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Abstract: Software agents are being produced in many different forms to carry out different tasks, with personal 
assistants designed to reduce the amount of effort it takes for the user to go about their daily tasks. Most 
personal assistants work with user preferences when working out what actions to perform on behalf of their 
user. This paper describes a novel approach for modelling user behaviour in the application area of Diary 
Management with the use of Inductive Logic Programming. 

1 INTRODUCTION 

There are a few applications of Inductive Logic 
Programming (ILP) (Muggleton 1994) to user 
modelling (Rogers 2000) already in existence. ILP is 
useful for user modelling as it allows the use of 
intensional background knowledge, hence we can 
incorporate `rules of thumb', and it maintains the 
transparency of the agent's actions to the user. i.e. 
they can look at the agent's model and understand 
what inferences it has made about them, thus 
maintaining their trust in their agent.  

Current methods of ILP for user modelling deal 
with simpler concepts such as correcting a user's use 
of a unix shell (Jacobs 2000) or predicting which 
switches they would use for certain commands.  

2 USER MODELLING 

This paper proposes a system that learns sequence of 
activities from users diaries in order to model how 
such sequences should be arranged for future tasks.  

A novel method of using ILP is proposed that 
splits the learning of the user model into several 
stages. It first produces results for each of these 
stages, then combines the results to produce a single 
user model.  

The data is split into distinct clusters, each 
representing a sub-concept of the model to be learnt, 
and then the learning of each sub-concept is 
attempted separately. Each sub-concept is split into a 
number of separate learning problems which focus 

on a separate attribute within each data item and 
only require a subset of the available background 
information to solve, thus reducing the number of 
possible solutions that the ILP engine must consider 
to a size that it is capable of managing. The results 
of each learning problem are then combined to 
produce a set of rules, each of which contain range-
restrictions for every attribute within each data item.  
Each set is then added into a database to produce the 
overall user model. 

Meanwhile the clusters of data are also used to 
produce a series of probability distributions, which 
are stored for later use when querying the model. 

The user modelling system consists of two parts: 
a construction engine which produces the user 
model, and a query engine which allows the user 
model produced to be used for the prediction of long 
sequences of tasks. 

3 BUILDING USER MODEL  

The initial user model worked on within the diary 
assistant (iMeeting) (Assadian, 2004) was the 
learning of sequences of pairs of tasks between 
tasks, e.g. if the user schedules a presentation on a 
particular project and they usually schedule some 
preparation time in before that presentation then we 
can learn this habit and either carry out the 
scheduling of preparation time automatically or 
make suggestions when the user enters the 
presentation task into the diary.  
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Let us suppose that we have data, which gives 
details of three sequences that the user is known to 
demonstrate: -  

 
1. Putting in preparation time before an 

administration meeting. 
2. Putting in preparation time before a project 

meeting or presentation. 
3.  Putting in travel time before paying a visit 

to another company. 
Examples of the sequences take the form of a pair 

of tasks joined via the ‘sequence’ relationship. 
 

All of the sequences(plus any others within the 
data set) are collected as a single set of examples, 
which must be split into separate clusters so that the 
learning of each sequence can take place separately.   

We can perform the initial splitting of the data by 
using a bottom-up agglomerative clustering 
algorithm over the first task of each pair to produce 
a group of subsets, and then using the clustering 
algorithm again on each subset on the second task of 
each pair to produce the final clusters of examples, 
which will be used. 

Each set is used as the example set for a series of 
different learning problems, each problem focuses 
on a different attribute within one or other of the 
tasks and attempts to find any specialisations which 
may be regarded as helping to characterize the 
particular sequence under examination. For example, 
the first learning problem would focus on the type of 
the first task of the pair in each example and would 
attempt to find any regularities amongst all the 
examples of the set for that particular attribute. 
Subsequent learning problems would focus on the 
subtype, sub-subtype, and duration of the first task 
individually, and then a further set of learning 
problems would focus on the individual attributes of 
the second task in the same manner. 

Each learning problem requires positive 
examples, negative examples and background 
knowledge.  The positive examples are the examples 
contained within the set that is currently under 
examination.  The background knowledge used for 
each learning task is a subset of the entire set of 
background knowledge available, only those items 
of knowledge which directly refer to the attribute 
under examination are presented to the learner for 
each problem. It is this splitting of the available 
background knowledge into subsets in conjunction 
with the splitting of the overall learning problem 
into separate smaller problems (i.e. where the length 
of the clauses required is much smaller) which 
enables the learner to be able to tackle the overall 
problem of learning a user model as it reduces the 
number of possible hypotheses to be considered to a 
level which is manageable by the ILP engine.  

A set of automatically generated ‘negative 
examples’ is produced for the attribute currently 
under examination. These are examples of pairs of 
tasks that the user would never produce and hence 
should not be thought of as being dependent on each 
other.  Each set of negative examples only differs 
from the original data supplied by the user by a 
small amount, and all of the negative examples 
within a set differ from the original data in such a 
way that the ILP engine can use part of the provided 
background knowledge to successfully exclude all 
the negative examples from the solution that it 
produces. 

If we were to generate a set of negative examples 
for the ‘type’ attribute then we would take a user-
generated (positive) example:-  

 
sequence:<travel/london,2hrs,10-00, thursday>, 
<visit/ericsson, 2hrs, 13-00, thursday> 
 
And alter one of the values, producing:-  
 
sequence:<admin/london,2hrs,10-00, thursday>, 
<visit/ericsson, 2hrs, 13-00, thursday> 
 
This is repeated several times, using all of the 

examples within the set to generate negative 
examples. Values to be substituted into the attribute 
to be altered must satisfy the criterion that they must 
place the new example far enough away from the 
original example (using the distance measure used to 
produce the original clusters) that it could not be 
considered as part of the cluster of original 
examples. As it is likely that the amount of data with 
which we will be working will not be very large, the 
concepts being learnt may not be accurately 
characterised by the examples collected. This 
criterion allows a little more ‘space’ between the 
positive and negative examples and hence allows the 
learner to produce a rule which does not adhere so 
tightly to the exact details of the examples collected, 
hence a more general overall theory is produced 
which should provide better results when asked for 
predictions. 

Generating of values for substitution where the 
variables being examined contain real values (for 
example the duration of a task) presents a further 
complication.  In order to ensure that the values 
returned for a task prediction are accurate, the range 
of values that the variable is capable of being 
instantiated to must be limited.  Values which are 
unacceptable as predicted values can be used to 
generate negative examples, but there may be cases 
where individual examples within the same cluster 
have values for a particular attribute which would be 
unsuitable if used within other examples in the same 
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cluster.  The two sequences listed below illustrate 
this problem:-  

 
sequence:<travel/cambridge, 2hrs, 9-00, friday>, 
<visit/nokia, 1hr, 11-00, friday> 

 
sequence:<travel/bath, 4hrs, 15-00, monday>, 
<visit/goulds, 5hrs, 10-00, tuesday> 

 
The durations of the second task in each 

sequence are so far away from each other that we 
cannot allow them to be covered by a single rule.  
Negative examples for the first sequence would 
include values such as 5hrs and 6hrs. Negative 
examples for the second sequence would include 
values such as 2hrs and 1hr. 

 
This would mean that generated negative 

examples may contradict other positive examples 
within the original set.  We still need to restrict the 
range of values that the attribute can take, so the 
solution is to monitor for contradictions during the 
negative example generation process and if a 
contradiction occurs, split the set into a pair of 
subsets with the contradicted positive in one set and 
the positive from which the contradicting negative 
example was generated in the other.  The other 
positive examples and their corresponding negatives 
are allocated to the new subsets according to 
whichever example they are closest to in terms of 
the attribute being examined. Negative example 
generation then continues, with further 
contradictions within the subsets resulting in further 
splitting actions, until all the positive examples have 
had negative examples generated from them.  The 
sets are presented to the learner as separate learning 
problems and the results from each problem are 
added together to form a single set of possible 
specialisations for that attribute.  

Once all the sub problems listed earlier have been 
formulated with the appropriate background 
knowledge and generated negative examples, and 
presented to the learner. We then have a collection 
of results for each attribute that must be combined to 
form the overall theory, which will characterise this 
particular sequence. 

Some rules may contradict each other. This 
contradiction will be dealt with when we construct 
the rules, which form the theory.  To construct the 
rules, we take the first two sets of results and 
combine them by adding all the rules from the first 
set to all of the rules from the second set.  

The resultant set of rules is then combined with 
the next set of learning results in the same way, and 
the process is repeated for each set of results 
collected.  

Each rule is tested for contradictions by 
evaluating it over the set of positive examples that it 
is supposed to characterise.  If the rule does not 
cover any of the examples (i.e. it does not give the 
answer ‘true’ when given any of the pairs of tasks), 
then it is discarded.  This test would remove rules 
containing contradictions. The set of rules is filtered 
to remove those rules subsumed by other rules, and 
each rule is then filtered to remove any redundant 
elements. Having performed these final filtering 
stages we are then left with a set of rules that form a 
theory that characterises the sequence we were 
trying to learn.  This process is repeated for every 
cluster of examples that was initially generated and 
all the rules added to a collection which encapsulates 
the entire user model. 

4 PREDICTING SEQUENCES 

Having constructed our user model we then need to 
provide a means with which to use it.. 

When asked to suggest possible tasks, the query 
engine takes the task given and feeds it into the 
database of rules. It collects two lists; one of 
possible tasks to schedule before the user’s task, and 
one of possible tasks to schedule after the user’s 
task.  Each list is then processed to find the most 
likely candidate for scheduling and the two answers 
returned.  If there is no possible suggestion for either 
answer then an empty task that describes itself as 
‘No Answer’ is returned as an indicator of this 
situation. 

The generation of the Dirichlet distributions for 
use when rating answers makes use of information 
saved at the model learning stage.  When the 
examples were originally clustered, a separate set of 
data was saved in which was stored the results of 
clustering the examples over the first task (task A) in 
the sequence and the results of clustering only over 
the second task (task B) in the sequence. This 
information represents the basis from which the set 
of distributions representing p(B|A) and p(A|B) can 
be calculated. As the method for generating 
distributions which deal with prediction of following 
tasks and distributions which deal with prediction of 
preceding tasks is the same, it will only be described 
from the point of view of predicting a following 
task. 

All the possible stereotypes (Rich 1989) for task 
B can be determined by looking at the data 
representing the results of clustering over task B and 
taking the mode of each task B within a cluster as 
this will produce examples of the possible values for 
task B encountered so far. The data representing the 
results of clustering over task A will contain a set of 
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examples for each distinct task A encountered. Each 
set can be used to create a Dirichlet distribution 
p(B|A) by counting the number of occurrences of 
each type of task B that follows the given task for 
that distribution and then normalising the counts to 
produce a probability. This version of the Dirichlet 
distribution uses a normal prior during construction, 
but leaves the possibility open to use of more biased 
priors later if required. 

The most likely candidates from the two lists of 
tasks produced earlier are generated by sorting each 
list into sub lists of similar tasks (we may have 
generated several possible tasks which only differ by 
a very small amount, for example one task may have 
a preferred time half an hour later than another task), 
and then ascertaining the most suitable candidate 
from each sub list using the probability distributions 
created from the original set of examples collected. 
Two sets of distributions are created; one which 
describes P(B|A) and the other describes P(A|B).  In 
both cases A is chronologically the first task in the 
sequence and B the second.  If we are looking at the 
list of possible tasks which could follow that 
specified by the user then we would use the set of 
P(B|A) distributions as task A is given and we wish 
to ascertain the probability of each possible task B 
that has been generated. Conversely, if we are 
looking for a task which would precede the user’s 
task then we would use the set of P(A|B). We are 
working with a set of distributions rather than 
simply one because we need to construct a separate 
distribution for each possible task given by the user 
(i.e. each distinct ‘A’). Once we know the user’s 
task then ideally we would concentrate on an 
individual distribution, however the distributions are 
created using stereotypes for different task types (the 
set of stereotypes used contains the mode of each 
cluster generated during the learning process) and 
the user’s task may not match exactly any of the 
tasks over which the distributions are created.  
Therefore we pick all the distributions for which the 
distance from the base task to the user’s task is 
closer than the threshold distance used at the 
clustering stage of the learning process.  

Task ratings are generated by adding together the 
rating from each selected distribution in turn. For 
each distribution, the probability given to the 
stereotype that is closest to the task being rated is 
divided by its distance from the task to form the 
rating for that task. This allows us to attempt to 
distinguish between tasks that only differ by small 
amounts and is based on the idea of the influence of 
each point in the instance space represented by a 
stereotype degrading with distance (hence the sum 
of ratings, which is a simple method of 
acknowledging influence from more than one point).  
The tasks with the highest rating within each of the 

sub lists generated earlier are returned to be 
presented to the user as they are all valid sequences 
for the task originally entered.  

5 CONCLUSION 

The system described within this paper has 
demonstrated a new method of ILP application that 
enables this machine learning method to be used for 
user modelling within an Intelligent Diary (iMeeting).  
This augmentation allows iMeeting to make 
suggestions to the user based on previous 
observations.  

Sparse data will always be a problem for any 
technique that attempts to make predictions based on 
previous experience, whether from a generalised 
version of the gathered information or from the 
examples themselves. In the case of ILP, small 
numbers of examples mean that the sort of generalised 
rules that were envisaged are not necessarily the ones 
that were constructed. Rather than creating a rule that 
covers ‘all projects’, a rule or group of rules which 
cover specific projects has been created.  The system 
generates the most accurate hypothesis it can with the 
data presented, without continuous human 
intervention, and this may mean that the optimum set 
of rules is not always created. However, with more 
data, the quality of the hypothesis has been shown to 
improve. 
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