
DESIGN AND IMPLEMENTATION OF A CONTEXT-BASED 
SYSTEM FOR COMPOSITION OF WEB SERVICES  

Wassam Zahreddine, Qusay H. Mahmoud 
Department of Computing & Information Science 

University of Guelph, Guelph, ON, N1G 2W1, Canada 

Keywords: Context-based discovery, dynamic composition, personalization, UDDI, CC/PP 

Abstract: Web Services are loosely coupled modular HTTP-based applications that represent a new approach for 
application integration. The reusability of web services is making them an attractive solution for businesses 
and consumers alike because of their simplicity and accessibility. Today’s web services are designed to be 
modular and loosely-coupled to perform a specific set of operations. This modularity of web services, 
however, has left an open problem in composition – a scenario that involves an amalgamation of two or 
more web services to fulfil a request that no one web service is able to provide. This paper presents the 
design and implementation of a system that enables users of any device to dynamically discover context-
based web services that will be automatically composed to satisfy a user’s request. Existing web services 
can be easily adapted and new web services can be easily deployed. The system uses a custom UDDI-like 
registry that we have designed and implemented to support dynamic discovery and context-based 
composition. 

1 INTRODUCTION 

Web services are becoming an attractive solution for 
businesses and consumers alike because of their 
simplicity and reusability. Today’s web services are 
designed to be modular and loosely coupled to 
perform a specific set of operations such as 
retrieving a stock quote. However, what if a client 
requires a service that no one web service can 
satisfy? The modularity of web services has left an 
open problem in composition. Web service 
composition involves an amalgamation of two or 
more web services to fulfil a request that no one web 
service is able to provide. A composite web service 
will bring forth endless possibilities and a new wave 
of online applications. Furthermore, the availability 
of web services is somewhat limited depending on 
the device being used. Recent efforts, such as (J2ME 
Web Services Specification, 2004), address the 
problem of accessing single web services from 
mobile devices but do not inherently support 
composition. Also there is a wide array of devices 
available, each with their own specific hardware and 
software capabilities making application deployment 
difficult. This paper presents the design and 
implementation of a novel system that will address 
these shortfalls in web service composition. The rest 

of this paper is organized as follows. Section 2 
presents an overview of Web services and Web 
service composition. Section 3 presents the proposed 
system and its main concepts. The high-level 
architecture of the system and its components are 
discussed in Section 4. Section 5 presents the 
ServiceSearcher, which is a core component of the 
system that serves an alternative to using a UDDI 
registry. The implementation of the system is 
discussed in Section 6. Related work is discussed in 
Section 7. Finally, conclusions and future work are 
discussed in Section 8. 

2 WEB SERVICES 

The concept of accessing services over the WWW or 
intranet is relatively new. The earlier stages began 
with frameworks by CORBA (Common Object 
Request Broker Architecture) and Java allowing 
heterogeneous components to communicate and 
interact with each other. As businesses began to see 
the cost-effectiveness of reusing heterogeneous 
components and languages, the popularity of web 
services grew. Web Services are loosely coupled 
modular web-based applications representing new 
ways to share services and information between 

119
Zahreddine W. and H. Mahmoud Q. (2005).
DESIGN AND IMPLEMENTATION OF A CONTEXT-BASED SYSTEM FOR COMPOSITION OF WEB SERVICES.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 119-126
DOI: 10.5220/0002535401190126
Copyright c© SciTePress



 

other applications (Curbera, F., et al., 2001). The 
reusability of web services means businesses can 
save money by reducing development costs. It will 
also allow them to make these services available for 
sale to create new opportunities with other 
businesses. Once a web service is created, it is 
advertised in a registry called UDDI (Universal 
Description, Discovery and Integration), where it 
can be searched upon. UDDI provides the location to 
the service provider’s WSDL (Web Services 
Description Language) file, which describes the 
methods that can be invoked and the parameters that 
are required. Messages are exchanged through 
SOAP (Simple Object Access Protocol). SOAP 
works by exchanging information using GET/POST 
over HTTP. This allows the data to be exchanged 
between firewalls regardless of where the client is 
within a network. 
 Web Service composition is the combination of 
two or more web services to perform what no single 
service is able to provide. The modularity and loose 
coupling design of web services allows them to 
perform a specific task. However, this may be seen 
as a disadvantage if a client would hope to find a 
web service that could perform all its needs. 
Therefore, custom solutions are needed to discover 
and connect multiple web services into one 
application. Several composition techniques have 
been proposed, some of these are presented in 
Section 7 (Related Work).  

3 THE PROPOSED SYSTEM 

The proposed system allows end users to 
transparently access web services based on context 
information over their personal devices whether 
desktops or portables. Users access web services 
through the use of customized Java Servlets or 
standalone applications that hide the complexities of 
employing web services. The main hallmarks of this 
system are: (1) Static and dynamic discovery of web 
services; (2) Context-awareness by keeping track of 
user preferences and results through personalized 
user profiles; (3) Compatible with virtually any 
device that has a web browser and access to the 
Internet; and (4) Capable of asynchronous 
communication with end user’s device to support the 
unreliability of wireless networks. 

To support static and dynamic discovery the 
system utilizes OWL-S (OWL-based Web Service 
Ontology), which was originally known as DAML-
S, to semantically describe web services and their 
methods. Our system gives greater control on how 
web services are dynamically discovered by 
allowing the application developer to specify how 

matches are made, which goes beyond the present 
techniques of semantically matching inputs and 
outputs along with classification taxonomies. 

3.1 Deploying Context-based Services 

Our system is designed with two objectives in mind: 
allowing users on virtually any device to discover 
context-based web services, and to make that 
experience simple and easy. Creating one service 
that will work on every portable device is extremely 
difficult because of the many different hardware and 
software combinations. Portable devices have all 
sorts of screen sizes, memory configurations, 
processor speeds, operating systems and creating 
one service that can cope with all may seem near 
impossible for some developers. Regardless of these 
new challenges, steps need to be taken to make 
applications adaptive to these dynamic 
environments. Fortunately, there have been 
significant advances in device compatibility 
techniques. The key to compatibility is finding a 
universal language to best describe a device and one 
such language is CCPP (Composite 
Capabilities/Preferences Profile) and UAProf (User 
Agent Profile). CCPP can be used to describe not 
only mobile phones but other devices such as PDAs 
or Smartphones. Industry leaders such as RIM, 
Nokia, Motorola and others have already begun to 
embrace this technology and have published profiles 
to support their devices. For instance, a UAProf 
profile can describe many attributes of a device such 
as: hardware and software characteristics, supported 
network types and browser information. CC/PP will 
help optimize the content for a device, reduce the 
testing time, and even help create future-proof 
applications. It is important to note that UAProf is 
not an alternative standard to CC/PP, instead it is a 
specific profile for WAP devices. 
 Along with the CCPP of the device, user 
information is also used as context for services. Data 
such as user’s name and address is stored and used 
as context information, thereby making the system 
context-aware. Furthermore, this information can be 
used to help the user by having the application 
automatically load this data as service inputs. For 
instance, a field requiring a city name to be entered 
will automatically be filled in using the address 
stored for that user. Hence, context-awareness will 
save time for the user, especially when using devices 
with small keypads (e.g. cellular devices) that take 
longer to work with than devices with full 
keyboards. 
 The proposed system has the ability to handle 
context in two areas. Firstly, the system has the 
ability to conform the results received from web 

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

120



 

services readable on the users’ device. Also it takes 
into consideration the capabilities of the device, such 
as displaying pictures and bandwidth to know 
whether the image is too large for the device to 
handle and simply not send that object. Secondly 
context-awareness can be handled at the web service 
level by giving the service the CC/PP profile of the 
user’s device (explained in Section 4). 

3.2 Discovering Services 

The proposed system supports static and dynamic 
service discovery. A summary of the costs and 
benefits of each type of discovery can be found in 
Table 1. Knowing what service to use a priori 
reduces response time, since no search needs to be 
made. One of the drawbacks of static service 
discovery is whether another web service could be 
floating out on the Internet that could perform a 
service better (i.e. faster, more reliable). Or, what if 
that web service is no longer available and another 
service must be found to replace the current one. 
 

Table 1: Pros and cons of discovery methods 

 
Finding a web service normally takes a human 

being, a UDDI registry, and patience. Simply 
because a user would have to search a UDDI to find 
a web service that would best suit his/her needs. 
That involves examining “white” and “yellow 
pages” that represent a web service in a UDDI 
registry.  

Discovering web services automatically has a 
number of issues since you are relying on a machine 
to find a service you need. This will involve a 
machine that can understand what it is looking for 
and what a web service will do. Hence, simply 
searching by keywords will not cut it. For example, 
searching for a service that could be described in 
many different ways all meaning the same thing. 
There are many ways a service could describe an 
automobile such as vehicle or car. Unless the 
machine knew all the different spellings for an 
automobile, the results could be limited to what the 
machine is programmed to find. More interestingly, 
what if the machine finds a keyword that matches 
but that word is a homograph? For instance, a 
machine looking for information on bass (freshwater 
bass fish) and alternatively gets information on a 

musical instrument. Problems such as this have 
fuelled research on developing a Semantic Web 
(Berners-Lee, T., et al., 2001); so that machines 
could understand what they are reading without 
confusion. Regardless, there is no 100% guarantee 
that taxonomies and semantics alone can help find 
an intended web service. Our system attempts to find 
web services that best suit the user’s criteria. 

4 SYSTEM ARCHITECTURE 

The system is comprised of many different 
components to support context-based discovery, 
composition and delivery of services. Figure 1 
depicts the architecture of this system.  

 
Figure 1: High-level system architecture 

 
To begin with, users are comprised of either 

mobile or desktop users and will interface through a 
web browser, or a standalone application. This paper 
will focus on the web browser based interface, 
where a user is presented with a Java Servlet called a 
ServiceServlet. When services are invoked, a request 
is passed to the Proxy. The request is then forwarded 
to a ServiceSearcher to find potential web services 
for the Proxy to connect to. The proxy evaluates the 
list of potentials, executes those services and returns 
the results to the ServiceServlet to be displayed for 
the user. 

An overview of the communication and 
interactions between components are depicted in 
Figure 2. To begin with, an end-user initiates a 
connection with the ServiceServlet and selects the 
services it wishes to invoke. A request is then sent to 
the Proxy where it is forwarded to a ServiceSearcher 
to find potential web services for the Proxy to 
invoke. Based on the given criteria of the request, a 
list of potential web services are returned to the 
Proxy. At this point the Proxy evaluates the list of 
potentials, executes those services and returns the 
results to the ServiceServlet to be displayed for the 

DESIGN AND IMPLEMENTATION OF A CONTEXT-BASED SYSTEM FOR COMPOSITION OF WEB SERVICES

121



 

user. The following sections explain in greater detail 
the roles of each component in the system. 

 
Figure 2: The process of executing a web service 

4.1 The ServiceServlet 

The system can be accessed by either a standalone 
client or a Java Servlet (ServiceServlet) through a 
Web browser, this paper will focus on Servlet use. 
 The ServiceServlet is designed so that a 
developer will have the option of how to set-up their 
services. Also, any number (or groups) of services 
could be supported by a ServiceServlet which 
implies that the organization and look of the 
ServiceServlet are entirely up to the designer. The 
only requirement is the role it plays when 
performing its service. It must connect to a Proxy to 
have services found and executed, then retrieve 
those results from the Proxy and display it, ideally, 
according to the device capabilities (by using the 
CC/PP profile if needed). Furthermore, unless the 
ServiceServlet is for anonymous public use, it will 
require access to a UserProfilesDB which will store 
data about the user such as: username and password, 
client name and address, client telephone and email 
address, CC/PP profile, and cached results from last 
access. 

4.2 The Proxy 

The proxy acts as an intermediary between the 
ServiceServlet and the ServiceSearcher. When the 
Proxy receives a request from the ServiceServlet, it 
contacts the ServiceSearcher to get a list of web 
services to execute and then returns the results back 
to the ServiceServlet. Even though services could 
potentially be executed from the ServiceServlet, we 
decided to separate the Proxy from the 
ServiceServlet. This approach is similar to the JSP 
Model 2 Architecture which separates the processing 
logic from the presentation layer. In doing so, 
improves the load balancing of the system by 
keeping the ServiceServlet and Proxy on separate 
servers. Not to mention the improvements in 

flexibility, and maintainability. Also by allowing the 
ServiceServlet to connect to auxiliary Proxies (if 
necessary) helps the system scale well (Figure 3). 
 

 
Figure 3: Backup Proxies can be accessed if needed 

 
 In addition, the Proxy supports two important 
features to improve the reliability and speed of its 
operation. Firstly, the Proxy is able to access more 
than one ServiceSearcher to retrieve services, hence 
improving the reliability of finding a matching 
service. In particular, if the default ServiceSearcher 
is unable to find a matching service or if the 
ServiceSearcher is offline, the Proxy has the ability 
to access auxiliary ServiceSearchers (Figure 4) 
located on other servers. 

 
Figure 4: Using ServiceSearchers to satisfy a request 

 
Secondly, the Proxy also supports the caching of 

service requests, thereby entirely bypassing the step 
of contacting a ServiceSearcher. Caching involves 
storing the request, the services used, the input 
values used and the results stored in memory. 
Therefore, if a new request matches a previous one 
including the input values, the results can be quickly 
returned to the ServiceServlet. If the new request 
matches a previous one but the input values are 
different, the service is executed again using the new 
input values. However, the ServiceSearcher still 
needs not be contacted thereby improving the speed 
of re-discovery. 

As previously mentioned, the Proxy has three 
roles, since it communicates with the ServiceServlet, 
ServiceSearcher, and web services. The first role 
deals with accepting requests from the 
ServiceServlet. The second role concerns satisfying 
the request by performing a search on the 
ServiceSearcher. Lastly, once the ServiceSearcher 

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

122



 

returns a list of services, the Proxy orchestrates and 
executes web services. 

4.3 Autonomous Execution 

The Proxy in the system runs and controls web 
services using the OWL-S control constructs. OWL-
S defines web services as either simple or complex. 
Simple services do not require other web services to 
perform their task. A Complex service is a web 
service that is composed of more than one simple 
service. This allows the Proxy to connect to 
individual web services as well as composite web 
services. When the Proxy receives a list of services 
to execute, it first examines the OWL-S document to 
map the input values with the input parameters of 
the services. As long as the Proxy has all the 
required inputs for the service, it will be executed 
and the output value is inserted into the list of results 
to be returned back to the ServiceServlet. The proxy 
creates an execution plan based on the inputs needed 
to produce a required output. This involves checking 
whether any output(s) from one service (let us call it 
Service-A) are required as inputs for another service 
(Service-B). Then Service-A will have to be 
executed before Service-B in the list. If both services 
require inputs and outputs from each other, then 
there is a deadlock and these services will be 
removed from the execution plan. It is at this point 
that the Proxy will replace Service-A and Service-B 
with alternate compatible services from the list of 
services returned from the ServiceSearcher. If no 
alternates are found on the current list, the Proxy can 
either try requesting new services from an auxiliary 
ServiceSearcher or report failure. Furthermore, an 
important benefit of OWL-S is that it also supports 
automatic execution monitoring to perform alternate 
actions; such as when a web service is offline or 
fails to function properly. The execution plan will 
have an opportunity to try an alternate service. 

4.4 Incentives for Industry Support 

In order to run an infrastructure such, as the one 
proposed by our system, on mass scale would not be 
cheap. Incentives are needed for Service Providers 
that host this system in order to cover the necessary 
costs brought on by it.  The following are examples 
of possible techniques to be used: 
• Advertisements displayed on the Servlet page. 

This will work well for desktop users because of 
the amount of screen space available. Although 
this technique would be difficult for portable 
users with limited screen sizes and colors.  

• The Service Provider only offers web services 
that they personally endorse. In this scenario all 
profits made from web services would go solely 
to the Service Provider. 

• End-users pay an enrolment fee and pay per 
service used or have monthly subscriptions for 
predefined usage. 

• A commission based system where Third-party 
web services pay a fee to advertise their web 
service within the system’s service registry. 

• Third-party web services advertise for free but 
pay a fee (commission) every time their web 
service is used. 

• A combination of last two techniques. 
 
 These are but a few of the potential revenue 
opportunities available to would-be Service 
Providers. Hence, in order for companies to support 
this system legitimate incentives are necessary. 
Internet and Cellular Service Providers as well as 
Web Service providers will be inclined to work 
together and their bond will come from the profits of 
offering services. 

5 SERVICE REPOSITORY 

The purpose of the ServiceSearcher is to locate 
potential web services that satisfy a given request 
from a Proxy. Our system does not take advantage 
of any existing UDDI repositories. Although this 
may seem like a disadvantage to our proposed 
system, after careful analysis we chose to create a 
new service repository. The main reason being, in 
order for the system to support automatic and 
dynamic discovery, semantic metadata must be 
supported by the UDDI repository. Presently UDDI 
has no such support. UDDI is designed primarily for 
humans to navigate and use. UDDI does not 
inherently support semantics and adding semantics 
will require another layer above UDDI to understand 
semantic requests. To support semantic information 
in UDDI will require an approach similar to 
(Paolucci, M., et al., 2002). Accessing two databases 
to do something that one database can is 
counterproductive and increases service discovery 
time. Moreover, it is important to note that UDDI is 
still far from becoming a standard and many changes 
will take place if and when it does become 
standardized by the OASIS Consortium. 
 The ServiceSearcher is similar to a UDDI 
repository, but instead should be considered a 
semantic UDDI registry used strictly for machine 
read operations. Therefore, no White or Yellow 
pages are implemented since they are only read by a 

DESIGN AND IMPLEMENTATION OF A CONTEXT-BASED SYSTEM FOR COMPOSITION OF WEB SERVICES

123



 

person and not a machine. This information is still 
available from within the OWL-S description that is 
stored along with other service details (e.g. service 
ID, service name).  
 Discovery can be performed statically by 
searching by a unique service identifier (ServiceID). 
Or, the search can be performed dynamically. A 
dynamic search has three parts within the request. 
The first part is classification taxonomies such as 
NAICS (North American Industry Classification 
System), and/or UNSPSC (Universal Standard 
Products and Services Classification). The second 
and third parts include the inputs and outputs of the 
request. Inputs and outputs of all OWL-S services 
have labels (eg. car, house, film) that are part of a 
semantic ontology and allow semantic matching of 
the actual parameters used in the web service. With 
this information included in the request the 
ServiceSearcher can match classification 
taxonomies, inputs, and outputs to find potential 
matches. A list of matches are compiled and then 
sent back to the Proxy.  
 The ServiceSearcher is a server application that 
has access to the ServiceDB which is the database 
that does the actual searching. Matching involves a 
list of queries that are generated and then executed 
on the ServiceDB. This database stores services by 
their service ID, service name, list of inputs, list of 
outputs and the URI to the OWL-S document. Based 
on the request a ServiceSearcher receives from a 
Proxy, it will compile a list of potential web services 
represented in OWL-S documents and then send this 
list back to the Proxy. 

The matching algorithm involves a list of queries 
that are generated and then executed on the 
ServiceDB. The ServiceDB is a database that 
manages services by their service ID, service name, 
list of inputs, list of outputs and the URI to the 
OWL-S document). All queries include a search 
based on the classification taxonomy as the first 
requirement to help insure that the correct service or 
product is located. Next, the first query generated 
checks to see if all inputs and outputs match a 
service in the ServiceDB. However, there is a 
chance that not all the requirements of the request 
can be answered by one service alone (especially if 
numerous inputs and outputs are in the request). 
Hence the search must be split. For instance two 
services that may be able to satisfy a request that one 
single service could not. Although using 
classification taxonomies and inputs and outputs for 
semantic matching have been proposed by others, 
what makes the ServiceSearcher unique is that it 
allows the ability for the searches to be tweaked in 
such a way to improve the accuracy of the results. 

The technique used involves adding dependencies to 
the outputs requested. Table 2 lists the potential 
dependencies and their corresponding syntax. In 
respect to the ServiceSearcher, a dependency 
signifies that when a service is being searched in the 
ServiceDB that has a particular output, that service 
must include all the inputs that are in the output’s 
dependency list. For example, if the request’s output 
variable is review <i# movie_title>, only services 
that have an output review and an input movie_title 
will satisfy this request. 
 

Table 2: Output dependency codes used in a request 

 

These dependencies give the ServiceServlet 
developer added control to what the ServiceSearcher 
will select as a potential match. Since most outputs 
require specific inputs to provide their intended 
results.  

6 IMPLEMENTATION 

Various technologies were used to implement the 
described system. To begin with, the system is built 
upon Java technology and XML. OWL-S is the 
technology we have used to semantically represent 
WSDL files, and in essence the web services. In 
order to speed up development time we have used 
the OWL-S API. This API provide the methods 
needed to read and parse OWL-S and WSDL files, 
both of which are written in XML. The OWL-S API 
also allowed us to execute web services.  
 The WSDL2OWL-S Converter was used in order 
to convert the WSDL file of a web services into 
OWL-S. Originally the authors of this tool created 
WSDL2DAML-S that was ported over to the OWL-
S specification. WSDL2OWL-S application will 
accept a WSDL file and allow the user to fill in 
information needed for the ServiceProfile. The 
ServiceModel of the OWL-S file can be edited to 
give semantic labels to the input and output 
variables of the web service. Now the OWL-S file 
can be submitted to the ServiceDB database. To ease 
this process, we have created a graphical application 
we have named OWL Service Feeder. A screen shot 

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

124



 

of this application is shown Figure 5. To submit an 
OWL-S file to the database, the user first connects to 
the database using the File menu. Then the user 
enters the Service Name, NAICS, UNSPSC, 
Context-aware settings. And finally, the user selects 
the location of the OWL-S source file. 
 A ServiceServlet is a Java Servlet which runs on 
a Java application server. We chose IBM 
WebSphere 6 as the application server to handle the 
Java Servlets and the web services we created.  

 
Figure 5: The interface to the OWL Service Feeder 

   
 We chose MySQL as the database application to 
run the UserProfilesDB and the ServiceDB. The use 
of MySQL was an easy choice since it is free, easy 
to use, and performs well for the needs of this 
system. 
 To support the adaptive web interface generated 
by the ServiceServlet we employed CC/PP 
technology. To speed up development we used JSR 
188 CC/PP Processing API. The API allowed us to 
parse CC/PP profiles to extract the UAProf 
descriptions of devices. 
 In addition, the system also has the functionality 
to locate web services that handle context 
information on their own. Who better to format the 
web service output than the web service itself? The 
choice is up to the ServiceServlet creator whether to 
allow the web service to handle contextual 
information or not. This is important since there may 
be situations where only the creators of the web 
service would know how to optimally fit the results 
on a portable device, whereas the ServiceServlet 
would take a best effort approach.  

 In order for the web service to support 
customized output formatting for a specific device, it 
must be adaptive. This requires information about 
the end-user’s device. This is done by passing the 
URI of the users CC/PP profile to the web service 
from within SOAP header or passed in as one of the 

WSDL PortType parameters. The profile contains 
various details of what the device is capable of, such 
as screen, and support for a WAP browser. With this 
information, the web service or ServiceServlet will 
know what types of colours and images will work 
with the device’s screen, and the size of pages that 
can be received on the device. 

7 RELATED WORK 

The automation of web service discovery is a 
relatively new idea, however, quite a few approaches 
have been put forth in academia to address this 
challenge. In particular, work done by (Sheng, Q.Z., 
et al., 2004) describes a framework for personalized 
service composition involving mobile users. They 
refer to their system as PCAP (Personalized 
Composition and Adaptive Provisioning of Web 
Services). A user has access to “process templates” 
which accomplish specific tasks. The user has the 
ability to modify these templates which sounds like 
a promising idea to allow users to adjust anything 
they wanted about a service. However, in order to do 
this, a user is expected to understand and alter state 
chart diagrams using the “template builder” the 
authors provide. Hoping a user will be able to 
modify their process templates seems like a tall 
order for a novice computer user. The templates 
themselves only provide for semiautomatic 
composition since the templates are just a 
compilation of predetermined services. During 
execution, template inputs are gathered from user 
input, the user profile and outputs from previous 
states in the template. As for service discovery, a 
“Template/Service Discovery Engine” is used to 
find advertised templates in a UDDI. However, the 
discovery is of a static nature since the system is 
incapable of dynamic discovery. 
    The work in (Sheshagiri, M., et al., 2004) also 
involves composite web services over portable 
devices. The framework they describe is used to 
support the “myCampus” context-aware 
environment which is designed to help students with 
the everyday tasks of campus life. There are a few 
similarities between myCampus and our system. 
Firstly, alike the PCAP system context, data is 
stored in some type of user profile. Also similar is 
the backward-chaining execution plan and the use of 
contingency web service in case of failures. Web 
services are unlikely to have 100% uptime. That is 
why our system also accounts for this by including 
alternate web services in the execution plan to be 
used as backup in the event of web service failure. 
Also, as with our system, OWL-S is utilized to 
support dynamic discovery of web services. 

DESIGN AND IMPLEMENTATION OF A CONTEXT-BASED SYSTEM FOR COMPOSITION OF WEB SERVICES

125



 

However, myCampus does not allow modifications 
to the searching algorithm. As mentioned earlier, a 
supported feature of our system includes using 
output dependencies to fine tune the searching 
algorithm and improve results. Furthermore, unlike 
our system, myCampus does not support context to 
sustain the hardware and software capabilities of the 
device.  
    Lastly, work done by (Paolucci, M., et al., 2002) 
have created a DAML-S/UDDI Matchmaker to 
dynamically discover web services. Web services 
are discovered based on the advertisement that 
provides a semantic description of a web service, 
similar to our ServiceDB. The advertisements 
describe the inputs and outputs of the service and a 
reference ID. The UDDI registry contains DAML-S 
data regarding the web service from within a 
tModel. When a request’s inputs and outputs are 
matched with an advertisement in the Advertisement 
Database, the resulting reference ID is translated and 
point to a UDDI entry representing the service. In 
comparison to our ServiceDB, this approach is 
counterproductive since two databases must be 
contacted in order to retrieve the necessary data to 
locate a service. The ServiceDB registry provides all 
the necessary information about a service; our 
approach improves the speed and efficiency for 
machines to find services. Moreover, their matching 
engine will only declare a match if all inputs and 
outputs of a service match those of the request. 
Hence, their system is incapable of splitting the 
search to find more than one service that will satisfy 
the request, thus producing false-positives. 

8 CONCLUSION AND FUTURE 
WORK 

In this paper we have described a system that 
automatically and dynamically composes web 
services based on context information and allows 
them to be displayed on virtually any portable 
device. New techniques have been proposed to make 
this possible. Firstly, the use of CC/PP with 
ServiceServlet to aid in the compatibility of devices 
to view and use web services. Also CC/PP can be 
passed on to context-aware web services to further 
improve compatibility. Secondly, the use of output 
dependencies to customize the discovery process of 
services to help ensure the quality of the results. And 
lastly, the design of the ServiceSearcher service 
registry that is more efficient than current techniques 
that involve semantics with UDDI. 
 Future developments will involve security issues 
relating to users and the system as a whole. For 

instance, securing the connection between the user 
and the ServiceServlet, between ServiceServlets and 
Proxies, between Proxies and ServiceSearchers and 
lastly between Web Services and Proxy.  
Furthermore, ways to measure the quality of a web 
service, by keeping track how well it has performed 
in the past using a type of rating system. Another 
crucial feature would involve having some type of 
legal contract between the Proxy and the web 
service to instil the notion of liabilities and make the 
two parties responsible for their actions. 

ACKNOWLEDGMENT 

This work was supported in part by the Natural 
Sciences and Engineering Research Council of 
Canada (NSERC) Discovery Grant No. 045635. 

REFERENCES 

Berners-Lee T., Hendler J., Lassila, O. The Semantic 
Web, Scientific American, May 2001. 

CC/PP (Composite Capabilities/Preferences Profile): 
http://www.w3.org/Mobile/CCPP. 
Curbera F., Nagy W.A.,  and Weerawarana S., Web 

Services: Why and How, OOPSLA 2001 Workshop 
on  Object-Oriented Web Services, October 2001. 

J2ME Web Services Specification (JSR 172): 
http://jcp.org/en/jsr/detail?id=172. 
North American Industry Classification System (NAICS) 

www.census.gov/epcd/www/naics.html. 
Organization for the Advancement of Structured 

Information Standards http://www.oasis-open.org. 
OWL-S: Semantic Markup for Web Services: 
http://www.daml.org/services/owl-s/1.0/owl-s.html. 
Paolucci M., Kawamura T., Payne T., Sycara K., 

Importing the Semantic Web in UDDI. E-Services and 
the Semantic Web Workshop. 2002. 

Sheng Q.Z.,and Benatallah B., Maamar Z., Dumas M., 
Ngu A., Enabling Personalized  Composition and 
Adaptive Provisioning of Web Services. 2004. 

Sheshagiri M., Sadeh N., Gandon F., Proc. of 
MobiSys2004 Workshop on Context Awareness, 
Boston, June 2004. 

Sycara, K.; Paolucci, M., Ankolekar, A.; Srinivasan, N., 
Automated Discovery, Interaction and Composition of 
Semantic Web Services, Journal of Web Semantics, 
Volume 1, Issue 1, December 2003. 

Universal Standard Products and Services Classification 
(UNSPSC): http://www.unspsc.org. 

WSDL2OWL-S: 
http://www.daml.ri.cmu.edu/wsdl2owls. 
 

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

126


