
OBJECT ID DISTRIBUTION AND ENCODING IN THE
SEMANTIC BINARY ENGINE

Naphtali Rishe, Armando Barreto, Maxim Chekmasov,
Dmitry Vasilevsky, Scott Graham, Sonal Sood

Florida International University, Miami, FL

Ouri Wolfson
University of Illinois at Chicago, Chicago, IL,

Keywords: Semantic binary data model, object id encoding/decoding, clustered id distribution

Abstract: The semantic binary engine is a database management system built on the principles of the Semantic Binary
Data Model (Rishe, 1992). A semantic binary database is a set of facts about objects. Objects belong to
categories, are connected by relations, and may have attributes. The concept of an object is at the core of the
data model and it is crucial to have efficient algorithms that allow the semantic binary engine to store,
retrieve, modify and delete information about objects in the semantic database. In this paper, we discuss the
concept of object IDs for object identification and methods for object ID distribution and encoding in the
database. Several encoding schemes and their respective efficiencies are discussed: Truncated Identical
encoding, End Flag encoding, and Length First encoding.

1 INTRODUCTION

The semantic binary engine stores information about
the database schema and abstract objects as a set of
facts at the logical level (Rishe, 1992). At the
physical implementation level, every fact is encoded
as a binary string using a reversible encoding. The
abstract objects, the categories they belong to, and
the relations and inverse relations between objects
are all assigned object IDs for their proper
identification. This makes the concept of object ID,
and the mechanisms related to their generation,
deletion, assignment, encoding, and storage, an
important part of the database engine.

One question that should be answered for the
implementation of the semantic binary engine is
whether to have object IDs of a fixed-size, a
flexible-but-limited-size, or a flexible-unlimited-
size. With fixed-size object IDs, a predefined
number of bits is used to identify every object in the
database. This number stays the same whenever the
object ID is stored on disk or used in memory. This
means that only a limited number of objects can be
identified by an object ID and that we should choose
the size of object ID to be large enough to cover a
reasonable number of objects present in real world

applications. Object IDs of a flexible-but-limited-
size would allow us to have shorter IDs in small
databases as long as the number of IDs is also
limited for the database. With a flexible-but-limited-
size approach, the object IDs that are stored on disk
have a variable size, while the object IDs in memory
are decoded to the maximum size to ease
computation. In the flexible-unlimited-size
approach, the number of objects in the database is
potentially unlimited; object IDs of the same size are
used on disk and in memory.

Flexible-unlimited-size IDs allow for the storage
of a large, and potentially unlimited, amount of data,
but require complex coding and higher overhead to
support the flexible ID size. There are also
limitations imposed by the database engine structure
which deny efficient support for the database
growing in size beyond original assumptions. IDs of
database schema objects are used in almost every
fact stored in the database; therefore it is beneficial
to keep them short. The use of flexible-but-limited-
size object IDs seems to be the most reasonable
approach.

There are many algorithms for object ID
generation. IDs can be generated sequentially for
every allocated object. Another approach is to
generate random IDs, where the objects are

279
Rishe N., Barreto A., Chekmasov M., Vasilevsky D., Graham S., Sood S. and Wolfson O. (2005).
OBJECT ID DISTRIBUTION AND ENCODING IN THE SEMANTIC BINARY ENGINE.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 279-284
DOI: 10.5220/0002535702790284
Copyright c© SciTePress

distributed randomly across the ID space. Finally,
IDs can be allocated in clusters. This last approach
improves the performance of several database
algorithms as discussed below.

2 ENCODING OF OBJECT IDS

Object IDs are used to identify objects by the
database engine. If objects are composed of
relatively small-size attributes like integers or
Boolean values, keeping an object ID for every fact
introduces a noticeable space overhead in
comparison to similar relational databases. The
database engine spends most of its processing time
for operations with object IDs; for example,
comparisons of object IDs are made quite
frequently. Thus, the task of finding an efficient
object ID encoding scheme is a challenge which
needs to be carefully pursued by the database engine
designers.

Encoding of object IDs is a reversible function

φ:[0..N]→{α|α - binary string, |α|< m}

where N is integer and [0..N] is the space covered
by encoding. φ([0..N]) is the encoded space. The
function should be defined for every number in the
interval [0..N] and should result in different
values for all the interval numbers to ensure the
existence of an inverse function φ-1, which makes
encoding non-destructive. The encoded space does
not have to cover the entire {α|α - binary string,
|α|< m}.

To be a valid encoding function, φ should satisfy
the following conditions.

(1) ∀a,b∈[0..N], a< b ⇒ φ(a)< φ(b)

The encoding function should preserve order. If
the number is smaller than another number,
encoding should yield the same lexicographical
order. This condition is required since object ID
comparisons by the engine are performed on original
as well as encoded object IDs. The comparisons
should yield the same result.

(2) ∀a,b∈[0..N], φ(a)< φ(b),
 ∀α,β-string ⇒ φ(a)⋅α< φ(b)⋅β

No matter what is appended to the encoded
string, the resulting string should preserve
lexicographical order. Though conditions (1) and (2)
can be stated as one condition, we feel that it is
clearer to state them separately. Condition (2)
guarantees the correct retrieval of facts regarding a

certain object. The facts that start with the same
object ID form a continuous interval with respect to
lexicographical order. No fact about another object
can be encoded between them.

(3) ∀a,b∈[0..N], if ∃ α,β - string so that
 φ(a)⋅α = φ(b)⋅β ⇒ a = b

If the object ID is concatenated with a string, it
should still be extractable from the resulting string.
Condition (3) is needed since encoded facts are
constructed by appending strings to encoded object
IDs. In many cases object IDs need to be extracted
from already encoded facts.

2.1 Truncated Identical Encoding

To illustrate a situation where condition (3) is
violated, let us consider the following encoding. An
object ID is formed byte-by-byte. The first byte is
the most significant non-zero byte of the number,
then other bytes follow in order. We call this method
truncated identical encoding and denote its function
as ε.

As shown on Figure 1, when bytes 0x05 0x02
are appended to encoded ID 0x05 in line number 2,
it causes the resulting string to be lexicographically
between two strings for the object ID 0x0505.
Though truncated identical encoding violates all
three conditions above, it is still used for different
purposes.

Figure 1: Lexicographical order example

Condition (1) on φ guarantees that the B-Tree

lexicographical order used to index facts is the same
as the natural ordering of integer numbers. If
condition (1) were relaxed, all comparisons should
be performed on either encoded strings or un-
encoded numbers. Since the B-Tree utilizes
comparisons on encoded strings, all the comparisons
would have to be done this way. However, that
would causes a problem and overcomplicate the
database engine design, since the object ID-
allocating algorithm and the bit-scale storage

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

280

scheme both make use ordering of un-encoded
numbers.

When conditions (1)-(3) are met, one has a valid
encoding function. However, the encoding could be
inefficient. Consider the trivial encoding of
[0..28n], which utilizes exactly n-byte strings to
represent the number. The string is composed of all
the bytes starting from the most significant bytes
even if they are 0 bytes. This is called identical
encoding. It satisfies the three required conditions,
but it is not efficient in terms of space. With n=2,
large databases are not covered. With n=8, there is
a great deal of wasted space on long object IDs in
small databases. For example, ID=0x21 will be
encoded as 0000000000000021. We can not
truncate leading zero bytes since the resulting
encoding would not satisfy the required conditions.

The choice of encoding function along with the
object ID size plays a major role in achieving a
successful semantic binary engine design. It is also
important to determine the space requirements for
object IDs and the way object IDs are generated and
disposed of. Existing ID encoding conventions
might be utilized. An example encoding technique is
Globally Unique Identifiers (GUIDs), where each
object ID is a 16-byte integer and an algorithm is
available for generating GUIDs, as is the procedure
for discarding GUIDs when objects are disposed.

2.2 Efficiency of Encoding

The following properties are desirable features of an
efficient object ID system for the semantic binary
engine.

(I) Encoded object IDs should be short for small
numbers. For a database with several thousand
objects, a maximum object ID that is 8 bytes long
would be considered a waste of space. More
importantly, even large databases usually have
relatively small schemas. A category ID or relation
ID is present in every fact in the database. Therefore,
if all relations and categories in the schema have
short encoded object IDs, the overhead for storing
them would be low.

(II) The space of object IDs should cover large
datasets. It is possible to design a system with
unlimited-size object IDs, but the system would be
excessively complex and inefficient. Given a limit
on the length of encoded strings, the space of object
IDs should be as large as possible. If the length of
encoded strings is limited to n bytes, the space of the
maximum possible size covered by object IDs is 28n

objects, achieved by identical encoding.
(III) The encoding (φ) and decoding (φ-1)

algorithms should not be computationally complex.
Though it is hard to beat the speed of identical

encoding, which could likely be implemented as a
single CPU instruction, the encoding algorithm
should come as close as possible.
 (IV) ε-1(φ()) should preserve ordering and
ε-1(φ([0..N])) should be dense—preferably
containing only a few interval holes. This is similar
to treating encoded strings as numbers without
decoding. As an illustration, consider the following
approach. While the encoding/decoding function is
conventionally run every time an object ID is stored
or retrieved from a fact, it is possible to avoid this.
Most of the engine operations can be performed on
encoded IDs. One can apply ε-1 to encoded object
IDs, making a number out of it without decoding;
more accurately ε-1•φ:[0..N]→[0..M]. The
function ε-1 is fast and, by (IV), the ordering is
preserved. After applying fast encoding ε to the
resulting numbers, the original coded strings can be
obtained.
 If property (IV) is satisfied, we can use
ε-1(φ([0..N])) = Φ ⊂ [0..M] inside the engine as
object IDs. This would save time by eliminating
encoding and decoding in most operations.
However, in this case, it is desirable that this set is
dense in [0..M] since the database engine uses
bitmaps for efficient indexes on attributes that have
only few possible values such as Boolean attributes
or the flag of belonging to a category. If Φ is not
dense enough, space in a bitmap is wasted for non-
existent object IDs.

Actually, Φ might have structure rather than just
being dense. As an illustration, consider the
compression of bitmaps used in the engine. Bitmaps
are broken into blocks; if a whole block contains
only zeroes, it is compressed out. This is a simple
and fast compression. Typically, a block of object
IDs is given to a category and new objects in that
category get IDs from the block. This ensures that
compression of the bitmaps works well since almost
every set consists of objects from the same category.
 (V) It is not desirable to have different encoding
for databases of different space sizes. If N1< N2, φ1
is the encoding for [0..N1] and φ2 is a version of
the same encoding for [0..N2], then ∀x<N1⇒
φ1(x)= φ2(x). This ensures that if the ID space
expands over time, the database would remain
compatible. Properties (I) and (II) provide an
alternative solution for functions that do not satisfy
(V). If the ID space is chosen large enough from the
very beginning, small databases would have short
IDs and therefore there will be no waste in terms of
database space.

An ID space of 256 covers all currently existing
databases and the databases of the foreseeable
future. Let us review encodings we’ve discussed so
far and see if they satisfy the three requirements and
have the five properties discussed above.

OBJECT ID DISTRIBUTION AND ENCODING IN THE SEMANTIC BINARY ENGINE

281

Identical encoding trivially satisfies the three
properties and therefore is a valid encoding. It has to
use n=7 to cover the required space. Identical
encoding is an efficient encoding function—the
most efficient of all possible encodings. The
problem with identical encoding is that it does not
satisfy property (I). Small databases would have to
use long object IDs, this encoding does not satisfy
property (V) either.

Truncated identical encoding satisfies property (I)
since it uses a minimum amount of bytes to encode a
number. It satisfies (II), since this encoding can use
as many bytes as needed and covers the maximum
possible space. Truncated identical encoding
satisfies (III), since a “would be” encoding and
decoding algorithm is very simple with few CPU
instructions involved. It satisfies (IV) and produces
the densest set possible, which is the whole interval.
It also satisfies (V). However it violates all three
conditions and, therefore, is not a valid encoding.
A reasonable, practical, solution seems to be found
somewhere between these two encoding methods.

2.3 End Flag Encoding

End Flag starts with the 7 least significant bits of the
number, which are used as the 7 least significant bits
of the last byte of the encoded string. The most
significant bit is set to 0. Then 7 more bits from the
number are taken to form the last-but-one byte of the
encoded string. The most significant bit is set to 1.
The process continues while there are non-zero bits
in the original number taking 7 bits at a time and
adding 1 as the most significant bit to the resulting
byte. The last byte formed will be the first byte of
the resulting encoded string.

End Flag encoding satisfies all three conditions of
valid encoding. Indeed, one can always find the end
of the number since only the last byte has the highest
bit set to 0, therefore (3) is satisfied. The same
consideration is valid for (2). Requirement (1) is
satisfied since the longer the number the greater the
encoded string; the most significant bit indicates
that.

With respect to the set of properties for efficient
encoding, (I) is satisfied. For objects IDs from
[0..27-1], the length of an encoded object ID is
only one byte. For objects from [27..214-1] it is
two bytes, etc. Property (II) is also valid with this
encoding. For the required ID space of 256 objects,
the maximum length of a string is 8 bytes. Property
(III) is satisfied only to a certain extent. Even though
the algorithm is faster than the original encoding,
proposed in (Rishe, 1991), it is still about fifty times
slower than identical encoding (one CPU
instruction). It is questionable whether property (IV)

is met, since there are many interval holes in Φ,
namely a hole of 128 numbers every 256 numbers
and even more holes for higher powers of 2.
Property (V) is satisfied since ID space has room to
grow beyond the original expectations.

2.4 Length First Encoding

Length First covers a space of 261 objects. The three
most significant bits of the first byte of the encoded
string contain the string’s length-1. All other bits
are copied from the number. The algorithm is as
follows. Start with the least significant bit of the
number and copy it to the least significant bit of the
last byte of the resulting string. Continue copying bit
by bit until reaching the most significant non-zero
bit of the number. If the current byte of the encoded
string still has three highest bits unassigned, set them
to the length of the encoded string-1, otherwise add
another byte at the beginning and set the highest
three bits to the length of the encoded string-1.

Length First encoding satisfies the three
conditions of valid encoding. The length of encoded
string can easily be found, since it is stored in the
three most significant bits of the first byte. Similarly,
(2) is satisfied. Requirement (1) is also satisfied,
since longer numbers mean larger numbers and the
length is represented by the three most significant
bits of the encoded string. For numbers of the same
length, conventional comparison rules apply.

With respect to the set of properties for efficient
encoding, property (I) is satisfied. For object IDs
from [0..25-1], the length of the encoded string
is one byte. For [25..213], the length is two bytes.
This is less efficient than End Flag encoding for
short IDs, but is better for longer IDs. Property (II)
is satisfied. For the ID space of [0..261], the
maximum length of an encoded string is eight; this is
better than in the End Flag algorithm. Property (III)
is satisfied and Length First encoding is faster than
the End Flag encoding; since the encoded string’s
length is given in the first three bits, it is only about
ten times slower than identical encoding. Property
(IV) is satisfied; for the considered space, Φ has
only 7 interval holes. Property (V) is not satisfied,
which means that the space of object IDs should be
chosen at the engine design phase and can’t be
extended. However, the space of [0..261] is larger
than required for most database applications.

2.5 Mapped Length First Encoding

Mapped Length First encoding is a modification of
the Length First algorithm. Instead of using three
bits for length encoding it uses only two bits. The
four possible bit combinations are mapped to string

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

282

lengths according to Table 1. Figure 2 illustrates the
number of object IDs available with the different
Mapped Length First bit combinations.

Table 1: Length mapping for Mapped Length First ID
encoding

Bit combination ID Length
00 1 byte
01 2 bytes
10 4 bytes
11 8 bytes

Figure 2: Mapped Length First object ID space

Let us prove that Mapped Length First encoding is a
valid encoding.

Consider N1>N2. If |φ(N1)|=|φ(N2)|, it is
evident that φ(N1)>φ(N2). Indeed, the two most
significant bits of φ(N1) are equal to two most
significant bits of φ(N2), therefore the result of a
comparison is determined by the remaining bits. The
remaining bits are compared in the same way as the
original numbers. If they are of different length,
|φ(N1)|>|φ(N2)|, by construction, since the two
most significant bits of φ(N1) are greater than two
most significant bits of φ(N2). Therefore
φ(N1)>φ(N2).

Consider φ(N1)>φ(N2). If the two most
significant bits of φ(N1) are greater than the two
most significant bits of φ(N2) then it does not
matter what is appended after these bits. If the two
most significant bits of φ(N1) are the same as the
two most significant bits of φ(N2) then
|φ(N1)|=|φ(N2)|. Therefore it does not matter
what is appended after two most significant bits
since φ(N1)>φ(N2).
 If φ(a)⋅α=φ(b)⋅β, then the first two significant
bits of φ(a) are the same as two most significant
bits of φ(b). This means |φ(a)|=|φ(b)|.
Therefore φ(a)=φ(b).
 Now, let us consider the efficiency of this
encoding. All numbers from the interval [0..26-
1] take one byte to be encoded, the numbers from
the interval [26..214-1] take two bytes to be

encoded. Numbers from the interval [215..230-1]
take four bytes to be encoded.

This encoding covers in total the interval
[0..262], which is actually more than required for
most database applications.

The encoding is fast. It is only about ten times
slower than identical encoding.
Φ defined by this encoding has only three interval
holes.

Property (V) is not satisfied. However, this is
mitigated by having short object IDs for small
numbers and large enough space for object IDs.
Length First and Mapped Length First algorithms
are similar, except that the latter improves space
consumption for small IDs by sacrificing space
consumption for medium IDs. This is helpful for
small databases with small database schemas.
Mapped Length First is an efficient encoding which
can be implemented with at most ten Intel assembly
instructions.

One more approach is to make the database
engine choose the encoding algorithm dynamically
(Vasilevsky, 2004). In turn, this means that object
IDs encoded by different algorithms might coexist in
the same database and that the database engine
should choose the correct algorithm for decoding
any given object ID. Thus, an allocation of space in
the encoded object ID is needed to indicate which
decoding algorithm to use. For example, another
algorithm can be used to encode large object IDs in
Mapped Length Encoding. The first two bits being
equal to 11 would be an indication of the use of this
algorithm. However, the overall encoding that
results from dynamically choosing among the
different algorithms should satisfy all encoding
properties.

3 GENERATION AND DISPOSAL
OF OBJECT IDS

We propose to enhance the basic algorithms for
object ID generation to allow the database engine to
better store and manipulate object IDs. The
enhancement is described as follows.

A request for a new object ID should not go
directly to the central generator of object IDs.
Instead, the central ID generator should give every
category a continuous set of IDs that fall into one
block of a bitmap. Then, whenever an object is
created in the category, it receives an object ID from
the block allocated for that category. When the block
is exhausted, the category requests another one from
the central ID generator.

This approach allows bitmaps storing object
categorization to be very compact. Suppose that

OBJECT ID DISTRIBUTION AND ENCODING IN THE SEMANTIC BINARY ENGINE

283

every object belongs to exactly one category and
never migrates across categories. In this case, we
find the bitmaps that represent categorization
information in an ideal situation. For category C, the
blocks of object IDs that were allocated to the
categories other than C will always have only zeros
and thus will not be stored after applying our bitmap
compression scheme. Blocks of object IDs that were
given to category C will all have ones (except,
perhaps, the last block) and will not be stored either;
see Figure 3. This method takes advantage of the
fact that objects rarely change their category. Thus a
set of objects belonging to one category would most
likely form several intervals with dense object ID
distribution. The set can be represented very
efficiently by a bit scale.

Figure 3: Clustered object ID distribution

When the central ID generator is requested to

provide a new set of object IDs, it increases the
value of the global counter and applies the function
ε-1(φ()) to it. No additional computing is required
for previously generated object IDs. In other words,
after initial generation of object IDs for the database,
an efficient function ε for encoding is utilized but
the domain space of IDs is restricted to this initial ID
set.

Each repository of a category’s object IDs uses
bit scale storage. Whenever an object is disposed, its
object ID is returned to the repository of the
corresponding category. Whenever the repository
detects that an entire block of object IDs is free, it
returns the block to the global repository of object
IDs.

The size of the database can be optimized by
carefully choosing object IDs for objects in the
database schema. Every fact in the database has one
object ID from the database schema. Therefore, it is
beneficial to use short object IDs for the objects in
the database schema. The semantic database engine
employs predefined object IDs for the objects in the
metaschema. The predefined object IDs should be
excluded from the ID allocation algorithm. If short
objects IDs are used for the metaschema objects,
they can no longer be used for objects in the

database. Therefore, predefined objects in the
metaschema should not be taken from the beginning
of the object ID space; they should be taken from the
end of ID space. This keeps the object allocation
algorithm simple and allows short object IDs to be
used for new objects in the database schema.

4 CONCLUSION

Choosing methods for object ID encoding and
distribution is crucial for the design of a fast and
reliable semantic binary database engine. For
efficient encoding of object IDs, we propose to
allocate the most significant bits in an object ID as
storage to encode length of an ID and to use the
remaining bits to store the integer value of an ID
directly. For practical purposes, it is recommended
to use one-, two-, four-, and eight-byte encoded IDs
for database objects, while short one- and two-byte
IDs should be chosen for the database schema
objects, since these IDs are present in every fact
stored in the database.
 With respect to object ID generation, we propose
to generate object IDs in blocks. The blocks of IDs
are assigned to the categories, thus a new object to
be stored in the database receives an object ID from
its category repository. This clustered ID distribution
provides an effective storage and data retrieval
solution, though it should be combined with other
methods when the objects are allowed to change
categories.

ACKNOWLEDGEMENTS

This material is based on work supported by the
National Science Foundation under Grants No.
HRD-0317692, EIA-0320956, EIA-0220562, CNS-
0426125, IIS-0326284, CCF-0330342, IIS-0086144,
and IIS-0209190.

REFERENCES

Rishe, N., 1992. Database Design: the Semantic Modeling
Approach, McGraw-Hill. 528 pp.

Rishe, N., 1991. Interval-based approach to lexicographic
representation and compression of numeric data. Data
& Knowledge Engineering, n 8, pp. 339-351.

Vasilevsky, D., 2004. Design Principles of Semantic
Binary Database Management Systems, PhD thesis,
Florida International University, 165 p.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

284

