and the other nodes. 

a new point (tuple) with the same y-axis 
s p is inserted again, the same process is 
 the new point is also inserted into Node 

way, the new-coming tuples tend to be 
o the existing slender nodes and the 
sertions of such tuples lead to the 
 slender nodes and the slender nodes are 
nd again. As a result,  

ender nodes are generated, 
ce utilization of such nodes degrades 
nd the total number of nodes in R*-tree 
 increase, 

nder nodes tend to be very long (there is 
and on the number of tuples in each leaf 

leaf nodes. In this section, we explain how to deal 
with the problem of slender nodes by a hybrid 
clustering criterion. 
Our approach to this problem includes the 

following two points.  
 
(1) Modifying the area calculation. 
Why a proper subtree or a leaf node can not be 

found for new-coming tuples? The reason is that the 
enlargements both on overlap area and on MBR area 
are zero for 0-area nodes. Thus, comparison can not 
be made reasonably among inserting the tuples to 
the existing nodes.  
In order to avoid this situation, we modified the 

area calculation. That is, when the area of a 
rectangle, a node MBR or the overlap region of two 
node MBRs, is calculated, all the zero-sides (i.e., the 
side length is zero), if exist, of this rectangle is set to 
a trivial non-zero positive value (e.g., 10-4 in our 
experiments).   
Let us recall the original area calculation of 

rectangle R as follows. 

,)(
1
∏
=

=
d

i
iSRArea  

where Si is the side length of R in dimension i. d is 
dimensionality of the index space.  
      In this study, this area calculation is modified as 
follows. 
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where the trivial-value is set to 10-4 in this paper. 
Anyway, this trivial value must be less than the unit 
in this attribute to avoid confusing. In the same time, 
the trivial-value should not be too small, or the 
calculation result cannot be expressed. These two 
conditions are not difficult to be guaranteed in real 
applications. In this way, most of un-comparable 
situations caused by 0-area nodes can be avoided. 
Note that, this modification only changes the 
clustering pattern of tuples among the leaf nodes and 
it has no effect on the correctness of the query result. 
 
(2) Introducing a distance-criterion.  

If the above area-criterion still cannot decide 
which subtree or leaf node is most suitable to one 
new-coming tuple, which means the area-based 
clustering criterion is no longer in force,  the nearest 
subtree or leaf node to the new-coming tuple is 
chosen.  
Summarily speaking, the hybrid clustering criterion 

combines the modified area-based one with a 
distance-based one. The procedure is as follows. 
 
1) For leaf level, compare the enlargements of 

overlap areas using the modified calculation. If 
tie then  

2) Compare the enlargements of MBR areas using 
the modified calculation. If tie then 

3) Choose the nearest subtree (a leaf node for leaf 
level). 

 
Now, let us see how to calculate the distance from 

one point to a rectangle region.  
For a point p= (p1, …, pd) and a rectangle R.   

Let the points s= (s1, …, sd) and t = (t1, …, td) be the 
two vertices of the node MBR with the minimum 
coordinates and maximum coordinates in each axis, 
respectively. The distance from p to R, dist(p, R), 
can be given by 
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5 EXPERIMENTS 

Using the TPC-H data (Council, 1999), we 
performed various experiments to show how much 
the range query performance is improved using the 
hybrid clustering criterion.  
      Dataset and index attributes:  Lineitem table of 
TPC-H benchmark, which has 16 attributes of 
various data types including floating, integer, date, 
string, Boolean. The table used in our experiments 
has 200,000 tuples. Six of the total 16 attributes are 
chosen as index attributes, including SHIPDATE 
(date), QUANTITY (floating), DISCOUNT 
(floating), SHIPMODE (character string), 
SHIPINSTRUCT (character string), and 
RETURNFLAG (character string), since they are 
often used as query attributes in the queries of the 
benchmark. 
        System: the page size in our system is 4KB and 
all the index structures are built based on “one node 
one page”.  
       Queries: the query ranges of QUANTITY 
(floating) and DISCOUNT (floating) both are 
changed from 10% to 100%. As for the date attribute 
of SHIPDATE (date), the query range is the period 
of one year and it is selected randomly for each 
query. As for the other 3 attributes (character string), 
since their numbers of possibly different values are 
only 3, 4, and 7, respectively. One value is chosen 
randomly in each of the 3 attributes. Each query is 
repeated 100 times for different location and the 
average numbers of accessed different nodes are 
presented. The average number of node accesses is a 
common criterion for evaluating query performance 
(H. V. Jagadish and Srivastava, 2000). 

5.1 Effect of the Hybrid Clustering 
Criterion on R*-tree 

In order to know effect of the new clustering 
criterion on R*-tree itself, the total numbers of nodes 
in R*-trees with different clustering criterions and 
the result is present in Table 1, where M refers to the 
upper bound on the number tuples contained in each 
leaf node of R*-tree. 
  

Table 1: R*-tree with different clustering criterion. 
 R*-tree with 

original clustering 
criterion 

R*-tree with 
hybrid clustering 
criterion 

M 77 77 
Height 4 4 

Total 
number 
of nodes 

4892 3783 
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From Table 1, we can know that the hybrid 
clustering criterion make R*-tree more compact. 

5.2 Effect of the Hybrid Clustering 
Criterion on Query Performance 

Table 2: Comparison on the number of accessed different 
nodes 

Query 
range 

R*-tree with original 
clustering criterion 

R*-tree with hybrid 
clustering criterion 

10% 369.91 95.12 
20% 648.90 126.33 
30% 603.65 131.31 
40% 388.67 137.30 
50% 683.29 237.27 
60% 489.00 248.10 
70% 708.24 231.10 
80% 691.89 275.48 
90% 571.10 357.62 

100% 764.55 358.49 
 
The result of comparison on the number of accessed 
different nodes is included in Table 2. 

From Table 2, we can know that the hybrid 
clustering criterion can greatly improve the query 
performance. Anyway, note that, 
(1) In Table 2, the first column, query range, refers 

to the side length of the query range in the two 
floating attributes, i.e., QUANTITY and 
DISCOUNT. The query with same size of query 
range in the floating attributes is repeated 100 times 
with different locations (randomly). However, this 
query range is not relevant to the other index 
attributes, which is explained before. 
(2) According to Table 2, the number of accessed 

different nodes is not always increase as the “query 
range” in the first column grows. This is because 
that the query ranges in the other 4 index attributes 
change randomly at the same time when the query 
ranges in the two floating attributes grow. 
Moreover, the CPU time cost is also tested and 

compared, which is presented in Table 3. 
From Table 3, we can observe that the hybrid 

clustering criterion also lead to a shorter CPU time, 
which means that it is effective even for main- 
memory-resident R*-tree, where the I/O is no long 
the bottleneck of the query performance. Note that, 
our OS is FreeBSD 4.9 and main memory is 128MB. 
 

Table 3: Comparison on CPU time (ms) 
Query 
range 

R*-tree with original 
clustering criterion 

R*-tree with hybrid 
clustering criterion 

10% 16.401 5.939 
20% 28.180 8.117 
30% 26.582 8.499 
40% 17.780 9.074 
50% 33.137 15.817 
60% 25.103 16.769 
70% 33.940 15.874 
80% 34.420 19.101 
90% 32.721 24.772 

100% 41.671 25.751 

6 CONCLUSIONS 

It is important to process various types of range 
queries on business data. R*-tree is one of the 
successful multidimensional index structures and is 
also helpful to improve query performance on 
business data. In this paper, we pointed out that 
many slender nodes, including many 0-area nodes, 
exist if R*-tree is applied to business data, which 
greatly degrade query performance. The reason that 
many slender nodes occur was made clear in this 
paper and a hybrid clustering criterion is introduced 
to deal with the problem of slender nodes. 
According to our discussion, the hybrid clustering 
criterion can improve the clustering pattern of tuples 
among leaf nodes, especially it can decrease the 
overlap among the leaf nodes. And our approach 
clearly improved query performance of R*-tree in 
our experiments.  
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