
OBJECT ID DISTRIBUTION AND ENCODING IN THE 
SEMANTIC BINARY ENGINE 

Naphtali Rishe, Armando Barreto, Maxim Chekmasov,  
Dmitry Vasilevsky, Scott Graham, Sonal Sood 

Florida International University, Miami, FL 

Ouri Wolfson 
University of Illinois at Chicago, Chicago, IL,  

Keywords: Semantic binary data model, object id encoding/decoding, clustered id distribution 

Abstract: The semantic binary engine is a database management system built on the principles of the Semantic Binary 
Data Model (Rishe, 1992). A semantic binary database is a set of facts about objects. Objects belong to 
categories, are connected by relations, and may have attributes. The concept of an object is at the core of the 
data model and it is crucial to have efficient algorithms that allow the semantic binary engine to store, 
retrieve, modify and delete information about objects in the semantic database. In this paper, we discuss the 
concept of object IDs for object identification and methods for object ID distribution and encoding in the 
database. Several encoding schemes and their respective efficiencies are discussed: Truncated Identical 
encoding, End Flag encoding, and Length First encoding. 

1 INTRODUCTION 

The semantic binary engine stores information about 
the database schema and abstract objects as a set of 
facts at the logical level (Rishe, 1992). At the 
physical implementation level, every fact is encoded 
as a binary string using a reversible encoding. The 
abstract objects, the categories they belong to, and 
the relations and inverse relations between objects 
are all assigned object IDs for their proper 
identification. This makes the concept of object ID, 
and the mechanisms related to their generation, 
deletion, assignment, encoding, and storage, an 
important part of the database engine. 

One question that should be answered for the 
implementation of the semantic binary engine is 
whether to have object IDs of a fixed-size, a 
flexible-but-limited-size, or a flexible-unlimited-
size. With fixed-size object IDs, a predefined 
number of bits is used to identify every object in the 
database. This number stays the same whenever the 
object ID is stored on disk or used in memory. This 
means that only a limited number of objects can be 
identified by an object ID and that we should choose 
the size of object ID to be large enough to cover a 
reasonable number of objects present in real world 

applications. Object IDs of a flexible-but-limited-
size would allow us to have shorter IDs in small 
databases as long as the number of IDs is also 
limited for the database. With a flexible-but-limited-
size approach, the object IDs that are stored on disk 
have a variable size, while the object IDs in memory 
are decoded to the maximum size to ease 
computation. In the flexible-unlimited-size 
approach, the number of objects in the database is 
potentially unlimited; object IDs of the same size are 
used on disk and in memory. 

Flexible-unlimited-size IDs allow for the storage 
of a large, and potentially unlimited, amount of data, 
but require complex coding and higher overhead to 
support the flexible ID size. There are also 
limitations imposed by the database engine structure 
which deny efficient support for the database 
growing in size beyond original assumptions. IDs of 
database schema objects are used in almost every 
fact stored in the database; therefore it is beneficial 
to keep them short. The use of flexible-but-limited-
size object IDs seems to be the most reasonable 
approach. 

There are many algorithms for object ID 
generation. IDs can be generated sequentially for 
every allocated object. Another approach is to 
generate random IDs, where the objects are 
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distributed randomly across the ID space. Finally, 
IDs can be allocated in clusters. This last approach 
improves the performance of several database 
algorithms as discussed below. 

2 ENCODING OF OBJECT IDS 

Object IDs are used to identify objects by the 
database engine. If objects are composed of 
relatively small-size attributes like integers or 
Boolean values, keeping an object ID for every fact 
introduces a noticeable space overhead in 
comparison to similar relational databases. The 
database engine spends most of its processing time 
for operations with object IDs; for example, 
comparisons of object IDs are made quite 
frequently. Thus, the task of finding an efficient 
object ID encoding scheme is a challenge which 
needs to be carefully pursued by the database engine 
designers. 

Encoding of object IDs is a reversible function 
 
φ:[0..N]→{α|α - binary string, |α|< m} 
 
where N is integer and [0..N] is the space covered 
by encoding. φ([0..N]) is the encoded space. The 
function should be defined for every number in the 
interval [0..N] and should result in different 
values for all the interval numbers to ensure the 
existence of an inverse function φ-1, which makes 
encoding non-destructive. The encoded space does 
not have to cover the entire {α|α - binary string, 
|α|< m}.   

To be a valid encoding function, φ should satisfy 
the following conditions.  
 
(1)  ∀a,b∈[0..N], a< b ⇒ φ(a)< φ(b) 
 

The encoding function should preserve order. If 
the number is smaller than another number, 
encoding should yield the same lexicographical 
order. This condition is required since object ID 
comparisons by the engine are performed on original 
as well as encoded object IDs. The comparisons 
should yield the same result. 
 
(2)  ∀a,b∈[0..N], φ(a)< φ(b),  
   ∀α,β-string ⇒ φ(a)⋅α< φ(b)⋅β 
 

No matter what is appended to the encoded 
string, the resulting string should preserve 
lexicographical order. Though conditions (1) and (2) 
can be stated as one condition, we feel that it is 
clearer to state them separately. Condition (2) 
guarantees the correct retrieval of facts regarding a 

certain object. The facts that start with the same 
object ID form a continuous interval with respect to 
lexicographical order. No fact about another object 
can be encoded between them. 
 
(3)  ∀a,b∈[0..N], if ∃ α,β - string so that  
       φ(a)⋅α = φ(b)⋅β ⇒ a = b 

If the object ID is concatenated with a string, it 
should still be extractable from the resulting string. 
Condition (3) is needed since encoded facts are 
constructed by appending strings to encoded object 
IDs. In many cases object IDs need to be extracted 
from already encoded facts. 

2.1 Truncated Identical Encoding  

To illustrate a situation where condition (3) is 
violated, let us consider the following encoding. An 
object ID is formed byte-by-byte. The first byte is 
the most significant non-zero byte of the number, 
then other bytes follow in order. We call this method 
truncated identical encoding and denote its function 
as ε. 

As shown on Figure 1, when bytes 0x05 0x02 
are appended to encoded ID 0x05 in line number 2, 
it causes the resulting string to be lexicographically 
between two strings for the object ID 0x0505. 
Though truncated identical encoding violates all 
three conditions above, it is still used for different 
purposes. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Lexicographical order example 

 
Condition (1) on φ guarantees that the B-Tree 

lexicographical order used to index facts is the same 
as the natural ordering of integer numbers. If 
condition (1) were relaxed, all comparisons should 
be performed on either encoded strings or un-
encoded numbers. Since the B-Tree utilizes 
comparisons on encoded strings, all the comparisons 
would have to be done this way. However, that 
would causes a problem and overcomplicate the 
database engine design, since the object ID-
allocating algorithm and the bit-scale storage 
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scheme both make use ordering of un-encoded 
numbers. 

When conditions (1)-(3) are met, one has a valid 
encoding function. However, the encoding could be 
inefficient. Consider the trivial encoding of 
[0..28n], which utilizes exactly n-byte strings to 
represent the number. The string is composed of all 
the bytes starting from the most significant bytes 
even if they are 0 bytes. This is called identical 
encoding. It satisfies the three required conditions, 
but it is not efficient in terms of space. With n=2, 
large databases are not covered. With n=8, there is 
a great deal of wasted space on long object IDs in 
small databases. For example, ID=0x21 will be 
encoded as 0000000000000021. We can not 
truncate leading zero bytes since the resulting 
encoding would not satisfy the required conditions. 

The choice of encoding function along with the 
object ID size plays a major role in achieving a 
successful semantic binary engine design. It is also 
important to determine the space requirements for 
object IDs and the way object IDs are generated and 
disposed of. Existing ID encoding conventions 
might be utilized. An example encoding technique is 
Globally Unique Identifiers (GUIDs), where each 
object ID is a 16-byte integer and an algorithm is 
available for generating GUIDs, as is the procedure 
for discarding GUIDs when objects are disposed.  

2.2 Efficiency of Encoding  

The following properties are desirable features of an 
efficient object ID system for the semantic binary 
engine. 

(I) Encoded object IDs should be short for small 
numbers. For a database with several thousand 
objects, a maximum object ID that is 8 bytes long 
would be considered a waste of space. More 
importantly, even large databases usually have 
relatively small schemas. A category ID or relation 
ID is present in every fact in the database. Therefore, 
if all relations and categories in the schema have 
short encoded object IDs, the overhead for storing 
them would be low. 

(II) The space of object IDs should cover large 
datasets. It is possible to design a system with 
unlimited-size object IDs, but the system would be 
excessively complex and inefficient. Given a limit 
on the length of encoded strings, the space of object 
IDs should be as large as possible. If the length of 
encoded strings is limited to n bytes, the space of the 
maximum possible size covered by object IDs is 28n 

objects, achieved by identical encoding.  
(III) The encoding (φ) and decoding (φ-1) 

algorithms should not be computationally complex. 
Though it is hard to beat the speed of identical 

encoding, which could likely be implemented as a 
single CPU instruction, the encoding algorithm 
should come as close as possible.  
 (IV) ε-1(φ()) should preserve ordering and           
ε-1(φ([0..N])) should be dense—preferably 
containing only a few interval holes. This is similar 
to treating encoded strings as numbers without 
decoding. As an illustration, consider the following 
approach. While the encoding/decoding function is 
conventionally run every time an object ID is stored 
or retrieved from a fact, it is possible to avoid this. 
Most of the engine operations can be performed on 
encoded IDs. One can apply ε-1 to encoded object 
IDs, making a number out of it without decoding; 
more accurately ε-1•φ:[0..N]→[0..M]. The 
function ε-1 is fast and, by (IV), the ordering is 
preserved. After applying fast encoding ε to the 
resulting numbers, the original coded strings can be 
obtained.  
 If property (IV) is satisfied, we can use                
ε-1(φ([0..N])) = Φ ⊂ [0..M] inside the engine as 
object IDs. This would save time by eliminating 
encoding and decoding in most operations. 
However, in this case, it is desirable that this set is 
dense in [0..M] since the database engine uses 
bitmaps for efficient indexes on attributes that have 
only few possible values such as Boolean attributes 
or the flag of belonging to a category. If Φ is not 
dense enough, space in a bitmap is wasted for non-
existent object IDs. 

Actually, Φ might have structure rather than just 
being dense. As an illustration, consider the 
compression of bitmaps used in the engine. Bitmaps 
are broken into blocks; if a whole block contains 
only zeroes, it is compressed out. This is a simple 
and fast compression. Typically, a block of object 
IDs is given to a category and new objects in that 
category get IDs from the block. This ensures that 
compression of the bitmaps works well since almost 
every set consists of objects from the same category.  
 (V) It is not desirable to have different encoding 
for databases of different space sizes. If N1< N2, φ1 
is the encoding for [0..N1] and φ2 is a version of 
the same encoding for [0..N2], then ∀x<N1⇒ 
φ1(x)= φ2(x). This ensures that if the ID space 
expands over time, the database would remain 
compatible. Properties (I) and (II) provide an 
alternative solution for functions that do not satisfy 
(V). If the ID space is chosen large enough from the 
very beginning, small databases would have short 
IDs and therefore there will be no waste in terms of 
database space. 

An ID space of 256 covers all currently existing 
databases and the databases of the foreseeable 
future. Let us review encodings we’ve discussed so 
far and see if they satisfy the three requirements and 
have the five properties discussed above. 
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Identical encoding trivially satisfies the three 
properties and therefore is a valid encoding. It has to 
use n=7 to cover the required space. Identical 
encoding is an efficient encoding function—the 
most efficient of all possible encodings. The 
problem with identical encoding is that it does not 
satisfy property (I). Small databases would have to 
use long object IDs, this encoding does not satisfy 
property (V) either. 

Truncated identical encoding satisfies property (I) 
since it uses a minimum amount of bytes to encode a 
number. It satisfies (II), since this encoding can use 
as many bytes as needed and covers the maximum 
possible space. Truncated identical encoding 
satisfies (III), since a “would be” encoding and 
decoding algorithm is very simple with few CPU 
instructions involved. It satisfies (IV) and produces 
the densest set possible, which is the whole interval. 
It also satisfies (V). However it violates all three 
conditions and, therefore, is not a valid encoding.  
A reasonable, practical, solution seems to be found 
somewhere between these two encoding methods. 

2.3 End Flag Encoding  

End Flag starts with the 7 least significant bits of the 
number, which are used as the 7 least significant bits 
of the last byte of the encoded string. The most 
significant bit is set to 0. Then 7 more bits from the 
number are taken to form the last-but-one byte of the 
encoded string. The most significant bit is set to 1. 
The process continues while there are non-zero bits 
in the original number taking 7 bits at a time and 
adding 1 as the most significant bit to the resulting 
byte. The last byte formed will be the first byte of 
the resulting encoded string. 

End Flag encoding satisfies all three conditions of 
valid encoding. Indeed, one can always find the end 
of the number since only the last byte has the highest 
bit set to 0, therefore (3) is satisfied. The same 
consideration is valid for (2). Requirement (1) is 
satisfied since the longer the number the greater the 
encoded string; the most significant bit indicates 
that.  

With respect to the set of properties for efficient 
encoding, (I) is satisfied. For objects IDs from 
[0..27-1], the length of an encoded object ID is 
only one byte. For objects from [27..214-1] it is 
two bytes, etc. Property (II) is also valid with this 
encoding. For the required ID space of 256 objects, 
the maximum length of a string is 8 bytes. Property 
(III) is satisfied only to a certain extent. Even though 
the algorithm is faster than the original encoding, 
proposed in (Rishe, 1991), it is still about fifty times 
slower than identical encoding (one CPU 
instruction). It is questionable whether property (IV) 

is met, since there are many interval holes in Φ, 
namely a hole of 128 numbers every 256 numbers 
and even more holes for higher powers of 2. 
Property (V) is satisfied since ID space has room to 
grow beyond the original expectations. 

2.4 Length First Encoding  

Length First covers a space of 261 objects. The three 
most significant bits of the first byte of the encoded 
string contain the string’s length-1. All other bits 
are copied from the number. The algorithm is as 
follows. Start with the least significant bit of the 
number and copy it to the least significant bit of the 
last byte of the resulting string. Continue copying bit 
by bit until reaching the most significant non-zero 
bit of the number. If the current byte of the encoded 
string still has three highest bits unassigned, set them 
to the length of the encoded string-1, otherwise add 
another byte at the beginning and set the highest 
three bits to the length of the encoded string-1. 

Length First encoding satisfies the three 
conditions of valid encoding. The length of encoded 
string can easily be found, since it is stored in the 
three most significant bits of the first byte. Similarly, 
(2) is satisfied. Requirement (1) is also satisfied, 
since longer numbers mean larger numbers and the 
length is represented by the three most significant 
bits of the encoded string. For numbers of the same 
length, conventional comparison rules apply. 

With respect to the set of properties for efficient 
encoding, property (I) is satisfied. For object IDs 
from [0..25-1], the length of the encoded string 
is one byte. For [25..213], the length is two bytes. 
This is less efficient than End Flag encoding for 
short IDs, but is better for longer IDs. Property (II) 
is satisfied. For the ID space of [0..261], the 
maximum length of an encoded string is eight; this is 
better than in the End Flag algorithm. Property (III) 
is satisfied and Length First encoding is faster than 
the End Flag encoding; since the encoded string’s 
length is given in the first three bits, it is only about 
ten times slower than identical encoding. Property 
(IV) is satisfied; for the considered space, Φ has 
only 7 interval holes. Property (V) is not satisfied, 
which means that the space of object IDs should be 
chosen at the engine design phase and can’t be 
extended. However, the space of [0..261] is larger 
than required for most database applications. 

2.5 Mapped Length First Encoding  

Mapped Length First encoding is a modification of 
the Length First algorithm. Instead of using three 
bits for length encoding it uses only two bits. The 
four possible bit combinations are mapped to string 
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lengths according to Table 1. Figure 2 illustrates the 
number of object IDs available with the different 
Mapped Length First bit combinations. 
 

Table 1: Length mapping for Mapped Length First ID 
encoding 

Bit combination ID Length 
00 1 byte 
01 2 bytes 
10 4 bytes 
11 8 bytes 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2:  Mapped Length First object ID space 

 
Let us prove that Mapped Length First encoding is a 
valid encoding. 

Consider N1>N2. If |φ(N1)|=|φ(N2)|, it is 
evident that φ(N1)>φ(N2). Indeed, the two most 
significant bits of φ(N1) are equal to two most 
significant bits of φ(N2), therefore the result of a 
comparison is determined by the remaining bits. The 
remaining bits are compared in the same way as the 
original numbers. If they are of different length, 
|φ(N1)|>|φ(N2)|, by construction, since the two 
most significant bits of φ(N1) are greater than two 
most significant bits of φ(N2). Therefore 
φ(N1)>φ(N2). 

Consider φ(N1)>φ(N2). If the two most 
significant bits of φ(N1) are greater than the two 
most significant bits of φ(N2) then it does not 
matter what is appended after these bits. If the two 
most significant bits of φ(N1) are the same as the 
two most significant bits of φ(N2) then 
|φ(N1)|=|φ(N2)|. Therefore it does not matter 
what is appended after two most significant bits 
since φ(N1)>φ(N2). 
 If φ(a)⋅α=φ(b)⋅β, then the first two significant 
bits of φ(a) are the same as two most significant 
bits of φ(b). This means |φ(a)|=|φ(b)|. 
Therefore φ(a)=φ(b). 
 Now, let us consider the efficiency of this 
encoding. All numbers from the interval [0..26-
1] take one byte to be encoded, the numbers from 
the interval [26..214-1] take two bytes to be 

encoded. Numbers from the interval [215..230-1] 
take four  bytes to be encoded.  

This encoding covers in total the interval 
[0..262], which is actually more than required for 
most database applications. 

The encoding is fast. It is only about ten times 
slower than identical encoding. 
Φ defined by this encoding has only three interval 
holes. 

Property (V) is not satisfied. However, this is 
mitigated by having short object IDs for small 
numbers and large enough space for object IDs. 
Length First and Mapped Length First algorithms 
are similar, except that the latter improves space 
consumption for small IDs by sacrificing space 
consumption for medium IDs. This is helpful for 
small databases with small database schemas. 
Mapped Length First is an efficient encoding which 
can be implemented with at most ten Intel assembly 
instructions. 

One more approach is to make the database 
engine choose the encoding algorithm dynamically 
(Vasilevsky, 2004). In turn, this means that object 
IDs encoded by different algorithms might coexist in 
the same database and that the database engine 
should choose the correct algorithm for decoding 
any given object ID. Thus, an allocation of space in 
the encoded object ID is needed to indicate which 
decoding algorithm to use. For example, another 
algorithm can be used to encode large object IDs in 
Mapped Length Encoding. The first two bits being 
equal to 11 would be an indication of the use of this 
algorithm. However, the overall encoding that 
results from dynamically choosing among the 
different algorithms should satisfy all encoding 
properties. 

3 GENERATION AND DISPOSAL 
OF OBJECT IDS 

We propose to enhance the basic algorithms for 
object ID generation  to allow the database engine to 
better store and manipulate object IDs. The 
enhancement is described as follows.  

A request for a new object ID should not go 
directly to the central generator of object IDs. 
Instead, the central ID generator should give every 
category a continuous set of IDs that fall into one 
block of a bitmap. Then, whenever an object is 
created in the category, it receives an object ID from 
the block allocated for that category. When the block 
is exhausted, the category requests another one from 
the central ID generator. 

This approach allows bitmaps storing object 
categorization to be very compact. Suppose that 
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every object belongs to exactly one category and 
never migrates across categories. In this case, we 
find the bitmaps that represent categorization 
information in an ideal situation. For category C, the 
blocks of object IDs that were allocated to the 
categories other than C will always have only zeros 
and thus will not be stored after applying our bitmap 
compression scheme. Blocks of object IDs that were 
given to category C will all have ones (except, 
perhaps, the last block) and will not be stored either; 
see Figure 3. This method takes advantage of the 
fact that objects rarely change their category. Thus a 
set of objects belonging to one category would most 
likely form several intervals with dense object ID 
distribution. The set can be represented very 
efficiently by a bit scale. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Clustered object ID distribution 

 
When the central ID generator is requested to 

provide a new set of object IDs, it increases the 
value of the global counter and applies the function 
ε-1(φ()) to it. No additional computing is required 
for previously generated object IDs. In other words, 
after initial generation of object IDs for the database, 
an efficient function ε for encoding is utilized but 
the domain space of IDs is restricted to this initial ID 
set. 

Each repository of a category’s object IDs uses 
bit scale storage. Whenever an object is disposed, its 
object ID is returned to the repository of the 
corresponding category. Whenever the repository 
detects that an entire block of object IDs is free, it 
returns the block to the global repository of object 
IDs. 

The size of the database can be optimized by 
carefully choosing object IDs for objects in the 
database schema. Every fact in the database has one 
object ID from the database schema. Therefore, it is 
beneficial to use short object IDs for the objects in 
the database schema. The semantic database engine 
employs predefined object IDs for the objects in the 
metaschema. The predefined object IDs should be 
excluded from the ID allocation algorithm. If short 
objects IDs are used for the metaschema objects, 
they can no longer be used for objects in the 

database. Therefore, predefined objects in the 
metaschema should not be taken from the beginning 
of the object ID space; they should be taken from the 
end of ID space. This keeps the object allocation 
algorithm simple and allows short object IDs to be 
used for new objects in the database schema. 

4 CONCLUSION 

Choosing methods for object ID encoding and 
distribution is crucial for the design of a fast and 
reliable semantic binary database engine. For 
efficient encoding of object IDs, we propose to 
allocate the most significant bits in an object ID as 
storage to encode length of an ID and to use the 
remaining bits to store the integer value of an ID 
directly. For practical purposes, it is recommended 
to use one-, two-, four-, and eight-byte encoded IDs 
for database objects, while short one- and two-byte 
IDs should be chosen for the database schema 
objects, since these IDs are present in every fact 
stored in the database.  
 With respect to object ID generation, we propose 
to generate object IDs in blocks. The blocks of IDs 
are assigned to the categories, thus a new object to 
be stored in the database receives an object ID from 
its category repository. This clustered ID distribution 
provides an effective storage and data retrieval 
solution, though it should be combined with other 
methods when the objects are allowed to change 
categories. 
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